Skip to main content

Advertisement

Log in

The Role of CNS in Salt-sensitive Hypertension

  • Secondary Hypertension: Adrenal and Nervous System Mechanisms (S Oparil, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The role of sympathetic nerve activity in hypertension is currently receiving increased attention, because catheter-based renal denervation was recently shown to reduce blood pressure safely in patients with treatment-resistant hypertension. The central nervous system, which regulates sympathetic nerve activity and blood pressure, is pivotal. Central sympathoexcitation has been shown to be deeply involved in the pathogenesis of salt-sensitive hypertension, although its precise mechanisms have not yet been fully elucidated due to their complexity. Recently, a role for brain oxidative stress in sympathoexcitation has been suggested in some hypertensive animal models. We have demonstrated that increased brain oxidative stress may elevate arterial pressure through central sympathoexcitation in salt-sensitive hypertension. Several factors other than oxidative stress have also been shown to play important roles in central sympathetic activation. In the future, strategies may be developed to elicit a sympathetic inhibition by modulating these factors to prevent and manage salt-sensitive hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Esler MD, Krum H, Sobotka PA, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the symplicity HTN-2 trial): A randomised controlled trial. Lancet. 2010;376:1903–09 This report reminds all doctors engaged in the management of hypertension of the importance of sympathetic nerve activity.

    Article  PubMed  Google Scholar 

  2. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–197.

    PubMed  CAS  Google Scholar 

  3. Converse Jr RL, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–18.

    Article  PubMed  Google Scholar 

  4. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.

    Article  PubMed  CAS  Google Scholar 

  5. • Simplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: Durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–17 In this report, the durability of blood pressure reduction and the safety of the new strategy, catheter-based renal sympathetic denervation, are demonstrated.

    Article  Google Scholar 

  6. Schlaich MP, Hering D, Sobotka PA, et al. Renal denervation in human hypertension: Mechanisms, current findings, and future prospects. Curr Hypertens Rep. 2012;14:247–53.

    Article  PubMed  Google Scholar 

  7. •• Fujita M, Ando K, Kawarazaki H, et al. Sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in salt-induced chronic kidney disease. Hypertension. 2012;59:105–12 In this report, we demonstrated clearly that central antioxidant treatment decreased sympathetic nerve activity and arterial pressure, which, in turn, led to a decrease in renal damage in the acquired salt-sensitive hypertension model, the young salt-loaded uninephrectomized SpragueDawley rat.

    Article  PubMed  CAS  Google Scholar 

  8. Fujita M, Ando K, Nagae A, et al. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in salt-sensitive hypertension. Hypertension. 2007;50:360–67.

    Article  PubMed  CAS  Google Scholar 

  9. •• Nagae A, Fujita M, Kawarazaki H, et al. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation. 2009;119:978–86 This report suggested a possible common pathogenic backgroundincreased brain oxidative stress-mediated sympathoexcitation in obesity-induced and salt-sensitive hypertensionand proposed that a novel strategy such as administration of an antioxidant factor with a sympathoinhibitory effect may be useful for preventing and managing hypertension associated with metabolic disorder along with salt sensitivity.

    Article  PubMed  CAS  Google Scholar 

  10. Chen J, Gu D, Huang J, et al. Metabolic syndrome and salt sensitivity of blood pressure in non-diabetic people in China: A dietary intervention study. Lancet. 2009;373:829–35.

    Article  PubMed  CAS  Google Scholar 

  11. Uzu T, Kimura G, Yamauchi A, et al. Enhanced sodium sensitivity and disturbed circadian rhythm of blood pressure in essential hypertension. J Hypertens. 2006;24:1627–32.

    Article  PubMed  CAS  Google Scholar 

  12. Kishi T, Hirooka Y, Kimura Y, et al. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109:2357–62.

    Article  PubMed  CAS  Google Scholar 

  13. Koga Y, Hirooka Y, Araki S, et al. High salt intake enhances blood pressure increase during development of hypertension via oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Hypertens Res. 2008;31:2075–83.

    Article  PubMed  CAS  Google Scholar 

  14. Ye S, Zhong H, Yanamadala S, et al. Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension. 2006;48:309–15.

    Article  PubMed  CAS  Google Scholar 

  15. Oliveira-Sales EB, Colombari DS, Davisson RL, et al. Kidney-induced hypertension depends on superoxide signaling in the rostral ventrolateral medulla. Hypertension. 2010;56:290–96.

    Article  PubMed  CAS  Google Scholar 

  16. Gomez-Sanchez EP, Gomez-Sanchez CM, Plonczynski M, et al. Aldosterone synthesis in the brain contributes to Dahl salt-sensitive rat hypertension. Exp Physiol. 2010;95:120–30.

    Article  PubMed  CAS  Google Scholar 

  17. Huang BS, White RA, Jeng AY, et al. Role of central nervous system aldosterone synthase and mineralocorticoid receptors in salt-induced hypertension in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 2009;296:R994–R1000.

    Article  PubMed  CAS  Google Scholar 

  18. Huang BS, Leenen FH. Mineralocorticoid actions in the brain and hypertension. Curr Hypertens Rep. 2011;13:214–20.

    Article  PubMed  CAS  Google Scholar 

  19. Ito K, Hirooka Y, Sunagawa K. Blockade of mineralocorticoid receptors improves salt-induced left-ventricular systolic dysfunction through attenuation of enhanced sympathetic drive in mice with pressure overload. J Hypertens. 2010;28:1449–58.

    Article  PubMed  CAS  Google Scholar 

  20. Nakano M, Hirooka Y, Matsukawa R, et al. Mineralocorticoid receptors/epithelial Na+ channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2013;36:277–84.

    Article  PubMed  CAS  Google Scholar 

  21. Van Huysse JW, Amin MS, Yang B, et al. Salt-induced hypertension in a mouse model of Liddle syndrome is mediated by epithelial sodium channels in the brain. Hypertension. 2012;60:691–96.

    Article  PubMed  Google Scholar 

  22. Huang BS, Leenen FH. Both brain angiotensin II and "ouabain" contribute to sympathoexcitation and hypertension in Dahl S rats on high salt intake. Hypertension. 1998;32:1028–33.

    Article  PubMed  CAS  Google Scholar 

  23. Leenen FH. The central role of the brain aldosterone-"ouabain" pathway in salt-sensitive hypertension. Biochim Biophys Acta. 1802;2010:1132–39.

    Google Scholar 

  24. Zimmerman MC, Lazartigues E, Sharma RV, et al. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004;95:210–16.

    Article  PubMed  CAS  Google Scholar 

  25. Kishi T, Hirooka Y, Sunagawa K. Sympathoinhibition caused by orally administered telmisartan through inhibition of the AT1 receptor in the rostral ventrolateral medulla of hypertensive rats. Hypertens Res. 2012;35:940–46.

    Article  PubMed  CAS  Google Scholar 

  26. Fujita T, Henry WL, Bartter FC, et al. Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med. 1980;69:334–44.

    Article  PubMed  CAS  Google Scholar 

  27. Ono A, Kuwaki T, Kumada M, et al. Differential central modulation of the baroreflex by salt loading in normotensive and spontaneously hypertensive rats. Hypertension. 1997;29:808–14.

    Article  PubMed  CAS  Google Scholar 

  28. Huang BS, Wang H, Leenen FH. Enhanced sympathoexcitatory and pressor responses to central Na+ in Dahl salt-sensitive vs. -resistant rats. Am J Physiol Heart Circ Physiol. 2001;281:H1881–89.

    PubMed  CAS  Google Scholar 

  29. Fujita M, Kuwaki T, Ando K, et al. Sympatho-inhibitory action of endogenous adrenomedullin through inhibition of oxidative stress in the brain. Hypertension. 2005;45:1165–72.

    Article  PubMed  CAS  Google Scholar 

  30. Matsui H, Shimosawa T, Uetake Y, et al. Protective effect of potassium against the hypertensive cardiac dysfunction: Association with reactive oxygen species reduction. Hypertension. 2006;48:225–31.

    Article  PubMed  CAS  Google Scholar 

  31. Laffer CL, Bolterman RJ, Romero JC, et al. Effect of salt on isoprostanes in salt-sensitive essential hypertension. Hypertension. 2006;47:434–40.

    Article  PubMed  CAS  Google Scholar 

  32. Kim-Mitsuyama S, Yamamoto E, Tanaka T, et al. Critical role of angiotensin II in excess salt-induced brain oxidative stress of stroke-prone spontaneously hypertensive rats. Stroke. 2005;36:1083–88.

    Article  PubMed  Google Scholar 

  33. Ogihara T, Asano T, Ando K, et al. High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats. Hypertension. 2002;40:83–9.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang X, Dong F, Ren J, et al. High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol. 2005;191:318–25.

    Article  PubMed  CAS  Google Scholar 

  35. Purkayastha S, Zhang G, Cai D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-b and NF-kB. Nat Med. 2011;17:883–87.

    Article  PubMed  CAS  Google Scholar 

  36. Ye P, Kenyon CJ, Mackenzie SM, et al. Effects of ACTH, dexamethasone, and adrenalectomy on 11beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) gene expression in the rat central nervous system. J Endocrinol. 2008;196:305–11.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang ZH, Yu Y, Kang YM, et al. Aldosterone acts centrally to increase brain renin-angiotensin system activity and oxidative stress in normal rats. Am J Physiol Heart Circ Physiol. 2008;294:H1067–74.

    Article  PubMed  CAS  Google Scholar 

  38. Huang BS, Zheng H, Tan J, et al. Regulation of hypothalamic renin-angiotensin system and oxidative stress by aldosterone. Exp Physiol. 2011;96:1028–38.

    Article  PubMed  CAS  Google Scholar 

  39. Kawarazaki H, Ando K, Fujita M, et al. Mineralocorticoid receptor activation: A major contributor to salt-induced renal injury and hypertension in young rats. Am J Physiol Renal Physiol. 2011;300:F1402–09.

    Article  PubMed  CAS  Google Scholar 

  40. Kawarazaki H, Ando K, Nagae A, et al. Mineralocorticoid receptor activation contributes to salt-induced hypertension and renal injury in prepubertal Dahl salt-sensitive rats. Nephrol Dial Transplant. 2010;25:2879–89.

    Article  PubMed  CAS  Google Scholar 

  41. Matsui H, Ando K, Kawarazaki H, et al. Salt excess causes left ventricular diastolic dysfunction in rats with metabolic disorder. Hypertension. 2008;52:287–94.

    Article  PubMed  CAS  Google Scholar 

  42. Ito K, Hirooka Y, Sunagawa K. Acquisition of brain Na sensitivity contributes to salt-induced sympathoexcitation and cardiac dysfunction in mice with pressure overload. Circ Res. 2009;104:1004–11.

    Article  PubMed  CAS  Google Scholar 

  43. Araki S, Hirooka Y, Kishi T, et al. Olmesartan reduces oxidative stress in the brain of stroke-prone spontaneously hypertensive rats assessed by an in vivo ESR method. Hypertens Res. 2009;32:1091–96.

    Article  PubMed  CAS  Google Scholar 

  44. Huang BS, Ahmadi S, Ahmad M, et al. Central neuronal activation and pressor responses induced by circulating ANG II: Role of the brain aldosterone-"ouabain" pathway. Am J Physiol Heart Circ Physiol. 2010;299:H422–30.

    Article  PubMed  CAS  Google Scholar 

  45. Gabor A, Leenen FH. Central mineralocorticoid receptors and the role of angiotensin II and glutamate in the paraventricular nucleus of rats with angiotensin II-induced hypertension. Hypertension. 2013;61:1083–90.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang ZH, Kang YM, Yu Y, et al. 11beta-hydroxysteroid dehydrogenase type 2 activity in hypothalamic paraventricular nucleus modulates sympathetic excitation. Hypertension. 2006;48:127–33.

    Article  PubMed  CAS  Google Scholar 

  47. Rossi NF, Maliszewska-Scislo M, Chen H, et al. Neuronal nitric oxide synthase within paraventricular nucleus: Blood pressure and baroreflex in two-kidney, one-clip hypertensive rats. Exp Physiol. 2010;95:845–57.

    Article  PubMed  CAS  Google Scholar 

  48. Kimura Y, Hirooka Y, Sagara Y, et al. Overexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Circ Res. 2005;96:252–60.

    Article  PubMed  CAS  Google Scholar 

  49. Lob HE, Marvar PJ, Guzik TJ, et al. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension. 2010;55:277–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Japan Heart Foundation Research Grant, the Salt Science Research Foundation (No. 1321), the Japan Foundation for Applied Enzymology, and the Japan Vascular Disease Research Foundation.

Conflict of Interest

Megumi Fujita declares that she has no conflict of interest.

Toshiro Fujita has received research support from Takeda, Daiichi-Sankyo, MSD, Boehringer Ingelheim, Mitsubishi Tanabe, Mochida, Omron, Fukuda-Denshi, Kyowa-Kirin, Toray, Astellas, and Chugai and consulting fees and honoraria from Takeda, Novartis, Boehringer Ingelheim, and Astellas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, M., Fujita, T. The Role of CNS in Salt-sensitive Hypertension. Curr Hypertens Rep 15, 390–394 (2013). https://doi.org/10.1007/s11906-013-0358-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0358-z

Keywords

Navigation