Skip to main content
Log in

The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies

  • Review
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population’s high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV.

Recent Findings

Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use).

Summary

Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2-AG:

2-Arachidonoylglycerol

AEA:

N-Arachidonoylethanolamine (anandamide)

AIDS:

Acquired immunodeficiency syndrome

BBB:

Blood-brain barrier

cART:

Combination antiretroviral therapy

CMT2:

Color Trails Test 2

CPT:

Continuous performance task

CUD:

Cannabis use disorder

CB1R:

Cannabinoid-1 receptor

CB2R:

Cannabinoid-2 receptor

CBD:

Cannabidiol

CNS:

Central nervous system

CU:

Cannabis use

EAT:

Error-awareness task

eCB:

Endocannabinoid

EF:

Executive function

FAAH:

Fatty acid amide hydrolase

FIV:

Feline immunodeficiency virus

fMRI:

Functional magnetic resonance imaging

GDS:

Global deficit score

IL:

Infralimbic

IP-10:

Interferon gamma-induced protein (IP-10)

MAGL:

Monoacylglycerol lipase

MCP-1:

Monocyte chemoattractant protein-1

METH:

Methamphetamine

mPFC:

Medial prefrontal cortex

MRI:

Magnetic resonance imaging

MWM:

Morris water maze

NCI:

Neurocognitive impairment

PFC:

Prefrontal cortex

PL:

Procedural learning

PM:

Prospective memory

PRLT:

Probabilistic reversal learning task

PWH:

People with HIV

PWoH:

People with out HIV

RPT:

Rotary pursuit task

rsFC:

Resting-state functional connectivity

SIV:

Simian immunodeficiency virus

SMT:

Star mirror tracing task

SUD:

Substance use disorder

THC:

Δ9-Tetrahydrocannabinol (THC)

TMTA:

Trail Making Test A

tg:

Transgenic

WPT:

Weather prediction task

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Thames AD, Becker BW, Marcotte TD, Hines LJ, Foley JM, Ramezani A, et al. Depression, cognition, and self-appraisal of functional abilities in HIV: an examination of subjective appraisal versus objective performance. Clin Neuropsychol. 2011;25(2):224–43.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Knippels HM, Goodkin K, Weiss JJ, Wilkie FL, Antoni MH. The importance of cognitive self-report in early HIV-1 infection: validation of a cognitive functional status subscale. AIDS. 2002;16(2):259–67.

    Article  PubMed  Google Scholar 

  3. Yoo-Jeong M, Anderson A, Rahman AF, Baumann M, McBroom J, Waldrop-Valverde, D. Associations of mood on objective and subjective cognitive complaints in persons living with HIV/AIDS. J HIV/AIDS. 2018;4(1).https://doi.org/10.16966/2380-5536.146.

  4. Nakao A, Yamanouchi J, Takenaka K, Takada K. The Iowa Gambling Task on HIV-infected subjects. J Infect Chemother. 2020;26(3):240–4.

    Article  PubMed  Google Scholar 

  5. Hinkin CH, Castellon SA, Hardy DJ, Granholm E, Siegle G. Computerized and traditional stroop task dysfunction in HIV-1 infection. Neuropsychology. 1999;13(2):306–16.

    Article  CAS  PubMed  Google Scholar 

  6. Hinkin CH, Hardy DJ, Mason KI, Castellon SA, Lam MN, Stefaniak M, et al. Verbal and spatial working memory performance among HIV-infected adults. J Int Neuropsychol Soc. 2002;8(4):532–8.

    Article  PubMed  Google Scholar 

  7. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Liu M, Lu Q, Farrell M, Lappin JM, Shi J, et al. Global prevalence and burden of HIV-associated neurocognitive disorder: a meta-analysis. Neurology. 2020;95(19):e2610–21.

    Article  CAS  PubMed  Google Scholar 

  9. Wei J, Hou J, Su B, Jiang T, Guo C, Wang W, et al. The prevalence of Frascati-criteria-based HIV-associated neurocognitive disorder (HAND) in HIV-infected adults: a systematic review and meta-analysis. Front Neurol. 2020;11:581346.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Korten V, Ay U, Hari E, Tigen Tukenmez E, Gencer S, Akca Kalem S, et al. Prevalence of HIV-associated neurocognitive disorder (HAND) in Turkey and assessment of Addenbrooke’s Cognitive Examination Revised (ACE-R) test as a screening tool. HIV Med. 2021;22(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  11. Flatt A, Gentry T, Kellett-Wright J, Eaton P, Joseph M, Urasa S, et al. Prevalence and 1-year incidence of HIV-associated neurocognitive disorder (HAND) in adults aged >/=50 years attending standard HIV clinical care in Kilimanjaro Tanzania. Int Psychogeriatr. 2023;35(7):339–50.

    Article  PubMed  Google Scholar 

  12. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.

    Article  CAS  PubMed  Google Scholar 

  13. • Dastgheyb RM, Sacktor N, Franklin D, Letendre S, Marcotte T, Heaton R, et al. Cognitive trajectory phenotypes in human immunodeficiency virus-infected patients. J Acquir Immune Defic Syndr. 2019;82(1):61–70 (This work showed that a specific cognitive impairment profile (deficits in executive function, learning, and processing-speed) was less likely in cannabis-using versus cannabis-abstinent PWH. However, other impairment profiles incorporating these domains (e.g., the learning and memory profile) were not associated with CU. These data highlight the necessity of testing discrete cognitive domain functions in PWH, and the importance of interpreting global cognition scores with caution).

  14. Rubin LH, Saylor D, Nakigozi G, Nakasujja N, Robertson K, Kisakye A, et al. Heterogeneity in neurocognitive change trajectories among people with HIV starting antiretroviral therapy in Rakai Uganda. J Neurovirol. 2019;25(6):800–13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dastgheyb RM, Buchholz AS, Fitzgerald KC, Xu Y, Williams DW, Springer G, et al. Patterns and predictors of cognitive function among virally suppressed women with HIV. Front Neurol. 2021;12:604984.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rippeth JD, Heaton RK, Carey CL, Marcotte TD, Moore DJ, Gonzalez R, et al. Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc. 2004;10(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  17. Rothlind JC, Greenfield TM, Bruce AV, Meyerhoff DJ, Flenniken DL, Lindgren JA, et al. Heavy alcohol consumption in individuals with HIV infection: effects on neuropsychological performance. J Int Neuropsychol Soc. 2005;11(1):70–83.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sassoon SA, Fama R, Rosenbloom MJ, O’Reilly A, Pfefferbaum A, Sullivan EV. Component cognitive and motor processes of the digit symbol test: differential deficits in alcoholism, HIV infection, and their comorbidity. Alcohol Clin Exp Res. 2007;31(8):1315–24.

