Skip to main content

Advertisement

Log in

HIV Pathogenesis in the Human Female Reproductive Tract

  • HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Women remain disproportionately affected by the HIV/AIDS pandemic. The primary mechanism for HIV acquisition in women is sexual transmission, yet the immunobiological factors that contribute to HIV susceptibility remain poorly characterized. Here, we review current knowledge on HIV pathogenesis in women, focusing on infection and immune responses in the female reproductive tract (FRT).

Recent Findings

We describe recent findings on innate immune protection and HIV target cell distribution in the FRT. We also review multiple factors that modify susceptibility to infection, including sex hormones, microbiome, trauma, and how HIV risk changes during women’s life cycle. Finally, we review current strategies for HIV prevention and identify barriers for research in HIV infection and pathogenesis in women.

Summary

A complex network of interrelated biological and sociocultural factors contributes to HIV risk in women and impairs prevention and cure strategies. Understanding how HIV establishes infection in the FRT can provide clues to develop novel interventions to prevent HIV acquisition in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. UNAIDS. We’ve got the power: women, adolescent girls and the HIV response. https://www.unaids.org/en/resources/documents/2020/2020_women-adolescent-girls-and-hiv. Published March 5, 2020. Accessed March 31, 2020. Geneva, Switzerland: UNAIDS2020 Contract No.: Report.

  2. Dwyer-Lindgren L, Cork MA, Sligar A, Steuben KM, Wilson KF, Provost NR, et al. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature. 2019;570(7760):189–93. https://doi.org/10.1038/s41586-019-1200-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dellar RC, Dlamini S, Karim QA. Adolescent girls and young women: key populations for HIV epidemic control. J Int AIDS Soc. 2015;18(2 Suppl 1):19408. https://doi.org/10.7448/IAS.18.2.19408.

    Article  PubMed  PubMed Central  Google Scholar 

  4. UNAIDS. Fact Sheet - Latest global and regional statistics on the status of the AIDS epidemic. https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf. Published July 2020. Accessed November 15, 2020. UNAIDS, Geneva, Switzerland. 2020.

  5. World Health O. Respect women: preventing violence against women. World Health Organization. 2019. https://www.who.int/reproductivehealth/publications/preventing-vaw-framework-policymakers/en/. 2020.

  6. UNAIDS. New HIV infections increasingly among key populations. UNAIDS. 2020. https://www.unaids.org/en/resources/presscentre/featurestories/2020/september/20200928_new-hiv-infections-increasingly-among-key-populations. Accessed October 12 2020.

  7. • Consortium SR. Addressing the structural drivers of HIV: A strive synthesis. UK: London School of Hygiene & Tropical Medicine. 2019. http://strive.lshtm.ac.uk/system/files/attachments/STRIVE%20structural%20drivers%20brief.pdf. This brief describes and synthesizes previous eight years of research on the structural drivers of HIV infection and their impact on the HIV epidemic.

  8. CDC. HIV and Women. CDC. 2020. https://www.cdc.gov/hiv/group/gender/women/index.html. Accessed November 15 2020.

  9. Abdool Karim Q, Sibeko S, Baxter C. Preventing HIV infection in women: a global health imperative. Clin Infect Dis. 2010;50(Suppl 3):S122–9.10.1086/651483.

    Article  Google Scholar 

  10. Ghosh M, Rodriguez-Garcia M, Wira CR. Immunobiology of genital tract trauma: endocrine regulation of HIV acquisition in women following sexual assault or genital tract mutilation. American journal of reproductive immunology (New York, NY: 1989). 2013;69(Suppl 1):51–60. https://pubmed.ncbi.nlm.nih.gov/23034063/.

  11. UNAIDS. Women and HIV: a spotlight on adolescent girls and young women. 2019.

  12. Van Devanter N, Duncan A, Birnbaum J, Burrell-Piggott T, Siegel K. Gender power inequality and continued sexual risk behavior among racial/ethnic minority adolescent and young adult women living with HIV. J AIDS Clin Res. 2011;(S1):003. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478669/

  13. Cohn J, Ake J, Moorhouse M, Godfrey C. Sex Differences in the Treatment of HIV. Curr HIV/AIDS Rep. 2020;17(4):373–84. https://doi.org/10.1007/s11904-020-00499-x.

    Article  PubMed  Google Scholar 

  14. Moscicki AB, Ma Y, Holland C, Vermund SH. Cervical ectopy in adolescent girls with and without human immunodeficiency virus infection. The Journal of infectious diseases. 2001;183(6):865–70. https://doi.org/10.1086/319261.

    Article  CAS  PubMed  Google Scholar 

  15. Hwang LY, Ma Y, Benningfield SM, Clayton L, Hanson EN, Jay J, et al. Factors that influence the rate of epithelial maturation in the cervix in healthy young women. The Journal of adolescent health : official publication of the Society for Adolescent Medicine. 2009;44(2):103–10. https://doi.org/10.1016/j.jadohealth.2008.10.006.

    Article  Google Scholar 

  16. • Ghosh M, Jais M, Biswas R, Jarin J, Daniels J, Joy C, et al. Immune biomarkers and anti-HIV activity in the reproductive tract of sexually active and sexually inactive adolescent girls. American Journal of Reproductive Immunology. 2018;79(6):e12846. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948140/This study describes the potential impact that sexual acitivity may have on HIV susceptibility in adolescent girls, a population that is disportionately affected by the HIV epidemic.

  17. Kleppa E, Holmen SD, Lillebo K, Kjetland EF, Gundersen SG, Taylor M, et al. Cervical ectopy: associations with sexually transmitted infections and HIV. A cross-sectional study of high school students in rural South Africa. Sexually transmitted infections. 2015;91(2):124–9. https://doi.org/10.1136/sextrans-2014-051674.

    Article  PubMed  Google Scholar 

  18. Passmore JS, Jaspan HB, Masson L. Genital inflammation, immune activation and risk of sexual HIV acquisition. Current opinion in HIV and AIDS. 2015. https://doi.org/10.1097/COH.0000000000000232.

  19. Mwatelah R, McKinnon LR, Baxter C, Abdool Karim Q, Abdool Karim SS. Mechanisms of sexually transmitted infection-induced inflammation in women: implications for HIV risk. Journal of the International AIDS Society. 2019;22(S6):e25346. https://doi.org/10.1002/jia2.25346.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hwang LY, Scott ME, Ma Y, Moscicki AB. Higher levels of cervicovaginal inflammatory and regulatory cytokines and chemokines in healthy young women with immature cervical epithelium. Journal of reproductive immunology. 2011;88(1):66–71. https://doi.org/10.1016/j.jri.2010.07.008.

