Skip to main content

Advertisement

Log in

Potential Benefits of Rho-kinase Inhibition in Arterial Hypertension

  • Hypertension Management and Antihypertensive Drugs (HM Siragy and B Waeber, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Arterial hypertension is a major health problem, accounting for 12 % of the global death rate. A large proportion of patients treated for high blood pressure do not reach target blood pressure values. The question arises if new antihypertensive drugs could improve present hypertension treatment. Rho-kinases (ROCKs) are ubiquitously expressed serine/threonine kinases and involved in a variety of cell functions. They contribute to the pathogenesis of human and experimental hypertension. Pharmacological ROCK inhibition has been shown to effectively lower blood pressure in patients and experimental animals. Progress has been made towards the understanding on how non-selective ROCK inhibitors lower arterial pressure and efforts are currently undertaken to develop ROCK inhibitors to improve their specificity and isoenzyme selectivity. If introduction of ROCK inhibitors for the treatment of high blood pressure can significantly advance currently available options of antihypertensive pharmacotherapy awaits further experimental and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Lawes CM, Vander Hoorn S, Law MR, Elliott P, MacMahon S, Rodgers A. Blood pressure and the global burden of disease 2000. Part 1: estimates of blood pressure levels. J Hypertens. 2006;24(3):413–22.

    Article  PubMed  CAS  Google Scholar 

  2. Whitworth JA. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003;21(11):1983–92. doi:10.1097/01.hjh.0000084751.37215.d2.

    Article  PubMed  Google Scholar 

  3. Lawes CM, Vander Hoorn S, Law MR, Elliott P, MacMahon S, Rodgers A. Blood pressure and the global burden of disease 2000. Part II: estimates of attributable burden. J Hypertens. 2006;24(3):423–30. doi:10.1097/01.hjh.0000209973.67746.f0.

    Article  PubMed  CAS  Google Scholar 

  4. Mulvany MJ. Small artery remodelling in hypertension: causes, consequences and therapeutic implications. Med Biol Eng Comput. 2008;46(5):461–7. doi:10.1007/s11517-008-0305-3.

    Article  PubMed  Google Scholar 

  5. Guyton AC. Blood pressure control–special role of the kidneys and body fluids. Science. 1991;252(5014):1813–6.

    Article  PubMed  CAS  Google Scholar 

  6. Ponnuchamy B, Khalil RA. Cellular mediators of renal vascular dysfunction in hypertension. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R1001–18. doi:10.1152/ajpregu.90960.2008.

    Article  PubMed  CAS  Google Scholar 

  7. Chalmers J, Arima H, Harrap S, Touyz RM, Park JB. Global survey of current practice in management of hypertension as reported by societies affiliated with the international society of hypertension. J Hypertens. 2013;31(5):1043–8. doi:10.1097/HJH.0b013e32835f7eef.

    Article  PubMed  CAS  Google Scholar 

  8. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665. doi:10.1136/bmj.b1665.

    Article  PubMed  CAS  Google Scholar 

  9. Fletcher RD, Amdur RL, Kolodner R, McManus C, Jones R, Faselis C, et al. Blood pressure control among US veterans: a large multiyear analysis of blood pressure data from the Veterans Administration health data repository. Circulation. 2012;125(20):2462–8. doi:10.1161/CIRCULATIONAHA.111.029983.

    Article  PubMed  Google Scholar 

  10. Gu Q, Burt VL, Dillon CF, Yoon S. Trends in antihypertensive medication use and blood pressure control among United States adults with hypertension: the National Health And Nutrition Examination Survey, 2001 to 2010. Circulation. 2012;126(17):2105–14. doi:10.1161/CIRCULATIONAHA.112.096156.

    Article  PubMed  CAS  Google Scholar 

  11. Mancia G. Blood pressure reduction and cardiovascular outcomes: past, present, and future. Am J Cardiol. 2007;100(3A):3J–9J. doi:10.1016/j.amjcard.2007.05.008.

    Article  PubMed  Google Scholar 

  12. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117(25):e510–26. doi:10.1161/CIRCULATIONAHA.108.189141.