    Article  PubMed  Google Scholar 

  19. Schulte T, Mueller-Oehring EM, Rosenbloom MJ, Pfefferbaum A, Sullivan EV. Differential effect of HIV infection and alcoholism on conflict processing, attentional allocation, and perceptual load: evidence from a Stroop Match-to-Sample task. Biol Psychiatry. 2005;57(1):67–75.

    Article  PubMed  Google Scholar 

  20. Rodriguez Salgado D, Rodriguez Alvarez M, Seoane PG. Neuropsychological impairment among asymptomatic HIV-positive former intravenous drug users. Cogn Behav Neurol. 2006;19(2):95–104.

    Article  CAS  PubMed  Google Scholar 

  21. Wakim KM, Freedman EG, Molloy CJ, Vieyto N, Cao Z, Foxe JJ. Assessing combinatorial effects of HIV infection and former cocaine dependence on cognitive control processes: a high-density electrical mapping study of response inhibition. Neuropharmacology. 2021;195:108636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wakim KM, Freedman EG, Tivarus ME, Heinecke A, Foxe JJ. Assessing combinatorial effects of HIV infection and former cocaine dependence on cognitive control processes: a functional neuroimaging study of response inhibition. Neuropharmacology. 2022;203:108815.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar P, Mahato DK, Kamle M, Borah R, Sharma B, Pandhi S, et al. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: an overview. Phytother Res. 2021;35(11):6010–29.

    Article  CAS  PubMed  Google Scholar 

  24. Shiau S, Arpadi SM, Yin MT, Martins SS. Patterns of drug use and HIV infection among adults in a nationally representative sample. Addict Behav. 2017;68:39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Costiniuk CT, Saneei Z, Salahuddin S, Cox J, Routy JP, Rueda S, et al. Cannabis consumption in people living with HIV: reasons for use, secondary effects, and opportunities for health education. Cannabis Cannabinoid Res. 2019;4(3):204–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Harris GE, Dupuis L, Mugford GJ, Johnston L, Haase D, Page G, et al. Patterns and correlates of cannabis use among individuals with HIV/AIDS in Maritime Canada. Can J Infect Dis Med Microbiol. 2014;25(1):e1-7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol. 2013;64:21–47.

    Article  PubMed  Google Scholar 

  28. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev. 2009;89(1):309–80.

    Article  CAS  PubMed  Google Scholar 

  29. Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol. 2008;20(Suppl 1):10–4.

    Article  CAS  PubMed  Google Scholar 

  30. Stella N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia. 2010;58(9):1017–30.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S. Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci. 2011;5:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu C, Hermes DJ, Nwanguma B, Jacobs IR, Mackie K, Mukhopadhyay S, et al. Endocannabinoids exert CB(1) receptor-mediated neuroprotective effects in models of neuronal damage induced by HIV-1 Tat protein. Mol Cell Neurosci. 2017;83:92–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302(5642):84–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, et al. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation. 2005;2:29.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Murray CH, Javanbakht M, Cho GD, Gorbach PM, Fulcher JA, Cooper ZD. Changes in immune-related biomarkers and endocannabinoids as a function of frequency of cannabis use in people living with and without HIV. Cannabis and cannabinoid research. Advance online publication. 2023. https://doi.org/10.1089/can.2022.0287.

  36. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153(2):199–215.

    Article  CAS  PubMed  Google Scholar 

  37. Wise LE, Thorpe AJ, Lichtman AH. Hippocampal CB(1) receptors mediate the memory impairing effects of Delta(9)-tetrahydrocannabinol. Neuropsychopharmacology. 2009;34(9):2072–80.

    Article  CAS  PubMed  Google Scholar 

  38. Nidadavolu P, Bilkei-Gorzo A, Kramer M, Schurmann B, Palmisano M, Beins EC, et al. Efficacy of Delta(9) -Tetrahydrocannabinol (THC) alone or in combination with a 1:1 ratio of cannabidiol (CBD) in reversing the spatial learning deficits in old mice. Front Aging Neurosci. 2021;13:718850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol. 2015;172(20):4790–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martinez-Aguirre C, Carmona-Cruz F, Velasco AL, Velasco F, Aguado-Carrillo G, Cuellar-Herrera M, et al. Cannabidiol acts at 5-HT(1A) receptors in the human brain: relevance for treating temporal lobe epilepsy. Front Behav Neurosci. 2020;14:611278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Etemad L, Karimi G, Alavi MS, Roohbakhsh A. Pharmacological effects of cannabidiol by transient receptor potential channels. Life Sci. 2022;300:120582.

    Article  CAS  PubMed  Google Scholar 

  42. Morales P, Reggio PH. An Update on Non-CB(1), Non-CB(2) Cannabinoid related G-protein-coupled receptors. Cannabis Cannabinoid Res. 2017;2(1):265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fusar-Poli P, Allen P, Bhattacharyya S, Crippa JA, Mechelli A, Borgwardt S, et al. Modulation of effective connectivity during emotional processing by Delta 9-tetrahydrocannabinol and cannabidiol. Int J Neuropsychopharmacol. 2010;13(4):421–32.

    Article  CAS  PubMed  Google Scholar 

  44. Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, et al. Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology. 2010;35(3):764–74.

    Article  CAS  PubMed  Google Scholar 

  45. Fusar-Poli P, Crippa JA, Bhattacharyya S, Borgwardt SJ, Allen P, Martin-Santos R, et al. Distinct effects of delta9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing. Arch Gen Psychiatry. 2009;66(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  46. Curran T, Devillez H, YorkWilliams SL, Bidwell LC. Acute effects of naturalistic THC vs. CBD use on recognition memory: a preliminary study. J Cannabis Res. 2020;2(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Woelfl T, Rohleder C, Mueller JK, Lange B, Reuter A, Schmidt AM, et al. Effects of cannabidiol and delta-9-tetrahydrocannabinol on emotion, cognition, and attention: a double-blind, placebo-controlled, randomized experimental trial in healthy volunteers. Front Psychiatry. 2020;11:576877.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature. 1994;367(6459):188–93.

    Article  CAS  PubMed  Google Scholar 

  49. Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ. Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol. 2003;162(5):1693–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A. 2001;98(16):9271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011;13(3):135–48.

    PubMed  PubMed Central  Google Scholar 

  52. Potash MJ, Chao W, Bentsman G, Paris N, Saini M, Nitkiewicz J, et al. A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc Natl Acad Sci U S A. 2005;102(10):3760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li H, McLaurin KA, Mactutus CF,  Booze RM. A rat model of ecohiv brain infection. J visualized experiments. 2021;(167). https://doi.org/10.3791/62137.