    Article  CAS  PubMed  Google Scholar 

  21. Madan RP, Carpenter C, Fiedler T, Kalyoussef S, McAndrew TC, Viswanathan S, et al. Altered biomarkers of mucosal immunity and reduced vaginal Lactobacillus concentrations in sexually active female adolescents. PloS one. 2012;7(7):e40415. https://doi.org/10.1371/journal.pone.0040415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wira CR, Fahey JV, Rodriguez-Garcia M, Shen Z, Patel MV. Regulation of mucosal immunity in the female reproductive tract: the role of sex hormones in immune protection against sexually transmitted pathogens. American journal of reproductive immunology (New York, NY: 1989). 2014;72(2):236–58. https://doi.org/10.1111/aji.12252.

    Article  CAS  Google Scholar 

  23. Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol. 2015;15(4):217–30. https://doi.org/10.1038/nri3819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fahey JV, Wright JA, Shen L, Smith JM, Ghosh M, Rossoll RM, et al. Estradiol selectively regulates innate immune function by polarized human uterine epithelial cells in culture. Mucosal immunology. 2008;1(4):317–25. https://doi.org/10.1038/mi.2008.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vishwanathan SA, Guenthner PC, Lin CY, Dobard C, Sharma S, Adams DR, et al. High susceptibility to repeated, low-dose, vaginal SHIV exposure late in the luteal phase of the menstrual cycle of pigtail macaques. Journal of acquired immune deficiency syndromes (1999). 2011;57(4):261–4. https://doi.org/10.1097/QAI.0b013e318220ebd3.

    Article  CAS  Google Scholar 

  26. Saba E, Origoni M, Taccagni G, Ferrari D, Doglioni C, Nava A, et al. Productive HIV-1 infection of human cervical tissue ex vivo is associated with the secretory phase of the menstrual cycle. Mucosal immunology. 2013;6(6):1081–90. https://doi.org/10.1038/mi.2013.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boily-Larouche G, Lajoie J, Dufault B, Omollo K, Cheruiyot J, Njoki J, et al. Characterization of the genital mucosa immune profile to distinguish phases of the menstrual cycle: implications for HIV susceptibility. J Infect Dis. 2019;219(6):856–66. https://doi.org/10.1093/infdis/jiy585.

    Article  CAS  PubMed  Google Scholar 

  28. CDC. HIV and pregnant women, infants, and children.. CDC. 2020. https://www.cdc.gov/hiv/group/gender/pregnantwomen/index.html. Accessed November 11 2020.

  29. AVERT. Children, HIV and AIDS. . Online. 2020. https://www.avert.org/professionals/hiv-social-issues/key-affected-populations/children. Accessed November 11 2020.

  30. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. American journal of reproductive immunology (New York, NY: 1989). 2010;63(6):425–33. https://doi.org/10.1111/j.1600-0897.2010.00836.x.

    Article  CAS  Google Scholar 

  31. Ghosh M, Shen Z, Schaefer TM, Fahey JV, Gupta P, Wira CR. CCL20/MIP3alpha is a novel anti-HIV-1 molecule of the human female reproductive tract. American journal of reproductive immunology (New York, NY: 1989). 2009;62(1):60–71. https://doi.org/10.1111/j.1600-0897.2009.00713.x.

    Article  CAS  Google Scholar 

  32. Horne AW, Stock SJ, King AE. Innate immunity and disorders of the female reproductive tract. Reproduction (Cambridge, England). 2008;135(6):739–49. https://doi.org/10.1530/REP-07-0564.

    Article  CAS  Google Scholar 

  33. Anderson BL, Ghosh M, Raker C, Fahey J, Song Y, Rouse DJ, et al. In vitro anti-HIV-1 activity in cervicovaginal secretions from pregnant and nonpregnant women. American Journal of Obstetrics and Gynecology. 2012;207(1):65.e1-.10. https://doi.org/10.1016/j.ajog.2012.04.029.

    Article  PubMed  Google Scholar 

  34. Hughes BL, Dutt R, Raker C, Barthelemy M, Rossoll RM, Ramratnam B, et al. The impact of pregnancy on anti-HIV activity of cervicovaginal secretions. Am J Obstet Gynecol. 2016;215(6):748 e1- e12. https://doi.org/10.1016/j.ajog.2016.06.057.

    Article  Google Scholar 

  35. Neundorfer MM, Harris PB, Britton PJ, Lynch DA. HIV-risk factors for midlife and older women. The Gerontologist. 2005;45(5):617–25. https://academic.oup.com/gerontologist/article/45/5/617/652580

  36. Wing EJ. The Aging Population with HIV Infection. Transactions of the American Clinical and Climatological Association. 2017;128:131–44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5525433/

  37. Durvasula R. HIV/AIDS in older women: unique challenges, unmet needs. Behav Med. 2014;40(3):85–98. https://doi.org/10.1080/08964289.2014.893983.

    Article  PubMed  PubMed Central  Google Scholar 

  38. CDC. HIV and Older Americans. CDC. 2020. https://www.cdc.gov/hiv/group/age/olderamericans/index.html. Accessed October 28 2020.

  39. Taylor TN, Munoz-Plaza CE, Goparaju L, Martinez O, Holman S, Minkoff HL, et al. "The pleasure is better as I've gotten older": Sexual health, sexuality, and sexual risk behaviors among older women living with HIV. Arch Sex Behav. 2017;46(4):1137–50. https://doi.org/10.1007/s10508-016-0751-1.

    Article  PubMed  Google Scholar 

  40. • Ghosh M, Jais M, Delisle J, Younes N, Benyeogor I, Biswas R, et al. Dysregulation in genital tract soluble immune mediators in postmenopausal women is distinct by HIV status. AIDS Research and Human Retroviruses. 2019;35(3):251–9. https://doi.org/10.1089/AID.2018.0234This study characterizes the immuno-biology of the FRT in older women. As people living with HIV are aging, it is important to consider the impact that menopause has on immuno-biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jais M, Younes N, Chapman S, Cu-Uvin S, Ghosh M. Reduced levels of genital tract immune biomarkers in postmenopausal women: implications for HIV acquisition. American Journal of Obstetrics and Gynecology. 2016;215(3):324. e1-. e10. https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0002937816005330?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0002937816005330%3Fshowall%3Dtrue&referrer=https:%2F%2Fpubmed.ncbi.nlm.nih.gov%2F

  42. Jais M, Younes N, Chapman S, Cu-Uvin S, Ghosh M. Reduced levels and bioactivity of endogenous protease cathepsin D in genital tract secretions of postmenopausal women. AIDS Research and Human Retroviruses. 2017;33(5):407–9. https://doi.org/10.1089/AID.2016.0240.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rollenhagen C, Asin SN. Enhanced HIV-1 replication in ex vivo ectocervical tissues from post-menopausal women correlates with increased inflammatory responses. Mucosal immunology. 2011;4(6):671-81. https://doi.org/10.1038/mi.2011.34.