    Article  PubMed  Google Scholar 

  13. Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125(13):1635–42. doi:10.1161/CIRCULATIONAHA.111.068064.

    Article  PubMed  Google Scholar 

  14. Liao JK, Seto M, Noma K. Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol. 2007;50(1):17–24. doi:10.1097/FJC.0b013e318070d1bd.

    Article  PubMed  CAS  Google Scholar 

  15. • Hahmann C, Schroeter T. Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity. Cell Mol Life Sci: CMLS. 2010;67(2):171–7. doi:10.1007/s00018-009-0189-x. Provides an overview on isoenzyme selectivity of ROCK inhibitors.

    Article  PubMed  CAS  Google Scholar 

  16. Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res. 2006;98(3):322–34. doi:10.1161/01.RES.0000201960.04223.3c.

    Article  PubMed  CAS  Google Scholar 

  17. •• Wirth A. Rho kinase and hypertension. Biochim Biophys Acta. 2010;1802(12):1276–84. doi:10.1016/j.bbadis.2010.05.002. Provides a recent comprehensive overview on the regulation of ROCK activity, ROCK substrates and the role of ROCKs in vascular biology.

    Article  PubMed  CAS  Google Scholar 

  18. Nunes KP, Rigsby CS, Webb RC. RhoA/Rho-kinase and vascular diseases: what is the link? Cell Mol Life Sci: CMLS. 2010;67(22):3823–36. doi:10.1007/s00018-010-0460-1.

    Article  PubMed  CAS  Google Scholar 

  19. Duess JW, Fujiwara N, Corcionivoschi N, Puri P, Thompson J. ROCK inhibitor (Y-27632) disrupts somitogenesis in chick embryos. Pediatr Surg Int. 2013;29(1):13–8. doi:10.1007/s00383-012-3202-7.

    Article  PubMed  Google Scholar 

  20. Phillips HM, Papoutsi T, Soenen H, Ybot-Gonzalez P, Henderson DJ, Chaudhry B. Neural crest cell survival is dependent on Rho kinase and is required for development of the mid face in mouse embryos. PLoS One. 2012;7(5):e37685. doi:10.1371/journal.pone.0037685.

    Article  PubMed  CAS  Google Scholar 

  21. Abe H, Kamai T, Tsujii T, Nakamura F, Mashidori T, Mizuno T, et al. Possible role of the RhoC/ROCK pathway in progression of clear cell renal cell carcinoma. Biomed Res. 2008;29(3):155–61.

    Article  PubMed  CAS  Google Scholar 

  22. Cao XX, Xu JD, Xu JW, Liu XL, Cheng YY, Li QQ, et al. RACK1 promotes breast carcinoma migration/metastasis via activation of the RhoA/Rho kinase pathway. Breast Cancer Res Treat. 2011;126(3):555–63. doi:10.1007/s10549-010-0955-3.

    Article  PubMed  CAS  Google Scholar 

  23. Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, et al. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol. 2003;23(14):5043–55.

    Article  PubMed  CAS  Google Scholar 

  24. Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, et al. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol. 2005;168(6):941–53. doi:10.1083/jcb.200411179.

    Article  PubMed  CAS  Google Scholar 

  25. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4. doi:10.1038/40187.

    Article  PubMed  CAS  Google Scholar 

  26. Lohn M, Plettenburg O, Ivashchenko Y, Kannt A, Hofmeister A, Kadereit D, et al. Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension. 2009;54(3):676–83. doi:10.1161/HYPERTENSIONAHA.109.134353.

    Article  PubMed  Google Scholar 

  27. Hinderling PH, Karara AH, Tao B, Pawula M, Wilding I, Lu M. Systemic availability of the active metabolite hydroxy-fasudil after administration of fasudil to different sites of the human gastrointestinal tract. J Clin Pharmacol. 2007;47(1):19–25. doi:10.1177/0091270006293767.

    Article  PubMed  CAS  Google Scholar 

  28. Chen YT, Bannister TD, Weiser A, Griffin E, Lin L, Ruiz C, et al. Chroman-3-amides as potent Rho kinase inhibitors. Bioorg Med Chem Lett. 2008;18(24):6406–9. doi:10.1016/j.bmcl.2008.10.080.