  54. Mallard J, Williams K. An SIV macaque model of SIV and HAND: the need for adjunctive therapies in HIV that target activated monocytes and macrophages. J Neurovirol. 2018;24(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  55. Miller C, Abdo Z, Ericsson A, Elder J, VandeWoude S. Applications of the FIV model to study HIV pathogenesis. Viruses. 2018;10(4).

  56. Del Prete GQ, Eilers B, Moldt B, Keele BF, Estes JD, Rodriguez A, Sampias M, Oswald K, Fast R, Trubey CM, Chertova E, Smedley J, LaBranche CC, Montefiori DC, Burton DR, Shaw GM, Markowitz M, Piatak M, Jr KewalRamani V N, Bieniasz PD, Hatziioannou T. Selection of unadapted, pathogenic SHIVs encoding newly transmitted HIV-1 envelope proteins. Cell host & microbe, 2014;16(3):412–418. https://doi.org/10.1016/j.chom.2014.08.003.

  57. Heaton RK, Ellis RJ, Tang B, Marra CM, Rubin LH, Clifford DB, et al. Twelve-year neurocognitive decline in HIV is associated with comorbidities, not age: a CHARTER study. Brain. 2023;146(3):1121–31.

    Article  PubMed  Google Scholar 

  58. Watson CW, Paolillo EW, Morgan EE, Umlauf A, Sundermann EE, Ellis RJ, et al. Cannabis exposure is associated with a lower likelihood of neurocognitive impairment in people living with HIV. J Acquir Immune Defic Syndr. 2020;83(1):56–64.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Naveed Z, Fox HS, Wichman CS, May P, Arcari CM, Meza J, et al. An assessment of factors associated with neurocognitive decline in people living with HIV. Int J STD AIDS. 2022;33(1):38–47.

    Article  PubMed  Google Scholar 

  60. Cristiani SA, Pukay-Martin ND, Bornstein RA. Marijuana use and cognitive function in HIV-infected people. J Neuropsychiatry Clin Neurosci. 2004;16(3):330–5.

    Article  PubMed  Google Scholar 

  61. Schouten J, Su T, Wit FW, Kootstra NA, Caan MW, Geurtsen GJ, et al. Determinants of reduced cognitive performance in HIV-1-infected middle-aged men on combination antiretroviral therapy. AIDS. 2016;30(7):1027–38.

    Article  CAS  PubMed  Google Scholar 

  62. Thames AD, Mahmood Z, Burggren AC, Karimian A, Kuhn TP. Combined effects of HIV and marijuana use on neurocognitive functioning and immune status. AIDS Care. 2016;28(5):628–32.

    Article  PubMed  Google Scholar 

  63. Saloner R, Campbell LM, Serrano V, Montoya JL, Pasipanodya E, Paolillo EW, et al. Neurocognitive superaging in older adults living with HIV: demographic, neuromedical and everyday functioning correlates. J Int Neuropsychol Soc. 2019;25(5):507–19.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Watson CW, Campbell LM, Sun-Suslow N, Hong S, Umlauf A, Ellis RJ, et al. Daily cannabis use is associated with lower CNS inflammation in people with HIV. J Int Neuropsychol Soc. 2021;27(6):661–72.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Watson CW, Sundermann E, Helm J, Paolillo EW, Hong S, Ellis RJ, Letendre S, Marcotte TD, Heaton RK, Morgan EE, Grant I. A longitudinal study of cannabis use and risk for cognitive and functional decline among older adults with HIV. AIDS and behavior. 2023;27(10):3401–3413. https://doi.org/10.1007/s10461-023-04056-6.

  66. Thames AD, Kuhn TP, Williamson TJ, Jones JD, Mahmood Z, Hammond A. Marijuana effects on changes in brain structure and cognitive function among HIV+ and HIV- adults. Drug Alcohol Depend. 2017;170:120–7.

    Article  CAS  PubMed  Google Scholar 

  67. Murdoch DM, Barfield R, Chan C, Towe SL, Bell RP, Volkheimer A, et al. Neuroimaging and immunological features of neurocognitive function related to substance use in people with HIV. J Neurovirol. 2023;29(1):78–93.

    Article  CAS  PubMed  Google Scholar 

  68. Byrd DA, Fellows RP, Morgello S, Franklin D, Heaton RK, Deutsch R, et al. Neurocognitive impact of substance use in HIV infection. J Acquir Immune Defic Syndr. 2011;58(2):154–62.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rogers JM, Iudicello JE, Marcondes MCG, Morgan EE, Cherner M, Ellis RJ, Letendre SL, Heaton RK, Grant I. The combined effects of cannabis, methamphetamine, and HIV on neurocognition. Viruses. 2023;15(3):674. https://doi.org/10.3390/v15030674.

  70. Wang HA, Liang HJ, Ernst TM, Oishi K, Chang L. Microstructural brain abnormalities in HIV+ individuals with or without chronic marijuana use. J Neuroinflammation. 2020;17(1):230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kallianpur KJ, Birn R, Ndhlovu LC, Souza SA, Mitchell B, Paul R, et al. Impact of cannabis use on brain structure and function in suppressed HIV infection. J Behav Brain Sci. 2020;10(8):344–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schantell M, Springer SD, Arif Y, Sandal ME, Willett MP, Johnson HJ, et al. Regular cannabis use modulates the impact of HIV on the neural dynamics serving cognitive control. J Psychopharmacol. 2022;36(12):1324–37.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Flannery JS, Riedel MC, Hill-Bowen LD, Poudel R, Bottenhorn KL, Salo T, et al. Altered large-scale brain network interactions associated with HIV infection and error processing. Netw Neurosci. 2022;6(3):791–815.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gomez D, Power C, Gill MJ, Fujiwara E. Determinants of risk-taking in HIV-associated neurocognitive disorders. Neuropsychology. 2017;31(7):798–810.

    Article  PubMed  Google Scholar 

  75. Attonito JM, Devieux JG, Lerner BD, Hospital MM, Rosenberg R. Exploring substance use and HIV treatment factors associated with neurocognitive impairment among people living with HIV/AIDS. Front Public Health. 2014;2:105.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Christopher-Hayes NJ, Lew BJ, Wiesman AI, Schantell M, O’Neill J, May PE, et al. Cannabis use impacts pre-stimulus neural activity in the visual cortices of people with HIV. Hum Brain Mapp. 2021;42(16):5446–57.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Crook CL, Savin MJ, Byrd D, Summers AC, Guzman VA, Morris EP, et al. The neurocognitive effects of a past cannabis use disorder in a diverse sample of people living with HIV. AIDS Care. 2021;33(11):1482–91.