  44. Chappell CA, Isaacs CE, Xu W, Meyn LA, Uranker K, Dezzutti CS, et al. The effect of menopause on the innate antiviral activity of cervicovaginal lavage. Am J Obstet Gynecol. 2015;213(2):204 e1-6. https://doi.org/10.1016/j.ajog.2015.03.045.

    Article  PubMed  Google Scholar 

  45. Roan NR, Chu S, Liu H, Neidleman J, Witkowska HE, Greene WC. Interaction of fibronectin with semen amyloids synergistically enhances HIV infection. J Infect Dis. 2014;210(7):1062–6. https://doi.org/10.1093/infdis/jiu220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Usmani SM, Zirafi O, Muller JA, Sandi-Monroy NL, Yadav JK, Meier C, et al. Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nat Commun. 2014;5:3508. https://doi.org/10.1038/ncomms4508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balandya E, Sheth S, Sanders K, Wieland-Alter W, Lahey T. Semen protects CD4+ target cells from HIV infection but promotes the preferential transmission of R5 tropic HIV. J Immunol. 2010;185(12):7596–604. https://doi.org/10.4049/jimmunol.1002846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allen SA, Carias AM, Anderson MR, Okocha EA, Benning L, McRaven MD, et al. Characterization of the Influence of semen-derived enhancer of virus infection on the interaction of HIV-1 with female reproductive tract tissues. J Virol. 2015;89(10):5569–80. https://doi.org/10.1128/JVI.00309-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roan NR, Sandi-Monroy N, Kohgadai N, Usmani SM, Hamil KG, Neidleman J, et al. Semen amyloids participate in spermatozoa selection and clearance. Elife. 2017;6:10.7554/eLife.24888.

    Article  Google Scholar 

  50. George AF, Jang KS, Nyegaard M, Neidleman J, Spitzer TL, Xie G, et al. Seminal plasma promotes decidualization of endometrial stromal fibroblasts in vitro from women with and without inflammatory disorders in a manner dependent on interleukin-11 signaling. Hum Reprod. 2020;35(3):617–40. https://doi.org/10.1093/humrep/deaa015.

    Article  CAS  PubMed  Google Scholar 

  51. Camus C, Matusali G, Bourry O, Mahe D, Aubry F, Bujan L, et al. Comparison of the effect of semen from HIV-infected and uninfected men on CD4+ T-cell infection. AIDS. 2016;30(8):1197–208. https://doi.org/10.1097/QAD.0000000000001048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kafka JK, Sheth PM, Nazli A, Osborne BJ, Kovacs C, Kaul R, et al. Endometrial epithelial cell response to semen from HIV-infected men during different stages of infection is distinct and can drive HIV-1-long terminal repeat. AIDS. 2012;26(1):27–36. https://doi.org/10.1097/QAD.0b013e32834e57b2.

    Article  PubMed  Google Scholar 

  53. Marques de Menezes EG, Jang K, George AF, Nyegaard M, Neidleman J, Inglis HC, et al. Seminal plasma-derived extracellular-vesicle fractions from HIV-infected men exhibit unique microRNA signatures and induce a proinflammatory response in cells isolated from the female reproductive tract. J Virol. 2020;94(16). https://doi.org/10.1128/JVI.00525-20.

  54. Cantero-Perez J, Grau-Exposito J, Serra-Peinado C, Rosero DA, Luque-Ballesteros L, Astorga-Gamaza A, et al. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat Commun. 2019;10(1):4739. https://doi.org/10.1038/s41467-019-12732-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. •• Ma T, Luo X, George AF, Mukherjee G, Sen N, Spitzer TL, et al. HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. Elife. 2020;9. https://doi.org/10.7554/eLife.55487This study adds new information to understanding how HIV infects cells of the upper genital tract in women, particularly in the endometrium.

  56. Trifonova RT, Bollman B, Barteneva NS, Lieberman J. Myeloid cells in intact human cervical explants capture HIV and can transmit it to CD4 T cells. Front Immunol. 2018;9:2719. https://doi.org/10.3389/fimmu.2018.02719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rodriguez-Garcia M, Shen Z, Barr FD, Boesch AW, Ackerman ME, Kappes JC, et al. Dendritic cells from the human female reproductive tract rapidly capture and respond to HIV. Mucosal Immunol. 2017;10(2):531–44. https://doi.org/10.1038/mi.2016.72.

    Article  CAS  PubMed  Google Scholar 

  58. Perez-Zsolt D, Cantero-Perez J, Erkizia I, Benet S, Pino M, Serra-Peinado C, et al. Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1. Front Immunol. 2019;10:825. https://doi.org/10.3389/fimmu.2019.00825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pena-Cruz V, Agosto LM, Akiyama H, Olson A, Moreau Y, Larrieux JR, et al. HIV-1 replicates and persists in vaginal epithelial dendritic cells. The Journal of clinical investigation. 2018;128(8):3439–44. https://doi.org/10.1172/JCI98943.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bertram KM, Botting RA, Baharlou H, Rhodes JW, Rana H, Graham JD, et al. Identification of HIV transmitting CD11c(+) human epidermal dendritic cells. Nat Commun. 2019;10(1):2759. https://doi.org/10.1038/s41467-019-10697-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. •• Barr FD, Ochsenbauer C, Wira CR, Rodriguez-Garcia M. Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunology. 2018;11(5):1420–8. https://doi.org/10.1038/s41385-018-0045-0This research showed that genital neutrophil respond to HIV stimulation with the release of neutrophil extracellular traps (NETs) and inactivate the virus to prevent HIV infection,suggesting that NETs may play an important anti-HIV role in mucosal protection in the FRT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fourcade L, Sabourin-Poirier C, Perraud V, Faucher MC, Chagnon-Choquet J, Labbe AC, et al. Natural Immunity to HIV is associated with Low BLyS/BAFF levels and low frequencies of innate marginal zone like CD1c+ B-cells in the genital tract. PLoS Pathog. 2019;15(6):e1007840. https://doi.org/10.1371/journal.ppat.1007840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gosmann C, Anahtar MN, Handley SA, Farcasanu M, Abu-Ali G, Bowman BA, et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity. 2017;46(1):29–37. https://doi.org/10.1016/j.immuni.2016.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. • Hoang T, Toler E, DeLong K, Mafunda NA, Bloom SM, Zierden HC, et al. The cervicovaginal mucus barrier to HIV-1 is diminished in bacterial vaginosis. PLoS Pathog. 2020;16(1):e1008236. https://doi.org/10.1371/journal.ppat.1008236This study describes how bacterial vaginosis modifies mucus protection against HIV in the FRT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cherne MD, Cole AL, Newberry L, Schmidt-Owens M, Deichen M, Cole AM. Matrix metalloproteinases expressed in response to bacterial vaginosis disrupt the endocervical epithelium, increasing transmigration of HIV. Infect Immun. 2020;88(4). https://doi.org/10.1128/IAI.00041-20.