    Article  PubMed  CAS  Google Scholar 

  29. Sehon CA, Wang GZ, Viet AQ, Goodman KB, Dowdell SE, Elkins PA, et al. Potent, selective and orally bioavailable dihydropyrimidine inhibitors of Rho kinase (ROCK1) as potential therapeutic agents for cardiovascular diseases. J Med Chem. 2008;51(21):6631–4. doi:10.1021/jm8005096.

    Article  PubMed  CAS  Google Scholar 

  30. Sessions EH, Yin Y, Bannister TD, Weiser A, Griffin E, Pocas J, et al. Benzimidazole- and benzoxazole-based inhibitors of Rho kinase. Bioorg Med Chem Lett. 2008;18(24):6390–3. doi:10.1016/j.bmcl.2008.10.095.

    Article  PubMed  CAS  Google Scholar 

  31. Shahin R, Alqtaishat S, Taha MO. Elaborate ligand-based modeling reveal new submicromolar Rho kinase inhibitors. J Comput Aided Mol Des. 2012;26(2):249–66. doi:10.1007/s10822-011-9509-y.

    Article  PubMed  CAS  Google Scholar 

  32. Yin Y, Lin L, Ruiz C, Khan S, Cameron MD, Grant W, et al. Synthesis and biological evaluation of urea derivatives as highly potent and selective rho kinase inhibitors. J Med Chem. 2013;56(9):3568–81. doi:10.1021/jm400062r.

    Article  PubMed  CAS  Google Scholar 

  33. Kast R, Schirok H, Figueroa-Perez S, Mittendorf J, Gnoth MJ, Apeler H, et al. Cardiovascular effects of a novel potent and highly selective azaindole-based inhibitor of Rho-kinase. Br J Pharmacol. 2007;152(7):1070–80. doi:10.1038/sj.bjp.0707484.

    Article  PubMed  CAS  Google Scholar 

  34. Prakash J, de Borst MH, Lacombe M, Opdam F, Klok PA, van Goor H, et al. Inhibition of renal rho kinase attenuates ischemia/reperfusion-induced injury. J Am Soc Nephrol: JASN. 2008;19(11):2086–97. doi:10.1681/ASN.2007070794.

    Article  PubMed  CAS  Google Scholar 

  35. Balakumar P, Kathuria S, Taneja G, Kalra S, Mahadevan N. Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins? J Mol Cell Cardiol. 2012;52(1):83–92. doi:10.1016/j.yjmcc.2011.09.014.

    Article  PubMed  CAS  Google Scholar 

  36. Ying Z, Giachini FR, Tostes RC, Webb RC. Salicylates dilate blood vessels through inhibiting PYK2-mediated RhoA/Rho-kinase activation. Cardiovasc Res. 2009;83(1):155–62. doi:10.1093/cvr/cvp084.

    Article  PubMed  CAS  Google Scholar 

  37. Zhou Y, Su Y, Li B, Liu F, Ryder JW, Wu X, et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science. 2003;302(5648):1215–7. doi:10.1126/science.1090154.

    Article  PubMed  CAS  Google Scholar 

  38. Fu Q, Hue J, Li S. Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. J Neurosci: Off J Soc Neurosci. 2007;27(15):4154–64. doi:10.1523/JNEUROSCI.4353-06.2007.

    Article  CAS  Google Scholar 

  39. Schluter T, Steinbach AC, Steffen A, Rettig R, Grisk O. Apocynin-induced vasodilation involves Rho kinase inhibition but not NADPH oxidase inhibition. Cardiovasc Res. 2008;80(2):271–9. doi:10.1093/cvr/cvn185.

    Article  PubMed  Google Scholar 

  40. Wakino S, Hayashi K, Kanda T, Tatematsu S, Homma K, Yoshioka K, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit Rho/Rho kinase pathway by inducing protein tyrosine phosphatase SHP-2. Circ Res. 2004;95(5):e45–55. doi:10.1161/01.RES.0000142313.68389.92.

