Skip to main content
Log in

Sarcolemmal fatty acid transport in normal and diseased hearts

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Our knowledge about the regulation of myocardial fatty acid uptake has increased dramatically in the past decade. Fatty acid uptake was found to occur by a mechanism resembling that of cellular glucose uptake. Thus, following an acute stimulus—particularly insulin or muscle contraction—specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just like these same stimuli recruit glucose transporters to increase glucose uptake. Studies in humans and in animal models have implicated dysregulation of fatty acid transporters in disease pathogenesis, such as the progression of obesity to insulin resistance and diabetic cardiomyopathy. As a result, membrane fatty acid transporters are now regarded as a promising therapeutic target to rectify abnormalities in cardiac fatty acid use in chronic cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Stanley WC, Recchia FA, Lopaschuk GD: Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005, 85:1093–1129.

    Article  PubMed  CAS  Google Scholar 

  2. Glatz JFC, Bonen A, Ouwens DM, Luiken JJFP: Regulation of sarcolemmal transport of substrates in the healthy and diseased heart. Cardiovasc Drugs Ther 2006, 20:471–476.

    Article  PubMed  CAS  Google Scholar 

  3. Taegtmeyer H, McNulty P, Young ME: Adaptation and maladaptation of the heart in diabetes. Part I: general concepts. Circulation 2002, 105:1727–1733.

    Article  PubMed  CAS  Google Scholar 

  4. Glatz JFC, Bonen A, Luiken JJFP: Exercise and insulin increase muscle fatty acid uptake by recruiting putative fatty acid transporters to the sarcolemma. Curr Opin Clin Nutr Metab Care 2002, 5:365–370.

    Article  PubMed  CAS  Google Scholar 

  5. Kamp JP, Kleinfeld AM: Is membrane transport of FFA mediated by lipid, protein, or both? An unknown protein mediates free fatty acid transport across the adipocyte plasma membrane. Physiology 2007, 22:7–14.

    Article  Google Scholar 

  6. Bonen A, Chabowski A, Luiken JJFP, Glatz JFC: Is membrane transport of FFA mediated by lipid, protein or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology 2007, 22:15–29.

    PubMed  CAS  Google Scholar 

  7. Pelsers MMAL, Lutgerink J, Van Nieuwenhoven FA, et al.: A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes. Biochem J 1999, 337:407–414.

    Article  PubMed  CAS  Google Scholar 

  8. Coburn CT, Knapp FF Jr, Febbraio M, et al.: Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 2000, 275:32523–32529.

    Article  PubMed  CAS  Google Scholar 

  9. Habets DDJ, Coumans WA, Voshol PJ, et al.: AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun 2007, 355:204–210.

    Article  PubMed  CAS  Google Scholar 

  10. Goodyear LJ, Kahn BB: Exercise, glucose transport, and insulin sensitivity. Ann Rev Med 1998, 49:235–261.

    Article  PubMed  CAS  Google Scholar 

  11. Bonen A, Luiken JJFP, Aramugam Y, et al.: Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 2000, 275:14501–14508.

    Article  PubMed  CAS  Google Scholar 

  12. Luiken JJFP, Coort SLM, Willems J, et al.: Contraction-induced FAT/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 2003, 52:1627–1634.

    Article  PubMed  CAS  Google Scholar 

  13. Luiken JJFP, Koonen DPY, Willems J, et al.: Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 2002, 51:3113–3119.

    Article  PubMed  CAS  Google Scholar 

  14. Chabowksi A, Coort SLM, Calles-Escandon J, et al.: The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR. FEBS Lett 2005, 579:2428–2432.

    Article  Google Scholar 

  15. Wu Q, Ortegon AM, Tsang B, et al.: FATP1 is an insulinsensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol 2006, 26:3455–3467.

    Article  PubMed  CAS  Google Scholar 

  16. Coort SLM, Hasselbaink DM, Koonen DPY, et al.: Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese Zucker rats. Diabetes 2004, 53:1655–1663.

    Article  PubMed  CAS  Google Scholar 

  17. Bonen A, Parolin ML, Steinberg GR, et al.: Triacylglycerol accumulation in human obesity and type-2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 2004, 18:1144–1146.

    PubMed  CAS  Google Scholar 

  18. Ouwens DM, Diamant M, Fodor M, et al.: Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 2007, 50:1938–1948.

    Article  PubMed  CAS  Google Scholar 

  19. Yang J, Sambandam N, Han X, et al.: CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 2007, 100:1208–1217.

    Article  PubMed  CAS  Google Scholar 

  20. Luiken JJFP, Arumugam Y, Dyck DJ, et al.: Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem 2001, 276:40567–40573.

    Article  PubMed  CAS  Google Scholar 

  21. Chiu H-C, Kovacs A, Blanton RM, et al.: Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res 2005, 96:225–233.

    Article  PubMed  CAS  Google Scholar 

  22. Rosenblatt-Velin N, Montessuit C, Papageorgiou I, et al.: Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 2001, 52:407–416.

    Article  PubMed  CAS  Google Scholar 

  23. Heather LC, Cole MA, Lygate CA, et al.: Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovasc Res 2006, 72:430–437.

    Article  PubMed  CAS  Google Scholar 

  24. Luiken JJFP, Coort SLM, Willems J, et al.: Dipyridamole alters cardiac substrate preference by inducing translocation of FAT/CD36, but not that of GLUT4. Mol Pharmacol 2004, 65:639–645.

    Article  PubMed  CAS  Google Scholar 

  25. Luiken JJFP, Momken I, Habets DDJ, et al.: Arsenite modulates cardiac substrate preference by translocation of GLUT4, but not CD36, independent of mitogen-activated protein kinase signaling. Endocrinology 2006, 147:5205–5216.

    Article  PubMed  CAS  Google Scholar 

  26. Lopaschuk GD, Rebeyka IM, Allard MF: Metabolic modulation: a means to mend a broken heart. Circulation 2002; 105:140–142.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan F. C. Glatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glatz, J.F.C., Bonen, A. & Luiken, J.J.F.P. Sarcolemmal fatty acid transport in normal and diseased hearts. Current Science Inc 9, 450–454 (2007). https://doi.org/10.1007/s11906-007-0083-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-007-0083-6

Keywords

Navigation