  66. •• Klatt NR, Cheu R, Birse K, Zevin AS, Perner M, Noel-Romas L, et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. Science. 2017;356(6341):938–45. https://doi.org/10.1126/science.aai9383This study showed that the effectiveness of antiretroviral therapy in women is impacted by the vaginal bacterial community types. This study highlights the importance of understanding FRT immunobiology in HIV prevention strategies aimed at women.

    Article  CAS  PubMed  Google Scholar 

  67. • Taneva E, Sinclair S, Mesquita PM, Weinrick B, Cameron SA, Cheshenko N, et al. Vaginal microbiome modulates topical antiretroviral drug pharmacokinetics. JCI Insight. 2018;3(13). https://doi.org/10.1172/jci.insight.99545This study highlights the impact that the vaginal microbiota has on the effectiveness of antiretroviral drugs in the FRT.

  68. Saba E, Grivel JC, Vanpouille C, Brichacek B, Fitzgerald W, Margolis L, et al. HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol. 2010;3(3):280–90. https://doi.org/10.1038/mi.2010.2mi20102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Joseph SB, Swanstrom R, Kashuba AD, Cohen MS. Bottlenecks in HIV-1 transmission: insights from the study of founder viruses. Nat Rev Microbiol. 2015;13(7):414–25. https://doi.org/10.1038/nrmicro3471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, et al. Phenotypic properties of transmitted founder HIV-1. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(17):6626–33. https://doi.org/10.1073/pnas.1304288110.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Macharia GN, Yue L, Staller E, Dilernia D, Wilkins D, Song H, et al. Infection with multiple HIV-1 founder variants is associated with lower viral replicative capacity, faster CD4+ T cell decline and increased immune activation during acute infection. PLoS Pathog. 2020;16(9):e1008853. https://doi.org/10.1371/journal.ppat.1008853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Nijmeijer BM, Geijtenbeek TBH. Negative and positive selection pressure during sexual transmission of transmitted founder HIV-1. Front Immunol. 2019;10:1599. https://doi.org/10.3389/fimmu.2019.01599This review highlights recent knowledge that is critical to understanding how HIV is either restricted by host factors, or how HIV exploits the host to establish long-lived viral reservoirs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. •• Nijmeijer BM, Langedijk CJM, Geijtenbeek TBH. Mucosal dendritic cell subsets control HIV-1's viral fitness. Annu Rev Virol. 2020;7(1):385–402. https://doi.org/10.1146/annurev-virology-020520-025625This review discusses how dedtritic cells prevent HIV infection, and how transmitted founder viruses are selected in the mucosal epithelium leading to dissemination of infection.

    Article  CAS  PubMed  Google Scholar 

  74. Haase AT. Early events in sexual transmission of HIV and SIV and opportunities for interventions. Annu Rev Med. 2011;62:127–39. https://doi.org/10.1146/annurev-med-080709-124959.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286(5443):1353-7.7986. https://science.sciencemag.org/content/286/5443/1353.long.

  76. Stieh DJ, Maric D, Kelley ZL, Anderson MR, Hattaway HZ, Beilfuss BA, et al. Vaginal challenge with an SIV-based dual reporter system reveals that infection can occur throughout the upper and lower female reproductive tract. PLoS Pathog. 2014;10(10):e1004440. https://doi.org/10.1371/journal.ppat.1004440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rodriguez-Garcia M, Barr FD, Crist SG, Fahey JV, Wira CR. Phenotype and susceptibility to HIV infection of CD4+ Th17 cells in the human female reproductive tract. Mucosal Immunol. 2014;7(6):1375–85. https://doi.org/10.1038/mi.2014.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shen Z, Rodriguez-Garcia M, Ochsenbauer C, Wira CR. Characterization of immune cells and infection by HIV in human ovarian tissues. Am J Reprod Immunol. 2017. https://doi.org/10.1111/aji.12687.

  79. Joag VR, McKinnon LR, Liu J, Kidane ST, Yudin MH, Nyanga B, et al. Identification of preferential CD4 T-cell targets for HIV infection in the cervix. Mucosal Immunol. 2015. https://doi.org/10.1038/mi.2015.28.

  80. Brawner BM, Sommers MS, Moore K, Aka-James R, Zink T, Brown KM, et al. Exploring genitoanal injury and HIV risk among women: menstrual phase, hormonal birth control, and injury frequency and prevalence. Journal of acquired immune deficiency syndromes (1999). 2016;71(2):207–12. https://doi.org/10.1097/QAI.0000000000000824.

    Article  Google Scholar 

  81. Zink T, Fargo JD, Baker RB, Buschur C, Fisher BS, Sommers MS. Comparison of methods for identifying ano-genital injury after consensual intercourse. J Emerg Med. 2010;39(1):113–8. https://doi.org/10.1016/j.jemermed.2008.08.024.

    Article  PubMed  Google Scholar 

  82. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6(4):e1000852. https://doi.org/10.1371/journal.ppat.1000852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carias AM, McCoombe S, McRaven M, Anderson M, Galloway N, Vandergrift N, et al. Defining the interaction of HIV-1 with the mucosal barriers of the female reproductive tract. J Virol. 2013;87(21):11388–400. https://doi.org/10.1128/JVI.01377-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nazli A, Kafka JK, Ferreira VH, Anipindi V, Mueller K, Osborne BJ, et al. HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium. J Immunol. 2013;191(8):4246–58. https://doi.org/10.4049/jimmunol.1301482.

