Skip to main content
Log in

Mitochondrial Dysfunction and Oxidative Damage to Sarcomeric Proteins

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension is an important risk factor for the development of heart failure. Increased production of reactive oxygen species (ROS) contributes to cardiac dysfunction by activating numerous pro-hypertrophic signaling cascades and damaging the mitochondria, thus setting off a vicious cycle of ROS generation. The way in which oxidative stress leads to exacerbation of systolic and diastolic dysfunction is still unclear, however. In skeletal muscle and ischemic myocardium, increased ROS production causes preferential oxidation of myofibrillar proteins and provides a mechanistic link between oxidative damage and impaired contractility through disruption of actin-myosin interactions, enzymatic functions, calcium sensitivity, and efficiency of cross-bridge cycling. In this review, we summarize recent findings in the fields of heart failure and sarcomere biology and speculate that oxidative damage to myofibrils may contribute to the development of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Cherry DK, Hing E, Woodwell DA, Rechtsteiner EA: National Ambulatory Medical Care Survey: 2006 summary. Natl Health Stat Report 2008(3):1–39.

  2. Zile MR, Baicu CF, Gaasch WH: Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 2004, 350(19):1953–1959.

    Article  CAS  PubMed  Google Scholar 

  3. Anilkumar N, Sirker A, Shah AM: Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci 2009, 14:3168–3187.

    Article  CAS  PubMed  Google Scholar 

  4. Paravicini TM, Touyz RM: Redox signaling in hypertension. Cardiovasc Res 2006, 71(2):247–258.

    Article  CAS  PubMed  Google Scholar 

  5. Nakagami H, Takemoto M, Liao JK: NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 2003, 35(7):851–859.

    Article  CAS  PubMed  Google Scholar 

  6. Xiao L, Pimentel DR, Wang J, et al.: Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 2002, 282(4):C926–C934.

    CAS  PubMed  Google Scholar 

  7. Pimentel DR, Amin JK, Xiao L, et al.: Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 2001, 89(5):453–460.

    Article  CAS  PubMed  Google Scholar 

  8. Tsujimoto I, Hikoso S, Yamaguchi O, et al.: The antioxidant edaravone attenuates pressure overload-induced left ventricular hypertrophy. Hypertension 2005, 45(5):921–926.

    Article  CAS  PubMed  Google Scholar 

  9. Yamada T, Nagata K, Cheng XW, et al.: Long-term administration of nifedipine attenuates cardiac remodeling and diastolic heart failure in hypertensive rats. Eur J Pharmacol 2009, 615(1–3):163–170.

    Article  CAS  PubMed  Google Scholar 

  10. • Doenst T, Pytel G, Schrepper A, et al.: Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 2010, 86(3):461–470. This study characterizes mitochondrial metabolic defects in a pressure-overload rat model of hypertrophy. Importantly, though impairment in fatty acid and glucose metabolism occurred early after transverse aortic constriction (TAC), mitochondrial respiratory capacity was preserved until 10 weeks after TAC, and its decrease correlated with impairment of ejection fraction.

    Article  CAS  PubMed  Google Scholar 

  11. Lu JC, Cui W, Zhang HL, et al.: Additive beneficial effects of amlodipine and atorvastatin in reversing advanced cardiac hypertrophy in elderly spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2009, 36(11):1110–1119.

    Article  CAS  PubMed  Google Scholar 

  12. Lacy F, Kailasam MT, O’Connor DT, et al.: Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 2000, 36(5):878–884.

    CAS  PubMed  Google Scholar 

  13. Pedro-Botet J, Covas MI, Martin S, Rubies-Prat J: Decreased endogenous antioxidant enzymatic status in essential hypertension. J Hum Hypertens 2000, 14(6):343–345.

    Article  CAS  PubMed  Google Scholar 

  14. Sirker A, Zhang M, Murdoch C, Shah AM: Involvement of NADPH oxidases in cardiac remodelling and heart failure. Am J Nephrol 2007, 27(6):649–660.

    Article  CAS  PubMed  Google Scholar 

  15. Bendall JK, Cave AC, Heymes C, et al.: Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002, 105(3):293–296.

    Article  CAS  PubMed  Google Scholar 

  16. Byrne JA, Grieve DJ, Bendall JK, et al.: Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 2003, 93(9):802–805.

    Article  CAS  PubMed  Google Scholar 

  17. Xu X, Zhao L, Hu X, et al.: Delayed treatment effects of xanthine oxidase inhibition on systolic overload-induced left ventricular hypertrophy and dysfunction. Nucleosides Nucleotides Nucleic Acids 2010, 29(4–6):306–313.

