Skip to main content
Log in

Small artery remodeling in hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension is associated with altered structure of the resistance vessels, a process known as remodeling. This review summarizes current concepts concerning the structure of a subgroup of the resistance vessels, the small arteries, and the modes of remodeling, some of the determinants of remodeling, and some signaling pathways for remodeling. It is shown that the available evidence points to important roles for blood flow and growth factors, in addition to blood pressure, as causes of resistance artery remodeling. Finally, the relationship between vascular structure and blood pressure is discussed, in particular with regard to the effects of antihypertensive therapy. Here again, it appears that blood flow plays an important role in allowing the correction of the abnormal resistance vessel structure seen in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Mulvany MJ, Aalkjaer C: Structure and function of small arteries. Physiol Rev 1990, 70:921–961.

    PubMed  CAS  Google Scholar 

  2. Christensen KL, Mulvany MJ: Location of resistance arteries. J Vasc Res 2001, 38:1–12.

    Article  PubMed  CAS  Google Scholar 

  3. Struijker Boudier HA: Arteriolar and capillary remodelling in hypertension. Drugs 1999, 59:37–40.

    Google Scholar 

  4. Rizzoni D, Porteri E, Castellano M, et al.: Endothelial dysfunction in hypertension is independent from the etiology and from vascular structure. Hypertension 1998, 31:335–341.

    PubMed  CAS  Google Scholar 

  5. Schiffrin EL, Park JB, Intengan HD, Touyz RM: Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 2000, 101:1653–1659.

    PubMed  CAS  Google Scholar 

  6. Heagerty AM, Aalkjaer C, Bund SJ, et al.: Small artery structure in hypertension: dual processes of remodelling and growth. Hypertension 1993, 21:391–397.

    PubMed  CAS  Google Scholar 

  7. Price RJ, Skalak TC: Prazosin administration enhances proliferation of arteriolar adventitial fibroblasts. Microvasc Res 1998, 55:138–145.

    Article  PubMed  CAS  Google Scholar 

  8. Mulvany MJ: Remodelling of resistance vessels in essential hypertension. In Hypertension. Edited by Oparil S, Weber MA. Philadelphia: WB Saunders; 2000:125–134.

    Google Scholar 

  9. Mulvany MJ, Baumbach GL, Aalkjaer C, et al.: Vascular remodelling [letter]. Hypertension 1996, 28:505–506.

    PubMed  CAS  Google Scholar 

  10. Pasterkamp G, Schoneveld AH, van Wolferen W, et al.: The impact of atherosclerotic arterial remodeling on percentage of luminal stenosis varies widely within the arterial system. A postmortem study. Arterioscler Thromb Vasc Biol 1997, 17:3057–3063.

    PubMed  CAS  Google Scholar 

  11. Aalkjaer C, Heagerty AM, Petersen KK, et al.: Evidence for increased media thickness, increased neuronal amine uptake, and depressed excitation-contraction coupling in isolated resistance vessels from essential hypertensives. Circ Res 1987, 61:181–186.

    PubMed  CAS  Google Scholar 

  12. Izzard AS, Cragoe EJ, Heagerty AM: Intracellular pH in human resistance arteries in essential hypertension. Hypertension 1991, 17:780–786.

    PubMed  CAS  Google Scholar 

  13. Schiffrin EL, Deng LY, Larochelle P: Blunted effects of endothelin upon small subcutaneous resistance arteries of mild essential hypertensive patients. J Hypertens 1992, 10:437–444.

    Article  PubMed  CAS  Google Scholar 

  14. Thybo NK, Stephens N, Cooper A, et al.: Effect of antihypertensive treatment on small arteries of patients with previously untreated essential hypertension. Hypertension 1995, 25:474–481.

    PubMed  CAS  Google Scholar 

  15. Short D: The vascular fault in chronic hypertension with particular reference to the role of medial hypertrophy. Lancet 1966, 1:1302–1304.

    Article  PubMed  CAS  Google Scholar 

  16. Korsgaard N, Aalkjaer C, Heagerty AM, et al.: Histology of subcutaneous small arteries from patients with essential hypertension. Hypertension 1993, 22:523–526.

    PubMed  CAS  Google Scholar 

  17. Egan BM, Schork N, Panis R, Hinderliter A: Vascular structure enhances regional resistance responses in mild essential hypertension. J Hypertens 1988, 6:41–48.

    Article  PubMed  CAS  Google Scholar 

  18. Korner PI, Angus JA: Structural determinants of vascular resistance properties in hypertension. Haemodynamic and model analysis. J Vasc Res 1992, 29:293–312.

    PubMed  CAS  Google Scholar 

  19. Rizzoni D, Porteri E, Castellano M, et al.: Vascular hypertrophy and remodeling in secondary hypertension. Hypertension 1996, 28:785–790.

    PubMed  CAS  Google Scholar 

  20. Kvist S, Mulvany MJ: Reduced medication and normalization of vascular structure, but continued hypertension in renovascular patients after revascularization. Cardiovasc Res 2001, 52:136–142.

    Article  PubMed  CAS  Google Scholar 

  21. Bund SJ, West KP, Heagerty AM: Effects of protection on resistance artery morphology and reactivity in spontaneously hypertensive and Wistar-Kyoto rats. Circ Res 1991, 68:1230–1240.

    PubMed  CAS  Google Scholar 

  22. Pourageaud F, De Mey JGR: Structural properties of rat mesenteric small arteries after 4-wk exposure to elevated or reduced blood flow. Am J Physiol 1997, 273:H1699-H1706.

    PubMed  CAS  Google Scholar 

  23. Su EJ, Lombardi DM, Siegal J, Schwartz SM: Angiotensin II induces vascular smooth muscle cell replication independent of blood pressure. Hypertension 1998, 31:1331–1337.

    PubMed  CAS  Google Scholar 

  24. Buus CL, Pourageaud F, Fazzi GE, et al.: Smooth muscle changes during flow-related remodeling of rat mesenteric resistance arteries. Circ Res 2001, 89:180–186. Demonstration of effects of flow on cell proliferation and dedifferentiation.

    PubMed  CAS  Google Scholar 

  25. Bakker EN, van Der Meulen ET, Spaan JA, VanBavel E: Organoid culture of cannulated rat resistance arteries: effect of serum factors on vasoactivity and remodeling. Am J Physiol 2001, 278:H1233-H1240. First demonstration that physical remodeling can be obtained under in vitro conditions.

    Google Scholar 

  26. Touyz RM, Schiffrin EL: Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 2000, 52:639–672. Important review of current status of the vascular biology of remodeling processes.

    PubMed  CAS  Google Scholar 

  27. Intengan HD, Schiffrin EL: Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 2000, 36:312–338.

    PubMed  CAS  Google Scholar 

  28. Berk BC: Vascular smooth muscle growth: autocrine growth mechanisms. Physiol Rev 2001, 81:999–1030. Remodeling processes in hypertension are put into a wider context of vascular remodeling processes in general.

    PubMed  CAS  Google Scholar 

  29. Xi XP, Graf K, Goetze S, et al.: Central role of the MAPK pathway in ang II-mediated DNA synthesis and migration in rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999, 19:73–82.

    PubMed  CAS  Google Scholar 

  30. Touyz RM, He G, Wu XH, et al.: Src o is an important mediator of extracellular signal-regulated kinase 1/2-dependent growth signaling by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients. Hypertension 2001, 38:56–64.

    PubMed  CAS  Google Scholar 

  31. Allen SP, Liang HM, Hill MA, Prewitt RL: Elevated pressure stimulates protooncogene expression in isolated mesenteric arteries. Am J Physiol 1996, 271:H1517-H1523.

    PubMed  CAS  Google Scholar 

  32. Bardy N, Karillon GJ, Merval R, et al.: Differential effects of pressure and flow on DNA and protein synthesis and on fibronectin expression by arteries in a novel organ culture system. Circ Res 1995, 77:684–694.

    PubMed  CAS  Google Scholar 

  33. Li C, Xu Q: Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 2000, 12:435–445.

    Article  PubMed  CAS  Google Scholar 

  34. Shi Y, Patel S, Niculescu R, et al.: Role of matrix metalloproteinases and their tissue inhibitors in the regulation of coronary cell migration. Arterioscler Thromb Vasc Biol 1999, 19:1150–1155.

    PubMed  CAS  Google Scholar 

  35. Matrougui K, Eskildsen-Helmond YE, Fiebeler A, et al.: Angiotensin II stimulates extracellular signal-regulated kinase activity in intact pressurized rat mesenteric resistance arteries. Hypertension 2000, 36:617–621.

    PubMed  CAS  Google Scholar 

  36. Wesselman JP, Dobrian AD, Schriver SD, Prewitt RL: Src tyrosine kinases and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases mediate pressure-induced c-fos expression in cannulated rat mesenteric small arteries. Hypertension 2001, 37:955–960. Latest demonstration of the effects of intravascular pressure on ERK1/ 2 activation and c-fos expression.

    PubMed  CAS  Google Scholar 

  37. Birukov KG, Lehoux S, Birukova AA, et al.: Increased pressure induces sustained protein kinase C-independent herbimycin A-sensitive activation of extracellular signal-related kinase 1/2 in the rabbit aorta in organ culture. Circ Res 1997, 81:895–903.

    PubMed  CAS  Google Scholar 

  38. Bilder G, Wentz T, Leadley R, et al.: Restenosis following angioplasty in the swine coronary artery is inhibited by an orally active PDGF-receptor tyrosine kinase inhibitor, RPR101511A. Circulation 1999, 99:3292–3299.

    PubMed  CAS  Google Scholar 

  39. Saito Y, Berk BC: Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors. J Mol Cell Cardiol 2001, 33:3–7.

    Article  PubMed  CAS  Google Scholar 

  40. Eskildsen-Helmond YEG, Mulvany MJ: A possible role for the PDGF-beta-receptor in angiotensin II and pressure activation extracellular regulated signal kinase 1/2 in rat mesenteric arteries [abstract]. Hypertension 2001, 38:973.

    Google Scholar 

  41. Folkow B: Structural, myogenic, humoral and nervous factors controlling peripheral resistance. In Hypotensive Drugs. Edited by Harington M. London: Pergamon; 1956:163–174.

    Google Scholar 

  42. Julius S: The blood pressure seeking properties of the central nervous system. J Hypertens 1988, 6:177–185.

    Article  PubMed  CAS  Google Scholar 

  43. Park JB, Schiffrin EL: Effects of antihypertensive therapy on hypertensive vascular disease. Curr Hypertens Rep 2000, 2:280–288.

    Article  PubMed  CAS  Google Scholar 

  44. Christensen KL, Mulvany MJ: Vasodilatation, not hypotension, improves resistance vessel design during treatment of essential hypertension: a literature survey. J Hypertens 2001, 19:1001–1006.

    Article  PubMed  CAS  Google Scholar 

  45. Schiffrin EL, Deng LY, Larochelle P: Effects of a beta-blocker or a converting enzyme inhibitor on resistance arteries in. Hypertension 1994, 23:83–91.

    PubMed  CAS  Google Scholar 

  46. Chillon JM, Baumbach GL: Effects of an angiotensin-converting enzyme inhibitor and a beta-blocker on cerebral arteriolar dilatation in hypertensive rats. Hypertension 2001, 37:1388–1393.

    PubMed  CAS  Google Scholar 

  47. Strauer BE, Schwartzkopff B: Left ventricular hypertrophy and coronary microcirculation in hypertensive heart disease. Blood Press Suppl 1997, 2:6–12.

    PubMed  CAS  Google Scholar 

  48. Krams R, Kofflard MJ, Duncker DJ, et al.: Decreased coronary flow reserve in hypertrophic cardiomyopathy is related to remodeling of the coronary microcirculation. Circulation 1998, 97:230–233.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulvany, M.J. Small artery remodeling in hypertension. Current Science Inc 4, 49–55 (2002). https://doi.org/10.1007/s11906-002-0053-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-002-0053-y

Keywords

Navigation