    Article  CAS  PubMed  Google Scholar 

  85. Yasen A, Herrera R, Rosbe K, Lien K, Tugizov SM. Release of HIV-1 sequestered in the vesicles of oral and genital mucosal epithelial cells by epithelial-lymphocyte interaction. PLoS Pathog. 2017;13(2):e1006247. https://doi.org/10.1371/journal.ppat.1006247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yasen A, Herrera R, Rosbe K, Lien K, Tugizov SM. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles. Virology. 2018;515:92–107. https://doi.org/10.1016/j.virol.2017.12.012.

    Article  CAS  PubMed  Google Scholar 

  87. Ferreira VH, Dizzell S, Nazli A, Kafka JK, Mueller K, Nguyen PV, et al. Medroxyprogesterone Acetate Regulates HIV-1 Uptake and Transcytosis but Not Replication in Primary Genital Epithelial Cells, Resulting in Enhanced T-Cell Infection. J Infect Dis. 2015;211(11):1745–56. https://doi.org/10.1093/infdis/jiu832.

    Article  CAS  PubMed  Google Scholar 

  88. Wu Z, Chen Z, Phillips DM. Human genital epithelial cells capture cell-free human immunodeficiency virus type 1 and transmit the virus to CD4+ Cells: implications for mechanisms of sexual transmission. J Infect Dis. 2003;188(10):1473–82.10.1086/379248. https://academic.oup.com/jid/article/188/10/1473/919840.

  89. Sloan RD, Kuhl BD, Mesplede T, Munch J, Donahue DA, Wainberg MA. Productive entry of HIV-1 during cell-to-cell transmission via dynamin-dependent endocytosis. J Virol. 2013;87(14):8110–23. https://doi.org/10.1128/JVI.00815-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yeaman GR, Asin S, Weldon S, Demian DJ, Collins JE, Gonzalez JL, et al. Chemokine receptor expression in the human ectocervix: implications for infection by the human immunodeficiency virus-type I. Immunology. 2004;113(4):524–33. https://doi.org/10.1111/j.1365-2567.2004.01990.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yeaman GR, Howell AL, Weldon S, Demian DJ, Collins JE, O'Connell DM, et al. Human immunodeficiency virus receptor and coreceptor expression on human uterine epithelial cells: regulation of expression during the menstrual cycle and implications for human immunodeficiency virus infection. Immunology. 2003;109(1):137–46. https://doi.org/10.1046/j.1365-2567.2003.01623.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shukair SA, Allen SA, Cianci GC, Stieh DJ, Anderson MR, Baig SM, et al. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement. Mucosal Immunol. 2013;6(2):427–34. https://doi.org/10.1038/mi.2012.87.

    Article  CAS  PubMed  Google Scholar 

  93. Boukari F, Makrogiannis S, Nossal R, Boukari H. Imaging and tracking HIV viruses in human cervical mucus. J Biomed Opt. 2016;21(9):96001. https://doi.org/10.1117/1.JBO.21.9.096001.

    Article  PubMed  Google Scholar 

  94. • Mall AS, Habte H, Mthembu Y, Peacocke J, de Beer C. Mucus and Mucins: do they have a role in the inhibition of the human immunodeficiency virus? Virol J. 2017;14(1):192. https://doi.org/10.1186/s12985-017-0855-9This study describes how mucins, which shows anti-HIV-1 activity in vitro, may be utilized to develop therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gunn B, Schneider J, Shansab M, Bastian AR, Fahrbach K, Smith AT, et al. Enhanced binding of antibodies generated during chronic HIV infection to mucus component MUC16. Mucosal Immunol. 2016;9(6):1549–58. https://doi.org/10.1038/mi.2016.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schneider JR, Shen X, Orlandi C, Nyanhete T, Sawant S, Carias AM, et al. A MUC16 IgG Binding activity selects for a restricted subset of IgG enriched for certain simian immunodeficiency virus epitope specificities. J Virol. 2020;94(5). https://doi.org/10.1128/JVI.01246-19.

  97. Nunn KL, Wang YY, Harit D, Humphrys MS, Ma B, Cone R, et al. Enhanced trapping of HIV-1 by human cervicovaginal mucus is associated with Lactobacillus crispatus-dominant microbiota. mBio. 2015;6(5):e01084-15. https://doi.org/10.1128/mBio.01084-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Elstein M. Functions and physical properties of mucus in the female genital tract. British Medical Bulletin. 1978;34(1):83–8. https://academic.oup.com/bmb/article-abstract/34/1/83/334684?redirectedFrom=fulltext.

  99. Patel MV, Ghosh M, Fahey JV, Wira CR. Uterine epithelial cells specifically induce interferon-stimulated genes in response to polyinosinic-polycytidylic acid independently of estradiol. PLoS ONE. 2012;7(4):e35654. https://doi.org/10.1371/journal.pone.0035654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schaefer TM, Fahey JV, Wright JA, Wira CR. Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). Journal of Immunology. 2005;174(2):992–1002. https://www.jimmunol.org/content/174/2/992.long.

  101. Nazli A, Dizzell S, Zahoor MA, Ferreira VH, Kafka J, Woods MW, et al. Interferon-beta induced in female genital epithelium by HIV-1 glycoprotein 120 via Toll-like-receptor 2 pathway acts to protect the mucosal barrier. Cell Mol Immunol. 2019;16(2):178–94. https://doi.org/10.1038/cmi.2017.168.

    Article  CAS  PubMed  Google Scholar 

  102. Fichorova RN, Cronin AO, Lien E, Anderson DJ, Ingalls RR. Response to Neisseria gonorrhoeae by Cervicovaginal Epithelial Cells Occurs in the Absence of Toll-Like Receptor 4-Mediated Signaling. The Journal of Immunology. 2002;168(5):2424–32.

    Article  CAS  Google Scholar 

  103. Pioli PA, Amiel E, Schaefer TM, Connolly JE, Wira CR, Guyre PM. Differential expression of Toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infection and Immunity. 2004;72(10):5799–806. https://doi.org/10.1128/iai.72.10.5799-5806.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hart KM, Murphy AJ, Barrett KT, Wira CR, Guyre PM, Pioli PA. Functional expression of pattern recognition receptors in tissues of the human female reproductive tract. Journal of Reproductive Immunology. 2009;80(1-2):33–40. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744441/.

  105. Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. American journal of reproductive immunology (New York, NY: 1989). 2014;71(6):575–88. https://doi.org/10.1111/aji.12250.

