Skip to main content

Advertisement

Log in

Adipose Tissue as Regulator of Vascular Tone

  • SECONDARY HYPERTENSION: ADRENAL AND NERVOUS SYSTEM MECHANISMS (S OPARIL AND KH BERECEK, SECTION EDITORS)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Adipokines secreted by visceral, subcutaneous, and perivascular adipocytes are involved in the regulation of vascular tone by acting as circulatory hormones (leptin, adiponectin, omentin, visfatin, angiotensin II, resistin, tumor necrosis factor-α, interleukin-6, apelin) and/or via local paracrine factors (perivascular adipocyte-derived relaxing and contractile factors). Vascular tone regulation by adipokines is compromised in obesitas and obesity-related disorders. Hypoxia created in growing adipose tissue dysregulates synthesis of vasoactive adipokines in favor of harmful proinflammatory adipokines, while the levels of the cardioprotective adipokines adiponectin and omentin decrease. Considering the potential of the role of adipokines in obesity-related vascular diseases, strategies to counter these diseases by targeting the adipokines are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maenhaut N, Van de Voorde J. Regulation of vascular tone by adipocytes. BMC Med. 2011;9:25.

    Article  PubMed  CAS  Google Scholar 

  2. Yiannikouris F, Gupte M, Putnam K, Cassis L. Adipokines and blood pressure control. Curr Opin Nephrol Hypertens. 2010;19(2):195–200.

    Article  PubMed  CAS  Google Scholar 

  3. Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? a review article. Dig Dis Sci. 2009;54(9):1847–56.

    Article  PubMed  Google Scholar 

  4. Achike FI, To NH, Wang H, Kwan CY. Obesity, metabolic syndrome, adipocytes and vascular function: a holistic viewpoint. Clin Exp Pharmacol Physiol. 2011;38(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  5. Halberg N, Wernstedt-Asterholm I, Scherer PE. The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am. 2008;37(3):753–xi.

    Article  PubMed  CAS  Google Scholar 

  6. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    Article  PubMed  CAS  Google Scholar 

  7. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347–55.

    Article  PubMed  CAS  Google Scholar 

  8. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes. 2008;32(3):451–63.

    Article  CAS  Google Scholar 

  9. Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch–Eur J Physiol. 2007;455(3):479–92.

    Article  CAS  Google Scholar 

  10. •• Wood IS, Stezhka T, Trayhurn P. Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension. Pflugers Arch. 2011;462(3):469–77. This paper clearly illustrates that even small changes in oxygen availability can lead to changes in release of adipokines. This is very relevant, as such small changes can be expected in growing adipose tissue in the development of obesity.

    Article  PubMed  CAS  Google Scholar 

  11. Rutkowski JM, Davis KE, Scherer PE. Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J. 2009;276(20):5738–46.

    Article  PubMed  CAS  Google Scholar 

  12. •• Zhang L, Ebenezer PJ, Dasuri K, Fernandez-Kim SO, Francis J, Mariappan N, et al. Aging is associated with hypoxia and oxidative stress in adipose tissue: implications for adipose function. Am J Physiol Endocrinol Metab. 2011;301(4):E599–607. This study for the first time demonstrated that hypoxia and oxidative stress occur in adipose tissue during aging, as is the case in obesitas. This might help explain the cardiovascular diseases that develop during aging.

    Article  PubMed  CAS  Google Scholar 

  13. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4–12.

    PubMed  CAS  Google Scholar 

  14. Leung YM, Kwan CY. Dual vascular effects of leptin via endothelium: hypothesis and perspective. Chin J Physiol. 2008;51(1):1–6.

    PubMed  CAS  Google Scholar 

  15. Quehenberger P, Exner M, Sunder-Plassmann R, Ruzicka K, Bieglmayer C, Endler G, et al. Leptin induces endothelin-1 in endothelial cells in vitro. Circ Res. 2002;90(6):711–8.

    Article  PubMed  CAS  Google Scholar 

  16. Juan CC, Chuang TY, Lien CC, Lin YJ, Huang SW, Kwok CF, et al. Leptin increases endothelin type A receptor levels in vascular smooth muscle cells. Am J Physiol Endocrinol Metab. 2008;294(3):E481–7.