    Article  CAS  PubMed  Google Scholar 

  18. Ide T, Tsutsui H, Kinugawa S, et al.: Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 1999, 85(4):357–363.

    CAS  PubMed  Google Scholar 

  19. Redout EM, Wagner MJ, Zuidwijk MJ, et al.: Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 2007, 75(4):770–781.

    Article  CAS  PubMed  Google Scholar 

  20. Chen FC, Ogut O: Decline of contractility during ischemia-reperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin. Am J Physiol Cell Physiol 2006, 290(3):C719–C727.

    Article  CAS  PubMed  Google Scholar 

  21. Reid MB: Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radic Biol Med 2008, 44(2):169–179.

    Article  CAS  PubMed  Google Scholar 

  22. Figueiredo PA, Mota MP, Appell HJ, Duarte JA: The role of mitochondria in aging of skeletal muscle. Biogerontology 2008, 9(2):67–84.

    Article  CAS  PubMed  Google Scholar 

  23. Graham D, Huynh NN, Hamilton CA, et al.: Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 2009, 54(2):322–328.

    Article  CAS  PubMed  Google Scholar 

  24. Daicho T, Yagi T, Abe Y, et al.: Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci 2009, 111(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  25. • Redout EM, van der Toorn A, Zuidwijk MJ, et al.: Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure. Am J Physiol Heart Circ Physiol 2010, 298(3):H1038–H1047. Monocrotaline-induced RV heart failure in rats was successfully reversed with antioxidant EUK-134 administration. This superoxide dismutase and catalase mimetic targets both mitochondrial and cytosolic ROS and represents a potential therapeutic agent for treatment of RV dysfunction in pulmonary arterial hypertension.

    Article  CAS  PubMed  Google Scholar 

  26. •• Dai DF, Chen T, Wanagat J, et al.: Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 2010, 9(4):536–544. Mitochondrial mutator mice develop premature cardiac dysfunction due to impairment in mitochondrial function and increased ROS production. These phenotypes are reversed by crossing these mice with Polg m/m mice, which overexpress the mitochondria-targeted antioxidant enzyme catalase. This study supports the importance of mitochondrial ROS in the development of cardiac dysfunction and provides evidence for the therapeutic potential of mitochondria-targeted antioxidants.

    Article  CAS  PubMed  Google Scholar 

  27. •• Loch T, Vakhrusheva O, Piotrowska I, et al.: Different extent of cardiac malfunction and resistance to oxidative stress in heterozygous and homozygous manganese-dependent superoxide dismutase-mutant mice. Cardiovasc Res 2009, 82(3):448–457. Mice with inducible heterozygous deletion of SOD2, a mitochondrial antioxidant, develop cardiac hypertrophy, systolic dysfunction, and increased fibrosis. This study supports the hypothesis that increased mitochondrial ROS production is sufficient to induce cardiomyopathy.

    CAS  PubMed  Google Scholar 

  28. Kohler JJ, Cucoranu I, Fields E, et al.: Transgenic mitochondrial superoxide dismutase and mitochondrially targeted catalase prevent antiretroviral-induced oxidative stress and cardiomyopathy. Lab Invest 2009, 89(7):782–790.

    Article  CAS  PubMed  Google Scholar 

  29. Marian AJ: Genetic determinants of cardiac hypertrophy. Curr Opin Cardiol 2008, 23(3):199–205.

    Article  PubMed  Google Scholar 

  30. Davies CH, Davia K, Bennett JG, et al.: Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation 1995, 92(9):2540–2549.

    CAS  PubMed  Google Scholar 

  31. Sharov VG, Sabbah HN, Shimoyama H, et al.: Abnormalities of contractile structures in viable myocytes of the failing heart. Int J Cardiol 1994, 43(3):287–297.

    Article  CAS  PubMed  Google Scholar 

  32. Jagatheesan G, Rajan S, Wieczorek DF: Investigations into tropomyosin function using mouse models. J Mol Cell Cardiol 2010, 48(5):893–898.

    Article  CAS  PubMed  Google Scholar 

  33. Messer AE, Jacques AM, Marston SB: Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure. J Mol Cell Cardiol 2007, 42(1):247–259.

    Article  CAS  PubMed  Google Scholar 

  34. Hamdani N, Kooij V, van Dijk S, et al.: Sarcomeric dysfunction in heart failure. Cardiovasc Res 2008, 77(4):649–658.

    Article  CAS  PubMed  Google Scholar 

  35. Barreiro E, Hussain SN: Protein carbonylation in skeletal muscles: impact on function. Antioxid Redox Signal 2010, 12(3):417–429.

    Article  CAS  PubMed  Google Scholar 

  36. •• Fedorova M, Kuleva N, Hoffmann R: Identification, quantification, and functional aspects of skeletal muscle protein-carbonylation in vivo during acute oxidative stress. J Proteome Res 2010, 9(5):2516–2526. A series of recent papers from this group used an x-ray irradiation model of acute ROS production to study the dynamics and functional consequences of oxidative damage to sarcomeric proteins. Importantly, they found myofibrillar proteins to be preferentially carbonylated or degraded in states of enhanced ROS generation.