    Article  PubMed  Google Scholar 

  78. Okafor CN, Plankey MW, Li M, Chen X, Surkan PJ, Shoptaw S, et al. Association of marijuana use with changes in cognitive processing speed and flexibility for 17 years in HIV-seropositive and HIV-seronegative men. Subst Use Misuse. 2019;54(4):525–37.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Flannery JS, Riedel MC, Salo T, Hill-Bowen LD, Poudel R, Adams AR, et al. Interactive effects of HIV infection and cannabis use on insula subregion functional connectivity. J Neuroimmune Pharmacol. 2022;17(1–2):289–304.

    Article  PubMed  Google Scholar 

  80. Flannery JS, Riedel MC, Salo T, Poudel R, Laird AR, Gonzalez R, et al. HIV infection is linked with reduced error-related default mode network suppression and poorer medication management abilities. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110398.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chang L, Cloak C, Yakupov R, Ernst T. Combined and independent effects of chronic marijuana use and HIV on brain metabolites. J Neuroimmune Pharmacol. 2006;1(1):65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Meade CS, Bell RP, Towe SL, Chen NK, Hobkirk AL, Huettel SA. Synergistic effects of marijuana abuse and HIV infection on neural activation during a cognitive interference task. Addict Biol. 2019;24(6):1235–44.

    Article  PubMed  Google Scholar 

  83. Skalski LM, Towe SL, Sikkema KJ, Meade CS. Memory impairment in HIV-infected individuals with early and late initiation of regular marijuana use. AIDS Behav. 2018;22(5):1596–605.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Iudicello JE, Woods SP, Cattie JE, Doyle K, Grant I, Group HIVNRP. Risky decision-making in HIV-associated neurocognitive disorders (HAND). Clin Neuropsychol. 2013;27(2):256–75.

    Article  PubMed  Google Scholar 

  85. Fridberg DJ, Queller S, Ahn WY, Kim W, Bishara AJ, Busemeyer JR, et al. Cognitive mechanisms underlying risky decision-making in chronic cannabis users. J Math Psychol. 2010;54(1):28–38.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jacobs IR, Xu C, Hermes DJ, League AF, Xu C, Nath B, et al. Inhibitory control deficits associated with upregulation of CB(1)R in the HIV-1 Tat transgenic mouse model of HAND. J Neuroimmune Pharmacol. 2019;14(4):661–78.

    Article  PubMed  PubMed Central  Google Scholar 

  87. League AF, Gorman BL, Hermes DJ, Johnson CT, Jacobs IR, Yadav-Samudrala BJ, et al. Monoacylglycerol lipase inhibitor MJN110 reduces neuronal hyperexcitability, restores dendritic arborization complexity, and regulates reward-related behavior in presence of HIV-1 Tat. Front Neurol. 2021;12:651272.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kesby JP, Fields JA, Chang A, Coban H, Achim CL, Semenova S, et al. Effects of HIV-1 TAT protein and methamphetamine exposure on visual discrimination and executive function in mice. Behav Brain Res. 2018;349:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roberts BZ, He YV, Chatha M, Minassian A, Grant I, Young JW. HIV Transgenic rats demonstrate superior task acquisition and intact reversal learning in the within-session probabilistic reversal learning task. Cogn Affect Behav Neurosci. 2021;21(6):1207–21.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Haney M, Rabkin J, Gunderson E, Foltin RW. Dronabinol and marijuana in HIV(+) marijuana smokers: acute effects on caloric intake and mood. Psychopharmacology. 2005;181(1):170–8.

    Article  CAS  PubMed  Google Scholar 

  91. Bedi G, Foltin RW, Gunderson EW, Rabkin J, Hart CL, Comer SD, et al. Efficacy and tolerability of high-dose dronabinol maintenance in HIV-positive marijuana smokers: a controlled laboratory study. Psychopharmacology. 2010;212(4):675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haney M, Gunderson EW, Rabkin J, Hart CL, Vosburg SK, Comer SD, et al. Dronabinol and marijuana in HIV-positive marijuana smokers. Caloric intake, mood, and sleep. J Acquir Immune Defic Syndr. 2007;45(5):545–54.

    Article  CAS  PubMed  Google Scholar 

  93. Lorkiewicz SA, Ventura AS, Heeren TC, Winter MR, Walley AY, Sullivan M, et al. Lifetime marijuana and alcohol use, and cognitive dysfunction in people with human immunodeficiency virus infection. Subst Abus. 2018;39(1):116–23.

    Article  PubMed  Google Scholar 

  94. Cash MC, Cunnane K, Fan C, Romero-Sandoval EA. Mapping cannabis potency in medical and recreational programs in the United States. PLoS ONE. 2020;15(3):e0230167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pennypacker SD, Cunnane K, Cash MC, Romero-Sandoval EA. Potency and therapeutic THC and CBD ratios: U.S. cannabis markets overshoot. Front Pharmacol. 2022;13:921493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jacobus J, Tapert SF. Effects of cannabis on the adolescent brain. Curr Pharm Des. 2014;20(13):2186–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Crane NA, Schuster RM, Fusar-Poli P, Gonzalez R. Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences. Neuropsychol Rev. 2013;23(2):117–37.

    Article  PubMed  Google Scholar 

  98. Woods SP, Doyle KL, Morgan EE, Naar-King S, Outlaw AY, Nichols SL, et al. Task importance affects event-based prospective memory performance in adults with HIV-associated neurocognitive disorders and HIV-infected young adults with problematic substance use. J Int Neuropsychol Soc. 2014;20(6):652–62.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Winsauer PJ, Molina PE, Amedee AM, Filipeanu CM, McGoey RR, Troxclair DA, et al. Tolerance to chronic delta-9-tetrahydrocannabinol (Delta(9)-THC) in rhesus macaques infected with simian immunodeficiency virus. Exp Clin Psychopharmacol. 2011;19(2):154–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Evans EB, Wenger GR. Effects of drugs of abuse on acquisition of behavioral chains in squirrel monkeys. Psychopharmacology. 1992;107(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  101. Schulze GE, McMillan DE, Bailey JR, Scallet A, Ali SF, Slikker W Jr, et al. Acute effects of delta-9-tetrahydrocannabinol in rhesus monkeys as measured by performance in a battery of complex operant tests. J Pharmacol Exp Ther. 1988;245(1):178–86.

    CAS  PubMed  Google Scholar 

  102. Winsauer PJ, Lambert P, Moerschbaecher JM. Cannabinoid ligands and their effects on learning and performance in rhesus monkeys. Behav Pharmacol. 1999;10(5):497–511.

    Article  CAS  PubMed  Google Scholar 

  103. Beardsley PM, Scimeca JA, Martin BR. Studies on the agonistic activity of delta 9–11-tetrahydrocannabinol in mice, dogs and rhesus monkeys and its interactions with delta 9-tetrahydrocannabinol. J Pharmacol Exp Ther. 1987;241(2):521–6.

    CAS  PubMed  Google Scholar 

  104. Kamien JB, Bickel WK, Higgins ST, Hughes JR. The effects of delta(9)-tetrahydrocannabinol on repeated acquisition and performance of response sequences and on self-reports in humans. Behav Pharmacol. 1994;5(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  105. Wang L, Zeng Y, Zhou Y, Yu J, Liang M, Qin L, et al. Win 55,212–2 improves neural injury induced by HIV-1 glycoprotein 120 in rats by exciting CB2R. Brain Res Bull. 2022;182:67–79.

    Article  CAS  PubMed  Google Scholar 

  106. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  107. Gonzalez R, Schuster RM, Vassileva J, Martin EM. Impact of HIV and a history of marijuana dependence on procedural learning among individuals with a history of substance dependence. J Clin Exp Neuropsychol. 2011;33(7):735–52.

    Article  PubMed  PubMed Central  Google Scholar 

  108. ElSohly MA, Chandra S, Radwan M, Majumdar CG, Church JC. A comprehensive review of cannabis potency in the United States in the last decade. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(6):603–6.

    PubMed  Google Scholar 

  109. Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, et al. CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS. 2011;25(14):1747–51.

    Article  CAS  PubMed  Google Scholar 

  110. Garvey L, Surendrakumar V, Winston A. Low rates of neurocognitive impairment are observed in neuro-asymptomatic HIV-infected subjects on effective antiretroviral therapy. HIV Clin Trials. 2011;12(6):333–8.

    Article  CAS  PubMed  Google Scholar 

  111. Hassanzadeh-Behbahani S, Shattuck KF, Bronshteyn M, Dawson M, Diaz M, Kumar P, et al. Low CD4 nadir linked to widespread cortical thinning in adults living with HIV. Neuroimage Clin. 2020;25:102155.

    Article  PubMed  Google Scholar 

  112. Valcour V, Yee P, Williams AE, Shiramizu B, Watters M, Selnes O, et al. Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in human immunodeficiency virus type 1 infection–The Hawaii Aging with HIV Cohort. J Neurovirol. 2006;12(5):387–91.

    Article  PubMed  Google Scholar 

  113. Munoz-Moreno JA, Fumaz CR, Ferrer MJ, Prats A, Negredo E, Garolera M, et al. Nadir CD4 cell count predicts neurocognitive impairment in HIV-infected patients. AIDS Res Hum Retrovir. 2008;24(10):1301–7.

    Article  CAS  PubMed  Google Scholar 

  114. Young JW. Development of cross-species translational paradigms for psychiatric research in the Research Domain Criteria era. Neurosci Biobehav Rev. 2023;148:105119.

    Article  PubMed  Google Scholar 

  115. Roberts BZ, Young JW. Translational cognitive systems: focus on attention. Emerg Top Life Sci. 2022;6(5):529–39.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Aguilar-Valles A, Sanchez E, de Gortari P, Balderas I, Ramirez-Amaya V, Bermudez-Rattoni F, et al. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions. Neuroendocrinology. 2005;82(5–6):306–19.

    Article  CAS  PubMed  Google Scholar 

  117. Harrison FE, Hosseini AH, McDonald MP. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav Brain Res. 2009;198(1):247–51.

    Article  CAS  PubMed  Google Scholar 

  118. Raber J, Toggas SM, Lee S, Bloom FE, Epstein CJ, Mucke L. Central nervous system expression of HIV-1 Gp120 activates the hypothalamic-pituitary-adrenal axis: evidence for involvement of NMDA receptors and nitric oxide synthase. Virology. 1996;226(2):362–73.

    Article  CAS  PubMed  Google Scholar 

  119. Viveros MP, Marco EM, File SE. Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav. 2005;81(2):331–42.

    Article  CAS  PubMed  Google Scholar 

  120. Young JW, Light GA, Marston HM, Sharp R, Geyer MA. The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PLoS ONE. 2009;4(1):e4227.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology. 2010;35(6):1290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Culbreth AJ, Gold JM, Cools R, Barch DM. Impaired activation in cognitive control regions predicts reversal learning in schizophrenia. Schizophr Bull. 2016;42(2):484–93.

    Article  PubMed  Google Scholar 

  123. Reddy LF, Waltz JA, Green MF, Wynn JK, Horan WP. Probabilistic reversal learning in schizophrenia: stability of deficits and potential causal mechanisms. Schizophr Bull. 2016;42(4):942–51.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Linke J, King AV, Rietschel M, Strohmaier J, Hennerici M, Gass A, et al. Increased medial orbitofrontal and amygdala activation: evidence for a systems-level endophenotype of bipolar I disorder. Am J Psychiatry. 2012;169(3):316–25.

    Article  PubMed  Google Scholar 

  125. Mukherjee D, Filipowicz ALS, Vo K, Satterthwaite TD, Kable JW. Reward and punishment reversal-learning in major depressive disorder. J Abnorm Psychol. 2020;129(8):810–23.

    Article  PubMed  Google Scholar 

  126. Amitai N, Young JW, Higa K, Sharp RF, Geyer MA, Powell SB. Isolation rearing effects on probabilistic learning and cognitive flexibility in rats. Cogn Affect Behav Neurosci. 2014;14(1):388–406.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Milienne-Petiot M, Kesby JP, Graves M, van Enkhuizen J, Semenova S, Minassian A, et al. The effects of reduced dopamine transporter function and chronic lithium on motivation, probabilistic learning, and neurochemistry in mice: modeling bipolar mania. Neuropharmacology. 2017;113(Pt A):260–70.

    Article  CAS  PubMed  Google Scholar 

  128. Roberts BZ, Young JW, He YV, Cope ZA, Shilling PD, Feifel D. Oxytocin improves probabilistic reversal learning but not effortful motivation in Brown Norway rats. Neuropharmacology. 2019;150:15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tranter MM, Aggarwal S, Young JW, Dillon DG, Barnes SA. Reinforcement learning deficits exhibited by postnatal PCP-treated rats enable deep neural network classification. Neuropsychopharmacology. 2023;48(9):1377–85.

    Article  PubMed  Google Scholar 

  130. Moradi AR, Miraghaei MA, Parhon H, Jabbari H, Jobson L. Posttraumatic stress disorder, depression, executive functioning, and autobiographical remembering in individuals with HIV and in carers of those with HIV in Iran. AIDS Care. 2013;25(3):281–8.

    Article  PubMed  Google Scholar 

  131. Chang L, Lim A, Lau E, Alicata D. Chronic tobacco-smoking on psychopathological symptoms, impulsivity and cognitive deficits in HIV-infected individuals. J Neuroimmune Pharmacol. 2017;12(3):389–401.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kanmogne GD, Fonsah JY, Tang B, Doh RF, Kengne AM, Umlauf A, et al. Effects of HIV on executive function and verbal fluency in Cameroon. Sci Rep. 2018;8(1):17794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sanford R, Fellows LK, Ances BM, Collins DL. Association of brain structure changes and cognitive function with combination antiretroviral therapy in HIV-positive individuals. JAMA Neurol. 2018;75(1):72–9.

    Article  PubMed  Google Scholar 

  134. Alakkas A, Ellis RJ, Watson CW, Umlauf A, Heaton RK, Letendre S, et al. White matter damage, neuroinflammation, and neuronal integrity in HAND. J Neurovirol. 2019;25(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  135. Patel SH, Kolson DL, Glosser G, Matozzo I, Ge Y, Babb JS, et al. Correlation between percentage of brain parenchymal volume and neurocognitive performance in HIV-infected patients. AJNR Am J Neuroradiol. 2002;23(4):543–9.

    PubMed  PubMed Central  Google Scholar 

  136. Cohen RA, Harezlak J, Schifitto G, Hana G, Clark U, Gongvatana A, et al. Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol. 2010;16(1):25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Thames AD, Foley JM, Wright MJ, Panos SE, Ettenhofer M, Ramezani A, et al. Basal ganglia structures differentially contribute to verbal fluency: evidence from human immunodeficiency virus (HIV)-infected adults. Neuropsychologia. 2012;50(3):390–5.

    Article  PubMed  Google Scholar 

  138. Bonnet F, Amieva H, Marquant F, Bernard C, Bruyand M, Dauchy FA, et al. Cognitive disorders in HIV-infected patients: are they HIV-related? AIDS. 2013;27(3):391–400.

    Article  PubMed  Google Scholar 

  139. Kuper M, Rabe K, Esser S, Gizewski ER, Husstedt IW, Maschke M, et al. Structural gray and white matter changes in patients with HIV. J Neurol. 2011;258(6):1066–75.

    Article  PubMed  Google Scholar 

  140. Watson C, Busovaca E, Foley JM, Allen IE, Schwarz CG, Jahanshad N, et al. White matter hyperintensities correlate to cognition and fiber tract integrity in older adults with HIV. J Neurovirol. 2017;23(3):422–9.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Su T, Wit FW, Caan MW, Schouten J, Prins M, Geurtsen GJ, et al. White matter hyperintensities in relation to cognition in HIV-infected men with sustained suppressed viral load on combination antiretroviral therapy. AIDS. 2016;30(15):2329–39.

    Article  CAS  PubMed  Google Scholar 

  142. Connolly CG, Bischoff-Grethe A, Jordan SJ, Woods SP, Ellis RJ, Paulus MP, et al. Altered functional response to risky choice in HIV infection. PLoS ONE. 2014;9(10):e111583.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chang L, Speck O, Miller EN, Braun J, Jovicich J, Koch C, et al. Neural correlates of attention and working memory deficits in HIV patients. Neurology. 2001;57(6):1001–7.

    Article  CAS  PubMed  Google Scholar 

  144. Ernst T, Chang L, Jovicich J, Ames N, Arnold S. Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology. 2002;59(9):1343–9.

    Article  CAS  PubMed  Google Scholar 

  145. Ernst T, Yakupov R, Nakama H, Crocket G, Cole M, Watters M, et al. Declined neural efficiency in cognitively stable human immunodeficiency virus patients. Ann Neurol. 2009;65(3):316–25.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chang L, Tomasi D, Yakupov R, Lozar C, Arnold S, Caparelli E, et al. Adaptation of the attention network in human immunodeficiency virus brain injury. Ann Neurol. 2004;56(2):259–72.

    Article  PubMed  Google Scholar 

  147. Melrose RJ, Tinaz S, Castelo JM, Courtney MG, Stern CE. Compromised fronto-striatal functioning in HIV: an fMRI investigation of semantic event sequencing. Behav Brain Res. 2008;188(2):337–47.

    Article  PubMed  Google Scholar 

  148. Maki PM, Cohen MH, Weber K, Little DM, Fornelli D, Rubin LH, et al. Impairments in memory and hippocampal function in HIV-positive vs HIV-negative women: a preliminary study. Neurology. 2009;72(19):1661–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wiesman AI, O’Neill J, Mills MS, Robertson KR, Fox HS, Swindells S, et al. Aberrant occipital dynamics differentiate HIV-infected patients with and without cognitive impairment. Brain. 2018;141(6):1678–90.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hall SA, Lalee Z, Bell RP, Towe SL, Meade CS. Synergistic effects of HIV and marijuana use on functional brain network organization. Prog Neuropsychopharmacol Biol Psychiatry. 2021;104:110040.

    Article  PubMed  Google Scholar 

  151. Chang L, Ernst T, Witt MD, Ames N, Gaiefsky M, Miller E. Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naive HIV patients. Neuroimage. 2002;17(3):1638–48.

    Article  PubMed  Google Scholar 

  152. Vitiello B, Goodkin K, Ashtana D, Shapshak P, Atkinson JH, Heseltine PN, et al. HIV-1 RNA concentration and cognitive performance in a cohort of HIV-positive people. AIDS. 2007;21(11):1415–22.

    Article  PubMed  Google Scholar 

  153. Zhang Y, Qiao L, Ding W, Wei F, Zhao Q, Wang X, et al. An initial screening for HIV-associated neurocognitive disorders of HIV-1 infected patients in China. J Neurovirol. 2012;18(2):120–6.

    Article  CAS  PubMed  Google Scholar 

  154.  Ellis RJ, Peterson SN, Li Y, Schrier R, Iudicello J, Letendre S, Morgan E, Tang B, Grant I, Cherner M. Recent cannabis use in HIV is associated with reduced inflammatory markers in CSF and blood. Neurology(R) neuroimmunology & neuroinflammation, 2020;7(5):e809. https://doi.org/10.1212/NXI.0000000000000809.

  155. Marcellin F, Lions C, Rosenthal E, Roux P, Sogni P, Wittkop L, et al. No significant effect of cannabis use on the count and percentage of circulating CD4 T-cells in HIV-HCV co-infected patients (ANRS CO13-HEPAVIH French cohort). Drug Alcohol Rev. 2017;36(2):227–38.

    Article  PubMed  Google Scholar 

  156. Abrams DI, Hilton JF, Leiser RJ, Shade SB, Elbeik TA, Aweeka FT, et al. Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial. Ann Intern Med. 2003;139(4):258–66.

    Article  CAS  PubMed  Google Scholar 

  157. Bredt BM, Higuera-Alhino D, Shade SB, Hebert SJ, McCune JM, Abrams DI. Short-term effects of cannabinoids on immune phenotype and function in HIV-1-infected patients. J Clin Pharmacol. 2002;42(S1):82S-S89.

    Article  CAS  PubMed  Google Scholar 

  158. Manuzak JA, Gott TM, Kirkwood JS, Coronado E, Hensley-McBain T, Miller C, et al. Heavy cannabis use associated with reduction in activated and inflammatory immune cell frequencies in antiretroviral therapy-treated human immunodeficiency virus-infected individuals. Clin Infect Dis. 2018;66(12):1872–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Burlacu R, Umlauf A, Marcotte TD, Soontornniyomkij B, Diaconu CC, Bulacu-Talnariu A, et al. Plasma CXCL10 correlates with HAND in HIV-infected women. J Neurovirol. 2020;26(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  160. Portilla I, Reus S, Leon R, van-der Hofstadt C, Sanchez J, Lopez N, et al. Neurocognitive impairment in well-controlled HIV-infected patients: a cross-sectional study. AIDS Res Hum Retrovir. 2019;35(7):634–41.

    Article  CAS  PubMed  Google Scholar 

  161. Yin L, Dinasarapu AR, Borkar SA, Chang KF, De Paris K, Kim-Chang JJ, et al. Anti-inflammatory effects of recreational marijuana in virally suppressed youth with HIV-1 are reversed by use of tobacco products in combination with marijuana. Retrovirology. 2022;19(1):10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci. 2006;26(4):1098–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Anderson AM, Jang JH, Easley KA, Fuchs D, Gisslen M, Zetterberg H, et al. Cognitive and neuronal link with inflammation: a longitudinal study in people with and without HIV infection. J Acquir Immune Defic Syndr. 2020;85(5):617–25.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sanchez-Sanchez JL, Giudici KV, Guyonnet S, Delrieu J, Li Y, Bateman RJ, et al. Plasma MCP-1 and changes on cognitive function in community-dwelling older adults. Alzheimers Res Ther. 2022;14(1):5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee WJ, Liao YC, Wang YF, Lin IF, Wang SJ, Fuh JL. Plasma MCP-1 and cognitive decline in patients with Alzheimer’s disease and mild cognitive impairment: a two-year follow-up study. Sci Rep. 2018;8(1):1280.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Williams DW, Eugenin EA, Calderon TM, Berman JW. Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol. 2012;91(3):401–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Caligaris G, Trunfio M, Ghisetti V, Cusato J, Nigra M, Atzori C, Imperiale D, Bonora S, Di Perri G, Calcagno A. Blood-brain barrier impairment in patients living with HIV: Predictors and Associated Biomarkers. Diagnostics (Basel). 2021;11(5):867. https://doi.org/10.3390/diagnostics11050867.

  168. Calcagno A, Atzori C, Romito A, Vai D, Audagnotto S, Stella ML, et al. Blood brain barrier impairment is associated with cerebrospinal fluid markers of neuronal damage in HIV-positive patients. J Neurovirol. 2016;22(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  169. Ellis RJ, Peterson S, Cherner M, Morgan E, Schrier R, Tang B, et al. Beneficial effects of cannabis on blood-brain barrier function in human immunodeficiency virus. Clin Infect Dis. 2021;73(1):124–9.

    Article  CAS  PubMed  Google Scholar 

  170. Olivier IS, Cacabelos R, Naidoo, V. Risk factors and pathogenesis of HIV-associated neurocognitive disorder: The Role of Host Genetics. Int J Mol Sci 2018;19(11):3594. https://doi.org/10.3390/ijms19113594.

  171. Hinkin CH, Castellon SA, Levine AJ, Barclay TR, Singer EJ. Neurocognition in individuals co-infected with HIV and hepatitis C. J Addict Dis. 2008;27(2):11–7.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Namagga JK, Rukundo GZ, Niyonzima V, Voss J. Depression and HIV associated neurocognitive disorders among HIV infected adults in rural southwestern Uganda: a cross-sectional quantitative study. BMC Psychiatry. 2021;21(1):350.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gutierrez J, Porras TN, Yoo-Jeong M, Khasiyev F, Igwe KC, Laing KK, et al. Cerebrovascular contributions to neurocognitive disorders in people living with HIV. J Acquir Immune Defic Syndr. 2021;88(1):79–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wright EJ, Grund B, Robertson K, Brew BJ, Roediger M, Bain MP, et al. Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons. Neurology. 2010;75(10):864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Becker JT, Kingsley L, Mullen J, Cohen B, Martin E, Miller EN, et al. Vascular risk factors, HIV serostatus, and cognitive dysfunction in gay and bisexual men. Neurology. 2009;73(16):1292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Foley J, Ettenhofer M, Wright MJ, Siddiqi I, Choi M, Thames AD, et al. Neurocognitive functioning in HIV-1 infection: effects of cerebrovascular risk factors and age. Clin Neuropsychol. 2010;24(2):265–85.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Avraham HK, Jiang S, Fu Y, Rockenstein E, Makriyannis A, Zvonok A, et al. The cannabinoid CB(2) receptor agonist AM1241 enhances neurogenesis in GFAP/Gp120 transgenic mice displaying deficits in neurogenesis. Br J Pharmacol. 2014;171(2):468–79.

    Article  CAS  PubMed  Google Scholar 

  178. Kim HJ, Shin AH, Thayer SA. Activation of cannabinoid type 2 receptors inhibits HIV-1 envelope glycoprotein gp120-induced synapse loss. Mol Pharmacol. 2011;80(3):357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hu S, Sheng WS, Rock RB. CB2 receptor agonists protect human dopaminergic neurons against damage from HIV-1 gp120. PLoS ONE. 2013;8(10):e77577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang X, Thayer SA. Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling. Neuropharmacology. 2018;128:269–81.

    Article  CAS  PubMed  Google Scholar 

  181. Esposito G, Ligresti A, Izzo AA, Bisogno T, Ruvo M, Di Rosa M, et al. The endocannabinoid system protects rat glioma cells against HIV-1 Tat protein-induced cytotoxicity Mechanism and regulation. J Biol Chem. 2002;277(52):50348–54.

    Article  CAS  PubMed  Google Scholar 

  182. Avraham HK, Jiang S, Fu Y, Rockenstein E, Makriyannis A, Wood J, et al. Impaired neurogenesis by HIV-1-Gp120 is rescued by genetic deletion of fatty acid amide hydrolase enzyme. Br J Pharmacol. 2015;172(19):4603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hermes DJ, Yadav-Samudrala BJ, Xu C, Paniccia JE, Meeker RB, Armstrong ML, et al. GPR18 drives FAAH inhibition-induced neuroprotection against HIV-1 Tat-induced neurodegeneration. Exp Neurol. 2021;341:113699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hermes DJ, Xu C, Poklis JL, Niphakis MJ, Cravatt BF, Mackie K, et al. Neuroprotective effects of fatty acid amide hydrolase catabolic enzyme inhibition in a HIV-1 Tat model of neuroAIDS. Neuropharmacology. 2018;141:55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bisogno T, De Petrocellis L, Di Marzo V. Fatty acid amide hydrolase, an enzyme with many bioactive substrates Possible therapeutic implications. Curr Pharm Des. 2002;8(7):533–47.

    Article  CAS  PubMed  Google Scholar 

  186. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384(6604):83–7.

    Article  CAS  PubMed  Google Scholar 

  187. Xu C, Hermes DJ, Mackie K, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Cannabinoids occlude the HIV-1 Tat-induced decrease in GABAergic neurotransmission in prefrontal cortex slices. J Neuroimmune Pharmacol. 2016;11(2):316–31.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Xu C, Yadav-Samudrala BJ, Xu C, Nath B, Mistry T, Jiang W, Niphakis MJ, Cravatt BF, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Inhibitory neurotransmission is sex-dependently affected by tat expression in transgenic mice and suppressed by the fatty acid amide hydrolase enzyme inhibitor pf3845 via cannabinoid type-1 receptor mechanisms. Cells, 2022;11(5):857. https://doi.org/10.3390/cells11050857.

  189. Wu MM, Thayer SA. HIV tat protein selectively impairs cb1 receptor-mediated presynaptic inhibition at excitatory but not inhibitory synapses. eNeuro, 2020;7(3). https://doi.org/10.1523/ENEURO.0119-20.2020.

  190. Little PJ, Compton DR, Johnson MR, Melvin LS, Martin BR. Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J Pharmacol Exp Ther. 1988;247(3):1046–51.

    CAS  PubMed  Google Scholar 

  191. Moreira FA, Grieb M, Lutz B. Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. Best Pract Res Clin Endocrinol Metab. 2009;23(1):133–44.

    Article  CAS  PubMed  Google Scholar 

  192. Wang XF, Galaj E, Bi GH, Zhang C, He Y, Zhan J, et al. Different receptor mechanisms underlying phytocannabinoid- versus synthetic cannabinoid-induced tetrad effects: opposite roles of CB(1) /CB(2) versus GPR55 receptors. Br J Pharmacol. 2020;177(8):1865–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. van Egmond N, Straub VM, van der Stelt M. Targeting endocannabinoid signaling: FAAH and MAG lipase inhibitors. Annu Rev Pharmacol Toxicol. 2021;61:441–63.

    Article  PubMed  Google Scholar 

  194. Li GL, Winter H, Arends R, Jay GW, Le V, Young T, et al. Assessment of the pharmacology and tolerability of PF-04457845, an irreversible inhibitor of fatty acid amide hydrolase-1, in healthy subjects. Br J Clin Pharmacol. 2012;73(5):706–16.

    Article  CAS  PubMed  Google Scholar 

  195. Mayo LM, Asratian A, Linde J, Morena M, Haataja R, Hammar V, et al. Elevated anandamide, enhanced recall of fear extinction, and attenuated stress responses following inhibition of fatty acid amide hydrolase: a randomized, controlled experimental medicine trial. Biol Psychiatry. 2020;87(6):538–47.

    Article  PubMed  Google Scholar 

  196. Huggins JP, Smart TS, Langman S, Taylor L, Young T. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain. 2012;153(9):1837–46.

    Article  CAS  PubMed  Google Scholar 

  197. D’Souza DC, Cortes-Briones J, Creatura G, Bluez G, Thurnauer H, Deaso E, et al. Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial. Lancet Psychiatry. 2019;6(1):35–45.

    Article  PubMed  Google Scholar 

  198. Desai N, Burns L, Gong Y, Zhi K, Kumar A, Summers N, et al. An update on drug-drug interactions between antiretroviral therapies and drugs of abuse in HIV systems. Expert Opin Drug Metab Toxicol. 2020;16(11):1005–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Tucker JS, Burnam MA, Sherbourne CD, Kung FY, Gifford AL. Substance use and mental health correlates of nonadherence to antiretroviral medications in a sample of patients with human immunodeficiency virus infection. Am J Med. 2003;114(7):573–80.

    Article  PubMed  Google Scholar 

  200. Hicks PL, Mulvey KP, Chander G, Fleishman JA, Josephs JS, Korthuis PT, et al. The impact of illicit drug use and substance abuse treatment on adherence to HAART. AIDS Care. 2007;19(9):1134–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bonn-Miller MO, Oser ML, Bucossi MM, Trafton JA. Cannabis use and HIV antiretroviral therapy adherence and HIV-related symptoms. J Behav Med. 2014;37(1):1–10.

    Article  PubMed  Google Scholar 

  202. Zhang Y, Wilson TE, Adedimeji A, Merenstein D, Milam J, Cohen J, et al. The impact of substance use on adherence to antiretroviral therapy among HIV-infected women in the United States. AIDS Behav. 2018;22(3):896–908.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Manuzak JA, Granche J, Tassiopoulos K, Rower JE, Knox JR, Williams DW, et al. Cannabis use is associated with decreased antiretroviral therapy adherence among older adults with HIV. Open Forum Infect Dis. 2023;10(1):ofac699.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Jordan Walter T, Pocuca N, Young JW, Geyer MA, Minassian A, Perry W. The relationship between cannabis use and cognition in people with bipolar disorder: a systematic scoping review. Psychiatry Res. 2021;297:113695.

    Article  CAS  PubMed  Google Scholar 

  206. Pocuca N, Walter TJ, Minassian A, Young JW, Geyer MA, Perry W. The effects of cannabis use on cognitive function in healthy aging: a systematic scoping review. Arch Clin Neuropsychol. 2021;36(5):673–85.

    Article  PubMed  Google Scholar 

Download references

Funding

SMA supported by 2R25MH081482-16 and BMH supported by T32MH018399.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptual design of the manuscript. SMA, BMH, AHM and BZR performed the systematic review search and first draft of the manuscript. All authors equally contributed to subsequent drafts and editing of the full written manuscript.

Corresponding author

Correspondence to Samantha M. Ayoub.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Arpi Minassian and Ronald J. Ellis are co-senior authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoub, S.M., Holloway, B.M., Miranda, A.H. et al. The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies. Curr HIV/AIDS Rep (2024). https://doi.org/10.1007/s11904-024-00698-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11904-024-00698-w

Keywords

Navigation