    Article  PubMed  CAS  Google Scholar 

  17. Korda M, Kubant R, Patton S, Malinski T. Leptin-induced endothelial dysfunction in obesity. Am J Physiol Heart Circ Physiol. 2008;295(4):H1514–21.

    Article  PubMed  CAS  Google Scholar 

  18. Zeidan A, Purdham DM, Rajapurohitam V, Javadov S, Chakrabarti S, Karmazyn M. Leptin induces vascular smooth muscle cell hypertrophy through angiotensin II- and endothelin-1-dependent mechanisms and mediates stretch-induced hypertrophy. J Pharmacol Exp Ther. 2005;315(3):1075–84.

    Article  PubMed  CAS  Google Scholar 

  19. Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, et al. Leptin regulates proinflammatory immune responses. FASEB J. 1998;12(1):57–65.

    PubMed  CAS  Google Scholar 

  20. Shankar A, Xiao J. Positive relationship between plasma leptin level and hypertension. Hypertension. 2010;56(4):623–8.

    Article  PubMed  CAS  Google Scholar 

  21. Asferg C, Mogelvang R, Flyvbjerg A, Frystyk J, Jensen JS, Marott JL, et al. Leptin, not adiponectin, predicts hypertension in the Copenhagen City Heart Study. Am J Hypertens. 2010;23(3):327–33.

    Article  PubMed  CAS  Google Scholar 

  22. Mallamaci F, Zoccali C, Cuzzola F, Tripepi G, Cutrupi S, Parlongo S, et al. Adiponectin in essential hypertension. J Nephrol. 2002;15(5):507–11.

    PubMed  CAS  Google Scholar 

  23. • Li FY, Cheng KK, Lam KS, Vanhoutte PM, Xu A. Cross-talk between adipose tissue and vasculature: role of adiponectin. Acta Physiol (Oxf). 2011;203(1):167–80. This paper is a recent excellent review on adiponectin, at present the most clinically relevant adipokine for vasculature.

    Article  CAS  Google Scholar 

  24. Ohashi K, Ouchi N, Matsuzawa Y. Adiponectin and hypertension. Am J Hypertens. 2011;24(3):263–9.

    Article  PubMed  CAS  Google Scholar 

  25. Cao Y, Tao L, Yuan YX, Jiao XY, Lau WB, Wang YJ, et al. Endothelial dysfunction in adiponectin deficiency and its mechanisms involved. J Mol Cell Cardiol. 2009;46(3):413–9.

    Article  PubMed  CAS  Google Scholar 

  26. Fruhbeck G. Pivotal role of nitric oxide in the control of blood pressure after leptin administration. Diabetes. 1999;48(4):903–8.

    Article  PubMed  CAS  Google Scholar 

  27. Adamczak M, Wiecek A, Funahashi T, Chudek J, Kokot F, Matsuzawa Y. Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens. 2003;16(1):72–5.

    Article  PubMed  CAS  Google Scholar 

  28. Antoniades C, Antonopoulos AS, Tousoulis D, Stefanadis C. Adiponectin: from obesity to cardiovascular disease. Obes Rev. 2009;10(3):269–79.

    Article  PubMed  CAS  Google Scholar 

  29. Shinmura K. Is adiponectin a bystander or a mediator in heart failure? the tangled thread of a good-natured adipokine in aging and cardiovascular disease. Heart Fail Rev. 2010;15(5):457–66.

    Article  PubMed  CAS  Google Scholar 

  30. Ohashi K, Kihara S, Ouchi N, Kumada M, Fujita K, Hiuge A, et al. Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension. 2006;47(6):1108–16.

    Article  PubMed  CAS  Google Scholar 

  31. Liu S, Yin T, Wei X, Yi W, Qu Y, Liu Y, et al. Downregulation of adiponectin induced by tumor necrosis factor alpha is involved in the aggravation of posttraumatic myocardial ischemia/reperfusion injury. Crit Care Med. 2011;39(8):1935–43.

    Article  PubMed  CAS  Google Scholar 

  32. Vaiopoulos AG, Marinou K, Christodoulides C, Koutsilieris M. The role of adiponectin in human vascular physiology. Int J Cardiol. 2011.

  33. Olholm J, Paulsen SK, Cullberg KB, Richelsen B, Pedersen SB. Anti-inflammatory effect of resveratrol on adipokine expression and secretion in human adipose tissue explants. Int J Obes (Lond). 2010;34(10):1546–53.

    Article  CAS  Google Scholar 

  34. Wang T, Qiao S, Lei S, Liu Y, Ng KF, Xu A, et al. N-acetylcysteine and allopurinol synergistically enhance cardiac adiponectin content and reduce myocardial reperfusion injury in diabetic rats. PLoS One. 2011;6(8):e23967.

    Article  PubMed  CAS  Google Scholar 

  35. •• Otvos L, Jr., Haspinger E, La RF, Maspero F, Graziano P, Kovalszky I, et al. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment. BMC Biotechnol. 2011;11:90. In this paper, the development of a first-in-class adiponectin receptor agonist is described, which can lead to innovative drug development for situations requiring replacement of low adiponectin levels in the body.

    Article  PubMed  CAS  Google Scholar 

  36. Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun. 2010;393(4):668–72.

    Article  PubMed  CAS  Google Scholar 

  37. Cai RC, Wei L, DI JZ, Yu HY, Bao YQ, Jia WP. Expression of omentin in adipose tissues in obese and type 2 diabetic patients. Zhonghua Yi Xue Za Zhi. 2009;89(6):381–4.

    PubMed  CAS  Google Scholar 

  38. de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655–61.

    Article  PubMed  Google Scholar 

  39. Moreno-Navarrete JM, Catalan V, Ortega F, Gomez-Ambrosi J, Ricart W, Fruhbeck G, et al. Circulating omentin concentration increases after weight loss. Nutr Metab. 2010;7.

  40. Wang P, Xu TY, Guan YF, Su DF, Fan GR, Miao CY. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res. 2009;81(2):370–80.

    Article  PubMed  CAS  Google Scholar 

  41. Adya R, Tan BK, Punn A, Chen J, Randeva HS. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovasc Res. 2008;78(2):356–65.

    Article  PubMed  CAS  Google Scholar 

  42. Saddi-Rosa P, Oliveira CS, Giuffrida FM, Reis AF. Visfatin, glucose metabolism and vascular disease: a review of evidence. Diabetol Metab Syndr. 2010;2:21.

    Article  PubMed  Google Scholar 

  43. Dahl TB, Yndestad A, Skjelland M, Oie E, Dahl A, Michelsen A, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis–Possible role in inflammation and plaque destabilization. Circulation. 2007;115(8):972–80.

    Article  PubMed  CAS  Google Scholar 

  44. Kim SR, Bae YH, Bae SK, Choi KS, Yoon KH, Koo TH, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappa B activation in endothelial cells. Biochim Biophys Acta, Mol Cell Res. 2008;1783(5):886–95.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang CH, Hein TW, Wang W, Kuo L. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ Res. 2003;92(3):322–9.

    Article  PubMed  CAS  Google Scholar 

  46. Engeli S, Schling P, Gorzelniak K, Boschmann M, Janke E, Ailhaud G, et al. The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol. 2003;35(6):807–25.

    Article  PubMed  CAS  Google Scholar 

  47. Cai H, Li ZM, Dikalov S, Holland SM, Hwang JN, Jo H, et al. NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin. J Biol Chem. 2002;277(50):48311–7.

    Article  PubMed  CAS  Google Scholar 

  48. Verdecchia P, Angeli F, Mazzotta G, Gentile G, Reboldi G. The renin angiotensin system in the development of cardiovascular disease: role of aliskiren in risk reduction. Vasc Health Risk Manag. 2008;4(5):971–81.

    PubMed  CAS  Google Scholar 

  49. Thatcher S, Yiannikouris F, Gupte M, Cassis L. The adipose renin-angiotensin system: role in cardiovascular disease. Mol Cell Endocrinol. 2009;302(2):111–7.