    Article  CAS  Google Scholar 

  106. Zegels G, Van Raemdonck GA, Tjalma WA, Van Ostade XW. Use of cervicovaginal fluid for the identification of biomarkers for pathologies of the female genital tract. Proteome Sci. 2010;8:63. https://doi.org/10.1186/1477-5956-8-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Venkataraman N, Cole AL, Svoboda P, Pohl J, Cole AM. Cationic polypeptides are required for anti-HIV-1 activity of human vaginal fluid. J Immunol. 2005;175(11):7560–7. https://doi.org/10.4049/jimmunol.175.11.7560.

    Article  CAS  PubMed  Google Scholar 

  108. Ghosh M, Fahey JV, Shen Z, Lahey T, Cu-Uvin S, Wu Z, et al. Anti-HIV activity in cervical-vaginal secretions from HIV-positive and -negative women correlate with innate antimicrobial levels and IgG antibodies. PloS one. 2010;5(6):e11366. https://doi.org/10.1371/journal.pone.0011366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lahey T, Ghosh M, Fahey JV, Shen Z, Mukura LR, Song Y, et al. Selective impact of HIV disease progression on the innate immune system in the human female reproductive tract. PloS one. 2012;7(6):e38100. https://doi.org/10.1371/journal.pone.0038100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kyongo JK, Crucitti T, Menten J, Hardy L, Cools P, Michiels J, et al. Cross-Sectional Analysis of Selected Genital Tract Immunological Markers and Molecular Vaginal Microbiota in Sub-Saharan African Women, with Relevance to HIV Risk and Prevention. Clinical and vaccine immunology : CVI. 2015;22(5):526–38. https://doi.org/10.1128/CVI.00762-14.

    Article  CAS  PubMed  Google Scholar 

  111. Birse KM, Burgener A, Westmacott GR, McCorrister S, Novak RM, Ball TB. Unbiased proteomics analysis demonstrates significant variability in mucosal immune factor expression depending on the site and method of collection. PloS one. 2013;8(11):e79505. https://doi.org/10.1371/journal.pone.0079505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wira CR, Patel MV, Ghosh M, Mukura L, Fahey JV. Innate immunity in the human female reproductive tract: endocrine regulation of endogenous antimicrobial protection against HIV and other sexually transmitted infections. American journal of reproductive immunology (New York, NY: 1989). 2011;65(3):196–211. https://doi.org/10.1111/j.1600-0897.2011.00970.x.

    Article  CAS  Google Scholar 

  113. Ghosh M, Rodriguez-Garcia M, Wira CR. The immune system in menopause: pros and cons of hormone therapy. The Journal of steroid biochemistry and molecular biology. 2014;142:171–5. https://doi.org/10.1016/j.jsbmb.2013.09.003.

    Article  CAS  PubMed  Google Scholar 

  114. Fruitwala S, El-Naccache DW, Chang TL. Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol. 2019;88:163–72. https://doi.org/10.1016/j.semcdb.2018.02.023.

    Article  CAS  PubMed  Google Scholar 

  115. Williams SE, Brown TI, Roghanian A, Sallenave JMSLPI. elafin: one glove. many fingers. Clin Sci (Lond). 2006;110(1):21–35.

    Article  CAS  Google Scholar 

  116. Moreau T, Baranger K, Dade S, Dallet-Choisy S, Guyot N, Zani ML. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie. 2008;90(2):284–95. https://doi.org/10.1016/j.biochi.2007.09.007.

    Article  CAS  PubMed  Google Scholar 

  117. Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2 versatile mucosal antimicrobials and regulators of immunity. American Journal of Respiratory Cell and Molecular Biology. 2010;42:635–43. https://doi.org/10.1165/rcmb.2010-0095RT.

    Article  CAS  PubMed  Google Scholar 

  118. Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D, et al. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity. 2007;26(2):257–70. S1074-7613(07)00134-3 [pii]. https://doi.org/10.1016/j.immuni.2007.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature. 2005;434(7037):1148–52.nature03513 [pii]. https://doi.org/10.1038/nature03513.

    Article  CAS  PubMed  Google Scholar 

  120. McKinnon LR, Nyanga B, Chege D, Izulla P, Kimani M, Huibner S, et al. Characterization of a human cervical CD4+ T cell subset coexpressing multiple markers of HIV susceptibility. J Immunol. 2011;187(11):6032–42.jimmunol.1101836 [pii]. https://doi.org/10.4049/jimmunol.1101836.

    Article  CAS  PubMed  Google Scholar 

  121. Givan AL, White HD, Stern JE, Colby E, Gosselin EJ, Guyre PM, et al. Flow cytometric analysis of leukocytes in the human female reproductive tract: comparison of fallopian tube, uterus, cervix. and vagina. Am J Reprod Immunol. 1997;38(5):350–9.

    Article  CAS  Google Scholar 

  122. Trifonova RT, Lieberman J, van Baarle D. Distribution of immune cells in the human cervix and implications for HIV transmission. Am J Reprod Immunol. 2014;71(3):252–64. https://doi.org/10.1111/aji.12198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hickey DK, Patel MV, Fahey JV, Wira CR. Innate and adaptive immunity at mucosal surfaces of the female reproductive tract: stratification and integration of immune protection against the transmission of sexually transmitted infections. J Reprod Immunol. 2011;S0165-0378(11) 00011-8 [pii]. https://doi.org/10.1016/j.jri.2011.01.005.

  124. Mohammadi A, Bagherichimeh S, Perry MC, Fazel A, Tevlin E, Huibner S, et al. The impact of cervical cytobrush sampling on cervico-vaginal immune parameters and microbiota relevant to HIV susceptibility. Sci Rep. 2020;10(1):8514. https://doi.org/10.1038/s41598-020-65544-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McKinnon LR, Hughes SM, De Rosa SC, Martinson JA, Plants J, Brady KE, et al. Optimizing viable leukocyte sampling from the female genital tract for clinical trials: an international multi-site study. PloS one. 2014;9(1):e85675. https://doi.org/10.1371/journal.pone.0085675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McKinnon LR, Kaul R. Quality and quantity: mucosal CD4+ T cells and HIV susceptibility. Curr Opin HIV AIDS. 2012;7(2):195–202. https://doi.org/10.1097/COH.0b013e3283504941.