    Article  CAS  PubMed  Google Scholar 

  37. Snook JH, Li J, Helmke BP, Guilford WH: Peroxynitrite inhibits myofibrillar protein function in an in vitro assay of motility. Free Radic Biol Med 2008, 44(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  38. Costa VM, Silva R, Tavares LC, et al.: Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes. Toxicology 2009, 260(1–3):84–96.

    Article  CAS  PubMed  Google Scholar 

  39. Yamada T, Mishima T, Sakamoto M, et al.: Myofibrillar protein oxidation and contractile dysfunction in hyperthyroid rat diaphragm. J Appl Physiol 2007, 102(5):1850–1855.

    Article  CAS  PubMed  Google Scholar 

  40. Canton M, Neverova I, Menabo R, et al.: Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. Am J Physiol Heart Circ Physiol 2004, 286(3):H870–H877.

    Article  CAS  PubMed  Google Scholar 

  41. de Paula Brotto M, van Leyen SA, Brotto LS, et al.: Hypoxia/fatigue-induced degradation of troponin I and troponin C: new insights into physiologic muscle fatigue. Pflugers Arch 2001, 442(5):738–744.

    Article  PubMed  Google Scholar 

  42. Fedorova M, Kuleva N, Hoffmann R: Reversible and irreversible modifications of skeletal muscle proteins in a rat model of acute oxidative stress. Biochim Biophys Acta 2009, 1792(12):1185–1193.

    CAS  PubMed  Google Scholar 

  43. •• Prochniewicz E, Lowe DA, Spakowicz DJ, et al.: Functional, structural, and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers. Am J Physiol Cell Physiol 2008, 294(2):C613–C626. In this study, the effect of oxidative stress on myofibrillar protein structure and function was evaluated. Treatment of isolated permeabilized muscle strips with H 2 O 2 resulted in oxidative modifications and impaired enzymatic activity of myofibrils, myosin, and actomyosin, which affected the contractile dynamics of the fibers. EPR spectroscopy analysis revealed a shift in confirmation of oxidized myosin heads towards the strong-binding structural state, providing the structural evidence for relaxation defects of the oxidized muscle.

    Article  CAS  PubMed  Google Scholar 

  44. Prochniewicz E, Spakowicz D, Thomas DD: Changes in actin structural transitions associated with oxidative inhibition of muscle contraction. Biochemistry 2008, 47(45):11811–11817.

    Article  CAS  PubMed  Google Scholar 

  45. Fedorova M, Kuleva N, Hoffmann R: Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress. J Proteome Res 2010, 9(3):1598–1609.

    Article  CAS  PubMed  Google Scholar 

  46. Rao VS, La Bonte LR, Xu Y, et al.: Alterations to myofibrillar protein function in nonischemic regions of the heart early after myocardial infarction. Am J Physiol Heart Circ Physiol 2007, 293(1):H654–H659.

    Article  CAS  PubMed  Google Scholar 

  47. White MY, Cordwell SJ, McCarron HC, et al.: Modifications of myosin-regulatory light chain correlate with function of stunned myocardium. J Mol Cell Cardiol 2003, 35(7):833–840.

    Article  CAS  PubMed  Google Scholar 

  48. Canton M, Skyschally A, Menabo R, et al.: Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J 2006, 27(7):875–881.

    Article  CAS  PubMed  Google Scholar 

  49. De Tombe PP, Wannenburg T, Fan D, Little WC: Right ventricular contractile protein function in rats with left ventricular myocardial infarction. Am J Physiol 1996, 271(1 Pt 2):H73–H79.

    PubMed  Google Scholar 

  50. van der Laarse A: Hypothesis: troponin degradation is one of the factors responsible for deterioration of left ventricular function in heart failure. Cardiovasc Res 2002, 56(1):8–14.

    Article  PubMed  Google Scholar 

  51. Narolska NA, Piroddi N, Belus A, et al.: Impaired diastolic function after exchange of endogenous troponin I with C-terminal truncated troponin I in human cardiac muscle. Circ Res 2006, 99:1012–1020.

    Article  CAS  PubMed  Google Scholar 

  52. Gomes-Marcondes MC, Tisdale MJ: Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett 2002, 180:69–74.

    Article  CAS  PubMed  Google Scholar 

  53. Predmore JM, Wang P, Davis F, et al.: Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation 2010, 121:997–1004.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ardehali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayeva, M., Ardehali, H. Mitochondrial Dysfunction and Oxidative Damage to Sarcomeric Proteins. Curr Hypertens Rep 12, 426–432 (2010). https://doi.org/10.1007/s11906-010-0149-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-010-0149-8

Keywords

Navigation