    Article  PubMed  CAS  Google Scholar 

  50. Das UN. Is angiotensin-II an endogenous pro-inflammatory molecule? Med Sci Monit. 2005;11(5):RA155–62.

    PubMed  CAS  Google Scholar 

  51. Ran JM, Hirano T, Fukui T, Saito K, Kageyama H, Okada K, et al. Angiotensin II infusion decreases plasma adiponectin level via its type 1 receptor in rats: an implication for hypertension-related insulin resistance. Metab Clin Exp. 2006;55(4):478–88.

    Article  PubMed  CAS  Google Scholar 

  52. Skurk T, van Harmelen V, Blum WF, Hauner H. Angiotensin II promotes leptin production in cultured human fat cells by an ERK1/2 dependent pathway. Obes Res. 2005;13(6):969–73.

    Article  PubMed  CAS  Google Scholar 

  53. Gentile MT, Vecchione C, Marino G, Aretini A, Di Pardo A, Antenucci G, et al. Resistin impairs insulin-evoked vasodilation. Diabetes. 2008;57(3):577–83.

    Article  PubMed  CAS  Google Scholar 

  54. Dick GM, Katz PS, Farias M, Morris M, James J, Knudson JD, et al. Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary circulation. Am J Physiol Heart Circ Physiol. 2006;291(6):H2997–3002.

    Article  PubMed  CAS  Google Scholar 

  55. Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005;111(7):932–9.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang LX, Curhan GC, Forman JP. Plasma resistin levels associate with risk for hypertension among nondiabetic women. J Am Soc Nephrol. 2010;21(7):1185–91.

    Article  PubMed  CAS  Google Scholar 

  57. Brian Jr JE, Faraci FM. Tumor necrosis factor-alpha-induced dilatation of cerebral arterioles. Stroke. 1998;29(2):509–15.

    Article  PubMed  CAS  Google Scholar 

  58. Johns DG, Webb RC. TNF-alpha-induced endothelium-independent vasodilation: a role for phospholipase A2-dependent ceramide signaling. Am J Physiol. 1998;275(5 Pt 2):H1592–8.

    PubMed  CAS  Google Scholar 

  59. Clement K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18(14):1657–69.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang HR, Park YJ, Wu JX, Chen XP, Lee S, Yang J, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci. 2009;116(3–4):219–30.

    Article  PubMed  CAS  Google Scholar 

  61. Ohkawa F, Ikeda U, Kawasaki K, Kusano E, Igarashi M, Shimada K. Inhibitory effect of interleukin-6 on vascular smooth muscle contraction. Am J Physiol. 1994;266(3):H898–902.

    PubMed  CAS  Google Scholar 

  62. Lee DL, Sturgis LC, Labazi H, Osborne JB, Fleming C, Pollock JS, et al. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am J Physiol Heart Circ Physiol. 2006;290(3):H935–40.

    Article  PubMed  CAS  Google Scholar 

  63. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101(15):1767–72.

    PubMed  CAS  Google Scholar 

  64. Chudek J, Wiecek A. Adipose tissue, inflammation and endothelial dysfunction. Pharmacol Rep. 2006;58(Suppl):81–8.

    PubMed  Google Scholar 

  65. Langenberg C, Bergstrom J, Scheidt-Nave C, Pfeilschifter J, Barrett-Connor E. Cardiovascular death and the metabolic syndrome–role of adiposity-signaling hormones and inflammatory markers. Diabetes Care. 2006;29(6):1363–9.

    Article  PubMed  CAS  Google Scholar 

  66. Schrader LI, Kinzenbaw DA, Johnson AW, Faraci FM, Didion SP. IL-6 deficiency protects against angiotensin II–Induced endothelial dysfunction and hypertrophy. Arterioscler Thromb Vasc Biol. 2007;27(12):2576–81.

    Article  PubMed  CAS  Google Scholar 

  67. Klouche M, Bhakdi S, Hemmes M, Rose-John S. Novel path to activation of vascular smooth muscle cells: up-regulation of gp130 creates an autocrine activation loop by IL-6 and its soluble receptor. J Immunol. 1999;163(8):4583–9.

    PubMed  CAS  Google Scholar 

  68. Salcedo A, Garijo J, Monge L, Fernadez N, Garcia-Villalon AL, Turrion VS, et al. Apelin effects in human splanchnic arteries: role of nitric oxide and prostanoids. Regul Pept. 2007;144(1–3):50–5.

    Article  PubMed  CAS  Google Scholar 

  69. Japp AG, Cruden NL, Amer DAB, Li VKY, Goudie EB, Johnston NR, et al. Vascular effects of apelin in vivo in man. J Am Coll Cardiol. 2008;52(11):908–13.

    Article  PubMed  CAS  Google Scholar 

  70. Japp AG, Newby DE. The apelin-APJ system in heart failure pathophysiologic relevance and therapeutic potential. Biochem Pharmacol. 2008;75(10):1882–92.

    Article  PubMed  CAS  Google Scholar 

  71. Kagiyama S, Fukuhara M, Matsumura K, Lin YZ, Fuji K, Iida M. Central and peripheral cardiovascular actions of apelin in conscious rats. Regul Pept. 2005;125(1–3):55–9.

    Article  PubMed  CAS  Google Scholar 

  72. Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, et al. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res. 2005;65(1):73–82.

    Article  PubMed  CAS  Google Scholar 

  73. Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, Mazzucotelli A, et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146(4):1764–71.

    Article  PubMed  CAS  Google Scholar 

  74. Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, Agrawal R, et al. Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest. 2008;118(10):3343–54.

    PubMed  CAS  Google Scholar 

  75. Verlohren S, Dubrovska G, Tsang SY, Essin K, Luft FC, Huang Y, et al. Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries. Hypertension. 2004;44(3):271–6.

    Article  PubMed  CAS  Google Scholar 

  76. Gao YJ, Lu C, Su LY, Sharma AM, Lee RM. Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br J Pharmacol. 2007;151(3):323–31.

    Article  PubMed  CAS  Google Scholar 

  77. Maenhaut N, Van de Voorde J. Effect of hypoxia in mice mesenteric arteries surrounded by adipose tissue. Acta Physiol (Oxf). 2011;203(1):235–44.

    Article  CAS  Google Scholar 

  78. Schleifenbaum J, Kohn C, Voblova N, Dubrovska G, Zavarirskaya O, Gloe T, et al. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. J Hypertens. 2010;28(9):1875–82.

    Article  PubMed  CAS  Google Scholar 

  79. Gao YJ, Zeng ZH, Teoh K, Sharma AM, Abouzahr L, Cybulsky I, et al. Perivascular adipose tissue modulates vascular function in the human internal thoracic artery. J Thorac Cardiovasc Surg. 2005;130(4):1130–6.

    Article  PubMed  Google Scholar 

  80. Maenhaut N, Boydens C, Van de Voorde J. Hypoxia enhances the relaxing influence of perivascular adipose tissue in isolated mice aorta. Eur J Pharmacol. 2010;641(2–3):207–12.

    Article  PubMed  CAS  Google Scholar 

  81. Ardanaz N, Pagano PJ. Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med. 2006;231(3):237–51.

    CAS  Google Scholar 

  82. Ketonen J, Shi J, Martonen E, Mervaala E. Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57BI/6 mice. Circ J. 2010;74(7):1479–87.

    Article  PubMed  CAS  Google Scholar 

  83. Gryglewski RJ, Palmer RMJ, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986;320(6061):454–6.

    Article  PubMed  CAS  Google Scholar 

  84. Cooper D, Stokes KY, Tailor A, Granger DN. Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol. 2002;2(3):165–80.

    Article  PubMed  CAS  Google Scholar 

  85. Lee RMKW, Lu C, Su LY, Gao YJ. Endothelium-dependent relaxation factor released by perivascular adipose tissue. J Hypertens. 2009;27(4):782–90.

    Article  PubMed  CAS  Google Scholar 

  86. • Lu C, Zhao AX, Gao YJ, Lee RM. Modulation of vein function by perivascular adipose tissue. Eur J Pharmacol. 2011;657(1–3):111–6. This study for the first time draws attention to the fact that besides arterial function, venous function can be influenced by PVAT.

    Article  PubMed  CAS  Google Scholar 

  87. Fang LP, Zhao J, Chen Y, Ma TM, Xu GH, Tang CS, et al. Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens. 2009;27(11):2174–U3.

    Article  PubMed  CAS  Google Scholar 

  88. Feng XJ, Chen Y, Zhao J, Tang CS, Jiang ZS, Geng B. Hydrogen sulfide from adipose tissue is a novel insulin resistance regulator. Biochem Biophys Res Commun. 2009;380(1):153–9.

    Article  PubMed  CAS  Google Scholar 

  89. Yang GD, Wu LY, Jiang B, Yang W, Qi JS, Cao K, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322(5901):587–90.

    Article  PubMed  CAS  Google Scholar 

  90. • Lee YC, Chang HH, Chiang CL, Liu CH, Yeh JI, Chen MF, et al. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation. 2011;124(10):1160–71. This study for the first time provides evidence that the enigmatic molecule methyl palmitate may function as a vasorelaxing factor released from perivascular adipocytes, and that its release is blunted in hypertension.

    Article  PubMed  Google Scholar 

  91. Takir S, Uydes-Dogan BS, Ozdemir O. Retina evokes biphasic relaxations in retinal artery unrelated to endothelium, K(V), K(ATP), K(Ca) channels and methyl palmitate. Microvasc Res. 2011;81(3):295–302.

    Article  PubMed  CAS  Google Scholar 

  92. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95.

    Article  PubMed  CAS  Google Scholar 

  93. Eringa EC, Bakker W, Smulders YM, Serne EH, Yudkin JS, Stehouwer CD. Regulation of vascular function and insulin sensitivity by adipose tissue: focus on perivascular adipose tissue. Microcirculation. 2007;14(4–5):389–402.

    Article  PubMed  CAS  Google Scholar 

  94. Lu C, Su LY, Lee RM, Gao YJ. Mechanisms for perivascular adipose tissue-mediated potentiation of vascular contraction to perivascular neuronal stimulation: the role of adipocyte-derived angiotensin II. Eur J Pharmacol. 2010;634(1–3):107–12.

    Article  PubMed  CAS  Google Scholar 

  95. •• Lu C, Su LY, Lee RM, Gao YJ. Alterations in perivascular adipose tissue structure and function in hypertension. Eur J Pharmacol. 2011;656(1–3):68–73. This study draws attention to the fact that impaired relaxing influence of PVAT in hypertension is associated with a change in composition of the adipocyte and not with the mass of adipocytes.

    Article  PubMed  CAS  Google Scholar 

  96. Gao YJ, Holloway AC, Zeng ZH, Lim GE, Petrik JJ, Foster WG, et al. Prenatal exposure to nicotine causes postnatal obesity and altered perivascular adipose tissue function. Obes Res. 2005;13(4):687–92.

    Article  PubMed  Google Scholar 

  97. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–70.

    Article  PubMed  CAS  Google Scholar 

  98. Rebolledo A, Rebolledo OR, Marra CA, Garcia ME, Roldan Palomo AR, Rimorini L, et al. Early alterations in vascular contractility associated to changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue. Cardiovasc Diabetol. 2010;9(1):65.

    Article  PubMed  Google Scholar 

  99. •• Withers SB, Agabiti-Rosei C, Livingstone DM, Little MC, Aslam R, Malik RA, et al. Macrophage activation is responsible for loss of anticontractile function in inflamed perivascular fat. Arterioscler Thromb Vasc Biol. 2011;31(4):908–13. This paper provides evidence that loss of anticontractile function in inflamed perivascular fat is due to the presence of activated macrophages in the PVAT.

    Article  PubMed  CAS  Google Scholar 

  100. Ouwens DM, Sell H, Greulich S, Eckel J. The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. J Cell Mol Med. 2010;14(9):2223–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant of Geconcerteerde Onderzoeksactie (GOA) of Ghent University.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Van de Voorde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boydens, C., Maenhaut, N., Pauwels, B. et al. Adipose Tissue as Regulator of Vascular Tone. Curr Hypertens Rep 14, 270–278 (2012). https://doi.org/10.1007/s11906-012-0259-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-012-0259-6

Keywords

Navigation