    Article  PubMed  CAS  Google Scholar 

  41. Nochioka K, Tanaka S, Miura M, do Zhulanqiqige E, Fukumoto Y, Shiba N, et al. Ezetimibe improves endothelial function and inhibits Rho-kinase activity associated with inhibition of cholesterol absorption in humans. Circ J. 2012;76(8):2023–30.

    Article  PubMed  CAS  Google Scholar 

  42. Ghisdal P, Vandenberg G, Morel N. Rho-dependent kinase is involved in agonist-activated calcium entry in rat arteries. J Physiol. 2003;551(Pt 3):855–67. doi:10.1113/jphysiol.2003.047050.

    Article  PubMed  CAS  Google Scholar 

  43. Sakurada S, Takuwa N, Sugimoto N, Wang Y, Seto M, Sasaki Y, et al. Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ Res. 2003;93(6):548–56. doi:10.1161/01.RES.0000090998.08629.60.

    Article  PubMed  CAS  Google Scholar 

  44. Fernandez-Tenorio M, Porras-Gonzalez C, Castellano A, Del Valle-Rodriguez A, Lopez-Barneo J, Urena J. Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+ channels: new mechanism for depolarization-evoked mammalian arterial contraction. Circ Res. 2011;108(11):1348–57. doi:10.1161/CIRCRESAHA.111.240127.

    Article  PubMed  CAS  Google Scholar 

  45. • Hata T, Soga J, Hidaka T, Idei N, Fujii Y, Fujimura N, et al. Calcium channel blocker and Rho-associated kinase activity in patients with hypertension. J Hypertens. 2011;29(2):373–9. doi:10.1097/HJH.0b013e328340902d. A clinical study that provides data indicating that CCBs inhibit ROCK activity in hypertensive patients suggesting that CCB actions are partly due to indirect ROCK inhibition.

    Article  PubMed  CAS  Google Scholar 

  46. •• Althoff TF, Juarez JA, Troidl K, Tang C, Wang S, Wirth A, et al. Procontractile G protein-mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling. J Exp Med. 2012;209(12):2277–90. doi:10.1084/jem.20120350. This study shows that signaling via the G 12/13 pathway which activates ROCK is essential for maitaining a differentiated phenotype in vascular smooth muscle cells and reduces the suceptibility to vascular injury. This is achieved by using several smooth muscle cell-specific knock out mouse models.

    Article  PubMed  CAS  Google Scholar 

  47. Wang Y, Zheng XR, Riddick N, Bryden M, Baur W, Zhang X, et al. ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circ Res. 2009;104(4):531–40. doi:10.1161/CIRCRESAHA.108.188524.

    Article  PubMed  CAS  Google Scholar 

  48. Lin T, Zeng L, Liu Y, DeFea K, Schwartz MA, Chien S, et al. Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins. Circ Res. 2003;92(12):1296–304. doi:10.1161/01.RES.0000078780.65824.8B.

    Article  PubMed  CAS  Google Scholar 

  49. • Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, et al. RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J. 2010;24(9):3186–95. doi:10.1096/fj.09-145102. ROCK II is identified as an essetial part of VEGF-induced angiogenesis using hemizygous ROCK-deficient mice.

    Article  PubMed  CAS  Google Scholar 

  50. Sauzeau V, Sevilla MA, Montero MJ, Bustelo XR. The Rho/Rac exchange factor Vav2 controls nitric oxide-dependent responses in mouse vascular smooth muscle cells. J Clin Investig. 2010;120(1):315–30. doi:10.1172/JCI38356.

    Article  PubMed  CAS  Google Scholar 

  51. Dhaliwal JS, Casey DB, Greco AJ, Badejo Jr AM, Gallen TB, Murthy SN, et al. Rho kinase and Ca2+ entry mediate increased pulmonary and systemic vascular resistance in L-NAME-treated rats. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1306–13. doi:10.1152/ajplung.00189.2007.

    Article  PubMed  CAS  Google Scholar 

  52. Casey DB, Badejo AM, Dhaliwal JS, Sikora JL, Fokin A, Golwala NH, et al. Analysis of responses to the Rho-kinase inhibitor Y-27632 in the pulmonary and systemic vascular bed of the rat. Am J Physiol Heart Circ Physiol. 2010;299(1):H184–92. doi:10.1152/ajpheart.00181.2009.

    Article  PubMed  CAS  Google Scholar 

  53. Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension. 2001;38(6):1307–10.

    Article  PubMed  CAS  Google Scholar 

  54. Hata T, Goto C, Soga J, Hidaka T, Fujii Y, Idei N, et al. Measurement of Rho-associated kinase (ROCK) activity in humans: validity of leukocyte p-MBS/t-MBS in comparison with vascular response to fasudil. Atherosclerosis. 2011;214(1):117–21. doi:10.1016/j.atherosclerosis.2010.10.005.

    Article  PubMed  CAS  Google Scholar 

  55. • Smith CJ, Santhanam L, Alexander LM. Rho-Kinase activity and cutaneous vasoconstriction is upregulated in essential hypertensive humans. Microvasc Res. 2013;87:58–64. doi:10.1016/j.mvr.2013.02.005. The study provides direct evidence for RhoA/ROCK activation in the microvasculature of humans with high blood pressure.

    Article  PubMed  CAS  Google Scholar 

  56. Bussemaker E, Herbrig K, Pistrosch F, Palm C, Passauer J. Role of rho-kinase in the regulation of vascular tone in hypertensive renal transplant recipients. Atherosclerosis. 2009;207(2):567–72. doi:10.1016/j.atherosclerosis.2009.05.025.

    Article  PubMed  CAS  Google Scholar 

  57. Seasholtz TM, Wessel J, Rao F, Rana BK, Khandrika S, Kennedy BP, et al. Rho kinase polymorphism influences blood pressure and systemic vascular resistance in human twins: role of heredity. Hypertension. 2006;47(5):937–47. doi:10.1161/01.HYP.0000217364.45622.f0.

    Article  PubMed  CAS  Google Scholar 

  58. Zhao Q, Wang L, Yang W, Chen S, Huang J, Fan Z, et al. Interactions among genetic variants from contractile pathway of vascular smooth muscle cell in essential hypertension susceptibility of Chinese Han population. Pharmacogenet Genomics. 2008;18(6):459–66. doi:10.1097/FPC.0b013e3282f97fb2.

    Article  PubMed  CAS  Google Scholar 

  59. Rankinen T, Church T, Rice T, Markward N, Blair SN, Bouchard C. A major haplotype block at the rho-associated kinase 2 locus is associated with a lower risk of hypertension in a recessive manner: the HYPGENE study. Hypertens Res: Off J Jpn Soc Hypertens. 2008;31(8):1651–7. doi:10.1291/hypres.31.1651.

    Article  CAS  Google Scholar 

  60. Cavarape A, Endlich N, Assaloni R, Bartoli E, Steinhausen M, Parekh N, et al. Rho-kinase inhibition blunts renal vasoconstriction induced by distinct signaling pathways in vivo. J Am Soc Nephrol: JASN. 2003;14(1):37–45.

    Article  PubMed  Google Scholar 

  61. Roos MH, van Rodijnen WF, van Lambalgen AA, ter Wee PM, Tangelder GJ. Renal microvascular constriction to membrane depolarization and other stimuli: pivotal role for rho-kinase. Pflugers Archiv: Eur J Physiol. 2006;452(4):471–7. doi:10.1007/s00424-006-0053-x.

    Article  CAS  Google Scholar 

  62. Inscho EW, Cook AK, Webb RC, Jin LM. Rho-kinase inhibition reduces pressure-mediated autoregulatory adjustments in afferent arteriolar diameter. Am J Physiol Ren Physiol. 2009;296(3):F590–7. doi:10.1152/ajprenal.90703.2008.

    Article  CAS  Google Scholar 

  63. Grisk O, Schluter T, Reimer N, Zimmermann U, Katsari E, Plettenburg O, et al. The Rho kinase inhibitor SAR407899 potently inhibits endothelin-1-induced constriction of renal resistance arteries. J Hypertens. 2012;30(5):980–9. doi:10.1097/HJH.0b013e328351d459.