    Article  CAS  PubMed  Google Scholar 

  127. Cavrois M, Hilton JF, Roan NR, Takeda M, Seidman D, Averbach S, et al. Effects of the levonorgestrel-containing intrauterine device, copper intrauterine device, and levonorgestrel-containing oral contraceptive on susceptibility of immune cells from cervix, endometrium and blood to HIV-1 fusion measured ex vivo. PLoS One. 2019;14(8):e0221181. https://doi.org/10.1371/journal.pone.0221181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci. 2008;105(21):7552–7.0802203105 [pii]. https://doi.org/10.1073/pnas.0802203105.

    Article  PubMed  Google Scholar 

  129. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med. 2009;206(6):1273–89.jem.20090378 [pii]. https://doi.org/10.1084/jem.20090378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stieh DJ, Matias E, Xu H, Fought AJ, Blanchard JL, Marx PA, et al. Th17 Cells Are Preferentially Infected Very Early after Vaginal Transmission of SIV in Macaques. Cell host & microbe. 2016;19(4):529–40. https://doi.org/10.1016/j.chom.2016.03.005.

    Article  CAS  Google Scholar 

  131. Rodriguez-Garcia M. How HIV exploits T cells in the endometrium. Elife. 2020;9. https://doi.org/10.7554/eLife.58169.

  132. Quillay H, El Costa H, Marlin R, Duriez M, Cannou C, Chretien F, et al. Distinct characteristics of endometrial and decidual macrophages and regulation of their permissivity to HIV-1 infection by SAMHD1. J Virol. 2015;89(2):1329–39. https://doi.org/10.1128/JVI.01730-14.

    Article  CAS  PubMed  Google Scholar 

  133. Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol Rev. 2005;206:306–35.

    Article  Google Scholar 

  134. Jensen AL, Collins J, Shipman EP, Wira CR, Guyre PM, Pioli PA. A subset of human uterine endometrial macrophages is alternatively activated. Am J Reprod Immunol. 2012;68(5):374–86. https://doi.org/10.1111/j.1600-0897.2012.01181.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D, et al. Macrophages in Vaginal but Not Intestinal Mucosa Are Monocyte-Like and Permissive to Human Immunodeficiency Virus Type 1 Infection. JVirol. 2009;83(7):3258–67. https://doi.org/10.1128/jvi.01796-08.

    Article  CAS  Google Scholar 

  136. Cassol E, Cassetta L, Alfano M, Poli G. Macrophage polarization and HIV-1 infection. J Leukoc Biol. 2010;87(4):599–608. https://doi.org/10.1189/jlb.1009673.

    Article  CAS  PubMed  Google Scholar 

  137. Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol. 2009;83(7):3258–67. JVI.01796-08 [pii]. https://doi.org/10.1128/JVI.01796-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol. 2006;311:17–58.

    CAS  PubMed  Google Scholar 

  139. Duluc D, Gannevat J, Anguiano E, Zurawski S, Carley M, Boreham M, et al. Functional diversity of human vaginal APC subsets in directing T-cell responses. Mucosal Immunol. 2013;6(3):626–38. https://doi.org/10.1038/mi.2012.104.

    Article  CAS  PubMed  Google Scholar 

  140. • Rodriguez-Garcia M, Fortier JM, Barr FD, Wira CR. Aging impacts CD103(+) CD8(+) T cell presence and induction by dendritic cells in the genital tract. Aging cell. 2018. https://doi.org/10.1111/acel.12733This study demonstrates that as women age the presence of dendritic cells and tissue resident T cells in the FRT progressively declines. This is important to understand how immune protection changes in the FRT as women age.

  141. Kaldensjo T, Petersson P, Tolf A, Morgan G, Broliden K, Hirbod T. Detection of intraepithelial and stromal Langerin and CCR5 positive cells in the human endometrium: potential targets for HIV infection. PLoS One. 2011;6(6):e21344. https://doi.org/10.1371/journal.pone.0021344PONE-D-11-03989.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Shen R, Kappes JC, Smythies LE, Richter HE, Novak L, Smith PD. Vaginal myeloid dendritic cells transmit founder HIV-1. J Virol. 2014;88(13):7683–8. https://doi.org/10.1128/JVI.00766-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ballweber L, Robinson B, Kreger A, Fialkow M, Lentz G, McElrath MJ, et al. Vaginal langerhans cells nonproductively transporting HIV-1 mediate infection of T cells. J Virol. 2011;85(24):13443–7. JVI.05615-11 [pii]. https://doi.org/10.1128/JVI.05615-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lumngwena EN, Abrahams B, Shuping L, Cicala C, Arthos J, Woodman Z. Selective transmission of some HIV-1 subtype C variants might depend on Envelope stimulating dendritic cells to secrete IL-10. PLoS One. 2020;15(1):e0227533. https://doi.org/10.1371/journal.pone.0227533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Smith JM, Wira CR, Fanger MW, Shen L. Human fallopian tube neutrophils--a distinct phenotype from blood neutrophils. Am J Reprod Immunol. 2006;56(4):218–29. https://doi.org/10.1111/j.1600-0897.2006.00410.x.

    Article  CAS  PubMed  Google Scholar 

  146. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell host & microbe. 2012;12(1):109–16. https://doi.org/10.1016/j.chom.2012.05.015.

    Article  CAS  Google Scholar 

  147. Giraldo DM, Hernandez JC, Urcuqui-Inchima S. HIV-1-derived single-stranded RNA acts as activator of human neutrophils. Immunologic research. 2016;64(5-6):1185–94. https://doi.org/10.1007/s12026-016-8876-9.

    Article  CAS  PubMed  Google Scholar 

  148. Arnold KB, Burgener A, Birse K, Romas L, Dunphy LJ, Shahabi K, et al. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells. Mucosal Immunol. 2016;9(1):194–205. https://doi.org/10.1038/mi.2015.51.

    Article  CAS  PubMed  Google Scholar 

  149. Fan SR, Liu XP, Liao QP. Human defensins and cytokines in vaginal lavage fluid of women with bacterial vaginosis. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2008;103(1):50–4. https://doi.org/10.1016/j.ijgo.2008.05.020.

    Article  CAS  Google Scholar 

  150. Levinson P, Kaul R, Kimani J, Ngugi E, Moses S, MacDonald KS, et al. Levels of innate immune factors in genital fluids: association of alpha defensins and LL-37 with genital infections and increased HIV acquisition. AIDS. 2009;23(3):309–17. https://doi.org/10.1097/QAD.0b013e328321809c.

    Article  CAS  PubMed  Google Scholar 

  151. Ramsuran V, Kulkarni H, He W, Mlisana K, Wright EJ, Werner L, et al. Duffy-null-associated low neutrophil counts influence HIV-1 susceptibility in high-risk South African black women. Clin Infect Dis. 2011;52(10):1248–56. https://doi.org/10.1093/cid/cir119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kourtis AP, Hudgens MG, Kayira D. Neutrophil count in African mothers and newborns and HIV transmission risk. The New England journal of medicine. 2012;367(23):2260–2. https://doi.org/10.1056/NEJMc1202292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mselle TF, Howell AL, Ghosh M, Wira CR, Sentman CL. Human uterine natural killer cells but not blood natural killer cells inhibit human immunodeficiency virus type 1 infection by secretion of CXCL12. J Virol. 2009;83(21):11188–95. https://doi.org/10.1128/JVI.00562-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mselle TF, Meadows SK, Eriksson M, Smith JM, Shen L, Wira CR, et al. Unique characteristics of NK cells throughout the human female reproductive tract. Clin Immunol. 2007;124(1):69–76. S1521-6616(07)01175-8 [pii]. https://doi.org/10.1016/j.clim.2007.04.008.

    Article  CAS  PubMed  Google Scholar 

  155. Manaster I, Mandelboim O. The unique properties of uterine NK cells. Am J Reprod Immunol. 2010;63(6):434–44. https://doi.org/10.1111/j.1600-0897.2009.00794.x.

    Article  CAS  PubMed  Google Scholar 

  156. Quillay H, El Costa H, Duriez M, Marlin R, Cannou C, Madec Y, et al. NK cells control HIV-1 infection of macrophages through soluble factors and cellular contacts in the human decidua. Retrovirology. 2016;13(1):39. https://doi.org/10.1186/s12977-016-0271-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wira CR, Crane-Godreau MA, Grant-Tschudy KS. Role of sex hormones and cytokines in regulating the mucosal immune system in the female reproductive tract. In: Mestecky J, Bienenstock J, Lamm ME, Mayer L, McGhee JR, Strober W, editors. Mucosal Immunology. New York: Academic Press; 2005. p. 1661–78.

    Chapter  Google Scholar 

  158. Rodriguez-Garcia M, Shen Z, Fortier JM, Wira CR. Differential cytotoxic function of resident and non-resident CD8+ T cells in the human female reproductive tract before and after menopause. Front Immunol. 2020;11:1096. https://doi.org/10.3389/fimmu.2020.01096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Moylan DC, Goepfert PA, Kempf MC, Saag MS, Richter HE, Mestecky J, et al. Diminished CD103 (alphaEbeta7) expression on resident T cells from the female genital tract of HIV-positive women. Pathogens & immunity. 2016;1(2):371–87. https://doi.org/10.20411/pai.v1i2.166.

    Article  Google Scholar 

  160. Posavad CM, Zhao L, Dong L, Jin L, Stevens CE, Magaret AS, et al. Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract. Mucosal Immunol. 2017;10(5):1259–69. https://doi.org/10.1038/mi.2016.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. White HD, Crassi KM, Givan AL, Stern JE, Gonzalez JL, Memoli VA, et al. CD3+ CD8+ CTL activity within the human female reproductive tract: influence of stage of the menstrual cycle and menopause. J Immunol. 1997;158(6):3017–27.

    CAS  PubMed  Google Scholar 

  162. Iwasaki A. Antiviral immune responses in the genital tract: clues for vaccines. Nat Rev Immunol. 2010;10(10):699–711.nri2836 [pii]. https://doi.org/10.1038/nri2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. White HD, Musey LK, Andrews MM, Yeaman GR, DeMars LR, Manganiello PD, et al. Human immunodeficiency virus-specific and CD3-redirected cytotoxic T lymphocyte activity in the human female reproductive tract: lack of correlation between mucosa and peripheral blood. J Infect Dis. 2001;183(6):977–83.JID001056 [pii]. https://doi.org/10.1086/319253.

    Article  CAS  PubMed  Google Scholar 

  164. Bere A, Denny L, Naicker P, Burgers WA, Passmore JA. HIV-specific T-cell responses detected in the genital tract of chronically HIV-infected women are largely monofunctional. Immunology. 2013;139(3):342–51. https://doi.org/10.1111/imm.12084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gibbs A, Buggert M, Edfeldt G, Ranefall P, Introini A, Cheuk S, et al. Human immunodeficiency virus-infected women have high numbers of CD103-CD8+ T cells residing close to the basal membrane of the ectocervical epithelium. J Infect Dis. 2018;218(3):453–65. https://doi.org/10.1093/infdis/jix661.

    Article  CAS  PubMed  Google Scholar 

  166. Gibbs A, Hirbod T, Li Q, Bohman K, Ball TB, Plummer FA, et al. Presence of CD8+ T cells in the ectocervical mucosa correlates with genital viral shedding in HIV-infected women despite a low prevalence of HIV RNA-expressing cells in the tissue. J Immunol. 2014;192(8):3947–57. https://doi.org/10.4049/jimmunol.1302826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shacklett BL. Mucosal immunity in HIV/SIV infection: T cells, B cells and beyond. Curr Immunol Rev. 2019;15(1):63–75. https://doi.org/10.2174/1573395514666180528081204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Fourcade L, Poudrier J, Roger M. Natural immunity to HIV: a template for vaccine strategies. Viruses. 2018;10(4). https://doi.org/10.3390/v10040215.

  169. Masson L, Passmore JA, Liebenberg LJ, Werner L, Baxter C, Arnold KB, et al. Genital inflammation and the risk of HIV acquisition in women. Clin Infect Dis. 2015;61(2):260–9. https://doi.org/10.1093/cid/civ298.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Passmore JS, Jaspan HB. Vaginal microbes, inflammation, and HIV risk in African women. The Lancet Infectious diseases. 2018;18(5):483–4. https://doi.org/10.1016/S1473-3099(18)30061-6.

    Article  PubMed  Google Scholar 

  171. • Dabee S, Barnabas SL, Lennard KS, Jaumdally SZ, Gamieldien H, Balle C, et al. Defining characteristics of genital health in South African adolescent girls and young women at high risk for HIV infection. PLoS One. 2019;14(4):e0213975. https://doi.org/10.1371/journal.pone.0213975This study described the biological factors that may influence the higher rates of HIV infection in sub-Sarahan Africa among young women and adolescent girls. Both socio-economic and biological factors are thought to play a role in the high HIV incidence in this population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Borgdorff H, Gautam R, Armstrong SD, