Skip to main content

Advertisement

Log in

Genetics of Hypertension and Cardiovascular Disease and Their Interconnected Pathways: Lessons from Large Studies

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Blood pressure (BP), hypertension (HT) and cardiovascular disease (CVD) are common complex phenotypes, which are affected by multiple genetic and environmental factors. This article describes recent genome-wide association studies (GWAS) that have reported causative variants for BP/HT and CVD/heart traits and analyzes the overlapping associated gene polymorphisms. It also examines potential replication of findings from the HyperGEN data on African Americans and whites. Several genes involved in BP/HT regulation also appear to be involved in CVD. A better picture is emerging, with overlapping hot-spot regions and with interconnected pathways between BP/HT and CVD. A systemic approach to full understanding of BP/HT and CVD development and their progression to disease may lead to the identification of gene targets and pathways for the development of novel therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. JAMA. 2010;303:2043–2050.

    Article  CAS  PubMed  Google Scholar 

  2. Gu Q, Paulose-Ram R, Dillon C, Burt V. Antihypertensive medication use among US adults with hypertension. Circulation. 2006;113:213–221.

    Article  CAS  PubMed  Google Scholar 

  3. MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–774.

    Article  CAS  PubMed  Google Scholar 

  4. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–556.

    Article  CAS  PubMed  Google Scholar 

  5. • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38(Database issue):D355–360. This article describes KEGG pathway databases.

    Article  CAS  PubMed  Google Scholar 

  6. Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992;71:169–180.

    Article  CAS  PubMed  Google Scholar 

  7. Watkins WS, Hunt SC, Williams GH, et al. Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: the importance of haplotypes. J Hypertens. 2010;28:65–75.

    Article  CAS  PubMed  Google Scholar 

  8. Hunt SC, Cook NR, Oberman A, et al. Angiotensinogen genotype, sodium reduction, weight loss, and prevention of hypertension: trials of hypertension prevention, phase II. Hypertension. 1998;32:393–401.

    CAS  PubMed  Google Scholar 

  9. Easthope SE, Jarvis B. Candesartan cilexetil: an update of its use in essential hypertension. Drugs. 2002;62:1253–1287.

    Article  CAS  PubMed  Google Scholar 

  10. Mukai H, Fitzgibbon WR, Bozeman G, et al. Bradykinin B2 receptor antagonist increases chloride and water absorption in rat medullary collecting duct. Am J Physiol. 1996;271:R352–360.

    CAS  PubMed  Google Scholar 

  11. Kraja AT, Province MA, Arnett D, et al. Do inflammation and procoagulation biomarkers contribute to the metabolic syndrome cluster? Nutr Metab (Lond). 2007;4(1):28.

    Article  CAS  Google Scholar 

  12. Adragna NC, Lauf PK. K-Cl cotransport function and its potential contribution to cardiovascular disease. Pathophysiology. 2007;14:135–146.

    Article  CAS  PubMed  Google Scholar 

  13. •• Ji W, Foo JN, O’Roak BJ, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40:592–599. This article emphasizes the importance of rare variants in BP variation.

    Article  CAS  PubMed  Google Scholar 

  14. Schild L, Lu Y, Gautschi I, et al. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J. 1996;15:2381–2387.

    CAS  PubMed  Google Scholar 

  15. Dunn DM, Ishigami T, Pankow J, et al. Common variant of human NEDD4L activates a cryptic splice site to form a frameshifted transcript. J Hum Genet. 2002;47:665–676.

    Article  CAS  PubMed  Google Scholar 

  16. • Schild L. The epithelial sodium channel and the control of sodium balance. Biochim Biophys Acta. 2010;1802:1159–65. This is a good review on sodium channels.

    CAS  PubMed  Google Scholar 

  17. Wilson FH, Disse-Nicodème S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–1112.

    Article  CAS  PubMed  Google Scholar 

  18. Uchida S. Pathophysiological roles of WNK kinases in the kidney. Pflugers Arch. 2010;460:695–702.

    Article  CAS  PubMed  Google Scholar 

  19. Welling PA, Chang YP, Delpire E, Wade JB. Multigene kinase network, kidney transport, and salt in essential hypertension. Kidney Int. 2010;77:1063–1069.

    Article  CAS  PubMed  Google Scholar 

  20. Chiga M, Rai T, Yang SS, et al. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 2008;74:1403–1409.

    Article  CAS  PubMed  Google Scholar 

  21. • Citterio L, Lanzani C, Manunta P, Bianchi G. Genetics of primary hypertension: The clinical impact of adducin polymorphisms. Biochim Biophys Acta 2010, 1802:1285–98. This article reviews the adducin role by expanding into the idea of system networks.

    CAS  PubMed  Google Scholar 

  22. •• Levy D, Ehret GB, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–687. This is one of the largest GWAS for BP and HT.

    Article  CAS  PubMed  Google Scholar 

  23. • Arnett DK, Claas SA. Pharmacogenetics of antihypertensive treatment: detailing disciplinary dissonance. Pharmacogenomics. 2009;10:1295–1307. This is a review of the lag of personalized antihypertensive treatment.

    Article  CAS  PubMed  Google Scholar 

  24. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–341.

    Article  CAS  PubMed  Google Scholar 

  25. Osei-Owusu P, Sun X, Drenan RM, et al. Regulation of RGS2 and second messenger signaling in vascular smooth muscle cells by cGMP-dependent protein kinase. J Biol Chem. 2007;282:31656–31665.

    Article  CAS  PubMed  Google Scholar 

  26. Simão AN, Lozovoy MA, Simão TN, et al. Nitric oxide enhancement and blood pressure decrease in patients with metabolic syndrome using soy protein or fish oil. Arq Bras Endocrinol Metabol. 2010;54:540–545.

    PubMed  Google Scholar 

  27. Wang H, Shimosawa T, Matsui H, et al. Paradoxical mineralocorticoid receptor activation and left ventricular diastolic dysfunction under high oxidative stress conditions. J Hypertens. 2008;26:1453–1462.

    Article  CAS  PubMed  Google Scholar 

  28. Masuki S, Mori M, Tabara Y, et al.; Shinshu University Genetic Research Consortium. Vasopressin V1a receptor polymorphism and interval walking training effects in middle-aged and older people. Hypertension. 2010;55:747–754.

    Article  CAS  PubMed  Google Scholar 

  29. Chai SB, Li XM, Pang YZ, et al. Increased plasma levels of endothelin-1 and urotensin-II in patients with coronary heart disease. Heart Vessels. 2010;25:138–143.

    Article  PubMed  Google Scholar 

  30. Williams RR, Rao DC, Ellison RC, et al. NHLBI family blood pressure program: methodology and recruitment in the HyperGEN network. Hypertension genetic epidemiology network. Ann Epidemiol. 2000;10:389–400.

    Article  CAS  PubMed  Google Scholar 

  31. Kraja AT, Hunt SC, Pankow JS, et al. An evaluation of the metabolic syndrome in the HyperGEN study. Nutr Metab (Lond). 2005;2(1):2.

    Article  CAS  Google Scholar 

  32. Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–909.

    Article  CAS  PubMed  Google Scholar 

  33. Li YF, LaCroix C, Freeling J. Specific subtypes of nicotinic cholinergic receptors involved in sympathetic and parasympathetic cardiovascular responses. Neurosci Lett. 2009;462:20–23.

    Article  CAS  PubMed  Google Scholar 

  34. Fine B, Hodakoski C, Koujak S, et al. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science. 2009;325:1261–1265.

    Article  CAS  PubMed  Google Scholar 

  35. • Kohara K, Tabara Y, Nakura J, et al. Identification of hypertension-susceptibility genes and pathways by a systemic multiple candidate gene approach: the millennium genome project for hypertension. Hypertens Res. 2008;31:203–212. This article discusses an important initiative for detecting HT genes in Japan.

    Article  CAS  PubMed  Google Scholar 

  36. Brenner T, O’Shaughnessy KM. Both TASK-3 and TREK-1 two-pore loop K channels are expressed in H295R cells and modulate their membrane potential and aldosterone secretion. Am J Physiol Endocrinol Metab. 2008;295:E1480–1486.

    Article  CAS  PubMed  Google Scholar 

  37. Vasan RS, Larson MG, Aragam J, et al. Genome-wide association of echocardiographic dimensions, brachial artery endothelial function and treadmill exercise responses in the Framingham Heart Study. BMC Med Genet. 2007;8 Suppl 1:S2.

    Article  PubMed  CAS  Google Scholar 

  38. Barbour LA, Mizanoor Rahman S, et al. Increased P85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J Biol Chem. 2005;280:37489–37494.

    Article  CAS  PubMed  Google Scholar 

  39. Thomas NL, Maxwell C, Mukherjee S, Williams AJ. Ryanodine receptor mutations in arrhythmia: The continuing mystery of channel dysfunction. FEBS Lett. 2010;584:2153–2160.

    Article  CAS  PubMed  Google Scholar 

  40. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678.

    Article  CAS  Google Scholar 

  41. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–1336.

    Article  CAS  PubMed  Google Scholar 

  42. Sabatti C, Service SK, Hartikainen AL, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet. 2009;41:35–46.

    Article  CAS  PubMed  Google Scholar 

  43. •• Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–676. This is one of the largest GWAS for BP.

    Article  CAS  PubMed  Google Scholar 

  44. Chung CM, Wang RY, Chen JW, et al. A genome-wide association study identifies new loci for ACE activity: potential implications for response to ACE inhibitor. Pharmacogenomics J. 2010, 1–8.

  45. Johnson AD, Gong Y, Wang D, et al. Promoter polymorphisms in ACE (angiotensin I-converting enzyme) associated with clinical outcomes in hypertension. Clin Pharmacol Ther. 2009;85:36–44.

    Article  CAS  PubMed  Google Scholar 

  46. Thameem F, Voruganti VS, He X, et al. Genetic variants in the renin-angiotensin system genes are associated with cardiovascular-renal-related risk factors in Mexican Americans. Hum Genet. 2008;124:557–559.

    Article  CAS  PubMed  Google Scholar 

  47. Smith JG, Lowe JK, Kovvali S, et al. Genome-wide association study of electrocardiographic conduction measures in an isolated founder population: Kosrae. Heart Rhythm. 2009;6:634–641.

    Article  PubMed  Google Scholar 

  48. Martinez-Moreno M, Alvarez-Barrientos A, Roncal F, et al. Direct interaction between the reductase domain of endothelial nitric oxide synthase and the ryanodine receptor. FEBS letters. 2005;579:3159–3163.

    Article  CAS  PubMed  Google Scholar 

  49. Kim S, Yun HM, Baik JH, et al. Functional interaction of neuronal Cav1.3 L-type calcium channel with ryanodine receptor type 2 in the rat hippocampus. J Biol Chem. 2007;282:32877–32889.

    Article  CAS  PubMed  Google Scholar 

  50. Mikael LG, Genest J Jr, Rozen R. Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ Res. 2006;98:564–571.

    Article  CAS  PubMed  Google Scholar 

  51. Pizza V, Bisogno A, Lamaida E, et al. Migraine and coronary artery disease: an open study on the genetic polymorphism of the 5, 10 methylenetetrahydrofolate (MTHFR) and angiotensin I-converting enzyme (ACE) genes. Cent Nerv Syst Agents Med Chem. 2010;10:91–96.

    CAS  PubMed  Google Scholar 

  52. Roberts JD, Davies RW, Lubitz SA, et al. Evaluation of non-synonymous NPPA single nucleotide polymorphisms in atrial fibrillation. Europace. 2010;12:1078–1083.

    Article  PubMed  Google Scholar 

  53. Benjamin EJ, Rice KM, Arking DE, et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet. 2009;41:879–881.

    Article  CAS  PubMed  Google Scholar 

  54. •• Newton-Cheh C, Eijgelsheim M, Rice KM, et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet. 2009;41:399–406. This is one of the largest studies for cardiac traits.

    Article  CAS  PubMed  Google Scholar 

  55. •• Pfeufer A, Sanna S, Arking DE, et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet. 2009;41:407–414. This is one of the largest studies for cardiac traits.

    Article  CAS  PubMed  Google Scholar 

  56. Adeyemo A, Gerry N, Chen G, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009;5(7):e1000564.

    Article  PubMed  CAS  Google Scholar 

  57. Vangjeli C, Clarke N, Quinn U, et al. Confirmation that the renin gene distal enhancer polymorphism REN-5312C/T is associated with increased blood pressure. Circ Cardiovasc Genet. 2010;3:53–59.

    Article  CAS  PubMed  Google Scholar 

  58. Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, et al. Genome-wide association analysis identifies multiple loci related to resting heart rate. Hum Mol Genet. 2010;19:3885–3894.

    Article  CAS  PubMed  Google Scholar 

  59. Marroni F, Pfeufer A, Aulchenko YS, et al.; EUROSPAN Consortium. A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations: the EUROSPAN project. Circ Cardiovasc Genet. 2009;2:322–328.

    Article  CAS  PubMed  Google Scholar 

  60. • Cho YS, Go MJ, Kim YJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527–534. This article reports a large initiative in South Korea for studying BP/HT genes, among others.

    Article  CAS  PubMed  Google Scholar 

  61. Chambers JC, Zhao J, Terracciano CM, et al. Genetic variation in SCN10A influences cardiac conduction. Nat Genet. 2010;42:149–152.

    Article  CAS  PubMed  Google Scholar 

  62. Holm H, Gudbjartsson DF, Arnar DO, et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet. 2010;42:117–122.

    Article  CAS  PubMed  Google Scholar 

  63. Pfeufer A, van Noord C, Marciante KD, et al. Genome-wide association study of PR interval. Nat Genet. 2010;42:153–159.

    Article  CAS  PubMed  Google Scholar 

  64. Morrison AC, Felix JF, Cupples LA, et al. Genomic variation associated with mortality among adults of European and African ancestry with heart failure: the cohorts for heart and aging research in genomic epidemiology consortium. Circ Cardiovasc Genet. 2010;3:248–255.

    Article  CAS  PubMed  Google Scholar 

  65. • Lowe JK, Maller JB, Pe’er I, et al. Genome-wide association studies in an isolated founder population from the Pacific Island of Kosrae. PLoS Genet. 2009;5(2):e1000365. This article discusses BP/HT gene discovery in an isolated population.

    Article  PubMed  CAS  Google Scholar 

  66. Vasan RS, Glazer NL, Felix JF, et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA. 2009;302:168–178.

    Article  CAS  PubMed  Google Scholar 

  67. Kraja AT, Rao DC, Weder AB, et al. Two major QTLs and several others relate to factors of metabolic syndrome in the Family Blood Pressure Program. Hypertension. 2005;46:751–757.

    Article  CAS  PubMed  Google Scholar 

  68. Kraja AT, Hunt SC, Pankow JS, et al. Quantitative trait loci for metabolic syndrome in the Hypertension Genetic Epidemiology Network study. Obes Res. 2005;13:1885–1890.

    Article  PubMed  Google Scholar 

  69. Kraja AT, Huang P, Tang W, et al. QTLs of factors of the metabolic syndrome and echocardiographic phenotypes: the Hypertension Genetic Epidemiology Network study. BMC Med Genet. 2008;9:103.

    Article  PubMed  CAS  Google Scholar 

  70. Org E, Eyheramendy S, Juhanson P, et al. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet. 2009;18:2288–2296.

    Article  CAS  PubMed  Google Scholar 

  71. Khan AA, Chow EC, Porte RJ, et al. Expression and regulation of the bile acid transporter, OSTalpha-OSTbeta in rat and human intestine and liver. Biopharm Drug Dispos. 2009;30:241–258.

    Article  CAS  PubMed  Google Scholar 

  72. Yang HC, Liang YJ, Wu YL, et al. Genome-wide association study of young-onset hypertension in the Han Chinese population of Taiwan. PLoS One. 2009;4(5):e5459.

    Article  PubMed  CAS  Google Scholar 

  73. Wang Y, O’Connell JR, McArdle PF, et al. From the Cover: Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009;106:226–231.

    Article  CAS  PubMed  Google Scholar 

  74. Turner ST, Bailey KR, Fridley BL, et al. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension. 2008;52:359–365.

    Article  CAS  PubMed  Google Scholar 

  75. Levy D, Larson MG, Benjamin EJ, et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;8 Suppl 1:S3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Institutes of Health (NIH) HyperGEN Study grant U01 HL54471 and in part by the NIH Genetic Determinants of the LVH Phenotype grant RO1 HL07178205A.

Supplemental Material

Supplemental tables and figures (as mentioned in this article) are available at https://dsgweb.wustl.edu/OSMP/chr13-1/OSM_chr13-1.pdf.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldi T. Kraja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraja, A.T., Hunt, S.C., Rao, D.C. et al. Genetics of Hypertension and Cardiovascular Disease and Their Interconnected Pathways: Lessons from Large Studies. Curr Hypertens Rep 13, 46–54 (2011). https://doi.org/10.1007/s11906-010-0174-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-010-0174-7

Keywords

Navigation