    Article  PubMed  CAS  Google Scholar 

  64. Liu Y, Echtermeyer F, Thilo F, Theilmeier G, Schmidt A, Schulein R, et al. The proteoglycan syndecan 4 regulates transient receptor potential canonical 6 channels via RhoA/Rho-associated protein kinase signaling. Arterioscler Thromb Vasc Biol. 2012;32(2):378–85. doi:10.1161/ATVBAHA.111.241018.

    Article  PubMed  Google Scholar 

  65. Eisen R, Walid S, Ratcliffe DR, Ojakian GK. Regulation of epithelial tubule formation by Rho family GTPases. Am J Physiol Cell Physiol. 2006;290(5):C1297–309. doi:10.1152/ajpcell.00287.2005.

    Article  PubMed  CAS  Google Scholar 

  66. Szaszi K, Sirokmany G, Di Ciano-Oliveira C, Rotstein OD, Kapus A. Depolarization induces Rho-Rho kinase-mediated myosin light chain phosphorylation in kidney tubular cells. Am J Physiol Cell Physiol. 2005;289(3):C673–85. doi:10.1152/ajpcell.00481.2004.

    Article  PubMed  CAS  Google Scholar 

  67. •• Ramseyer VD, Hong NJ, Garvin JL. Tumor necrosis factor alpha decreases nitric oxide synthase type 3 expression primarily via Rho/Rho kinase in the thick ascending limb. Hypertension. 2012;59(6):1145–50. doi:10.1161/HYPERTENSIONAHA.111.189761. The study shows that RhoA/ROCK mediate downregulation of eNOS (NOS3) in isolated rat thick ascending limb suggesting that this pathway could be involved in renal tubular sodium retention.

    Article  PubMed  CAS  Google Scholar 

  68. Li W, Zhang Y, Bouley R, Chen Y, Matsuzaki T, Nunes P, et al. Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am J Physiol Ren Physiol. 2011;301(2):F309–18. doi:10.1152/ajprenal.00001.2011.

    Article  CAS  Google Scholar 

  69. Grisk O, Packebusch M, Steinbach AC, Schluter T, Kopp UC, Rettig R. Endothelin-1-induced activation of rat renal pelvic contractions depends on cyclooxygenase-1 and Rho kinase. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1602–9. doi:10.1152/ajpregu.00452.2010.

    Article  PubMed  CAS  Google Scholar 

  70. Nishikimi T, Koshikawa S, Ishikawa Y, Akimoto K, Inaba C, Ishimura K, et al. Inhibition of Rho-kinase attenuates nephrosclerosis and improves survival in salt-loaded spontaneously hypertensive stroke-prone rats. J Hypertens. 2007;25(5):1053–63. doi:10.1097/HJH.0b013e3280825440.

    Article  PubMed  CAS  Google Scholar 

  71. Ishikawa Y, Nishikimi T, Akimoto K, Ishimura K, Ono H, Matsuoka H. Long-term administration of rho-kinase inhibitor ameliorates renal damage in malignant hypertensive rats. Hypertension. 2006;47(6):1075–83. doi:10.1161/01.HYP.0000221605.94532.71.

    Article  PubMed  CAS  Google Scholar 

  72. • Williams JM, Johnson AC, Stelloh C, Dreisbach AW, Franceschini N, Regner KR, et al. Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension. 2012;60(5):1157–68. doi:10.1161/HYPERTENSIONAHA.112.199240. Using congenic rat lines the authors identify a Rho guanine nucleotide exchange factor gene of Dahl-S rats as cause of increased susceptibility to hypertensive renal disease.

    Article  PubMed  CAS  Google Scholar 

  73. Kobayashi N, Hara K, Tojo A, Onozato ML, Honda T, Yoshida K, et al. Eplerenone shows renoprotective effect by reducing LOX-1-mediated adhesion molecule, PKCepsilon-MAPK-p90RSK, and Rho-kinase pathway. Hypertension. 2005;45(4):538–44. doi:10.1161/01.HYP.0000157408.43807.5a.

    Article  PubMed  CAS  Google Scholar 

  74. Koshikawa S, Nishikimi T, Inaba C, Akimoto K, Matsuoka H. Fasudil, a Rho-kinase inhibitor, reverses L-NAME exacerbated severe nephrosclerosis in spontaneously hypertensive rats. J Hypertens. 2008;26(9):1837–48. doi:10.1097/HJH.0b013e328305086c.

    Article  PubMed  CAS  Google Scholar 

  75. Komers R, Oyama TT, Beard DR, Anderson S. Effects of systemic inhibition of Rho kinase on blood pressure and renal haemodynamics in diabetic rats. Br J Pharmacol. 2011;162(1):163–74. doi:10.1111/j.1476-5381.2010.01031.x.

    Article  PubMed  CAS  Google Scholar 

  76. Mustafa S, Vasudevan H, Yuen VG, McNeill JH. Renal expression of arachidonic acid metabolizing enzymes and RhoA/Rho kinases in fructose insulin resistant hypertensive rats. Mol Cell Biochem. 2010;333(1–2):203–9. doi:10.1007/s11010-009-0220-4.

    Article  PubMed  CAS  Google Scholar 

  77. Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2(5). doi:10.1136/bmjopen-2012-001007.

  78. Kurosaki E, Ogasawara H. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: Preclinical and clinical data. Pharmacol Ther. 2013;139(1):51–9. doi:10.1016/j.pharmthera.2013.04.003.

    Article  PubMed  CAS  Google Scholar 

  79. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–26. doi:10.1161/HYPERTENSIONAHA.109.140665.

    Article  PubMed  CAS  Google Scholar 

  80. Esler MD, Krum H, Schlaich M, Schmieder RE, Bohm M, Sobotka PA. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126(25):2976–82. doi:10.1161/CIRCULATIONAHA.112.130880.

    Article  PubMed  CAS  Google Scholar 

  81. Ito K, Hirooka Y, Sakai K, Kishi T, Kaibuchi K, Shimokawa H, et al. Rho/Rho-kinase pathway in brain stem contributes to blood pressure regulation via sympathetic nervous system: possible involvement in neural mechanisms of hypertension. Circ Res. 2003;92(12):1337–43. doi:10.1161/01.RES.0000079941.59846.D4.

    Article  PubMed  CAS  Google Scholar 

  82. Ito K, Hirooka Y, Sagara Y, Kimura Y, Kaibuchi K, Shimokawa H, et al. Inhibition of Rho-kinase in the brainstem augments baroreflex control of heart rate in rats. Hypertension. 2004;44(4):478–83. doi:10.1161/01.HYP.0000143120.24612.68.

    Article  PubMed  CAS  Google Scholar 

  83. Sagara Y, Hirooka Y, Nozoe M, Ito K, Kimura Y, Sunagawa K. Pressor response induced by central angiotensin II is mediated by activation of Rho/Rho-kinase pathway via AT1 receptors. J Hypertens. 2007;25(2):399–406. doi:10.1097/HJH.0b013e328010b87f.

    Article  PubMed  CAS  Google Scholar 

  84. Kumai T, Takeba Y, Matsumoto N, Nakaya S, Tsuzuki Y, Yanagida Y, et al. Fasudil attenuates sympathetic nervous activity in the adrenal medulla of spontaneously hypertensive rats. Life Sci. 2007;81(15):1193–8. doi:10.1016/j.lfs.2007.08.008.

    Article  PubMed  CAS  Google Scholar 

  85. Thoenen H, Mueller RA, Axelrod J. Trans-synaptic induction of adrenal tyrosine hydroxylase. J Pharmacol Exp Ther. 1969;169(2):249–54.

    PubMed  CAS  Google Scholar 

  86. Satoh N, Toyohira Y, Itoh H, Zhang H, Ueno S, Tsutsui M, et al. Stimulation of norepinephrine transporter function by fasudil, a Rho kinase inhibitor, in cultured bovine adrenal medullary cells. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(9):921–31. doi:10.1007/s00210-012-0773-8.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Olaf Grisk declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

With regard to the author’s research cited in this paper, all institutional and national guidelines for the care and use of laboratory animals were followed. In addition, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Grisk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grisk, O. Potential Benefits of Rho-kinase Inhibition in Arterial Hypertension. Curr Hypertens Rep 15, 506–513 (2013). https://doi.org/10.1007/s11906-013-0373-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0373-0

Keywords

Navigation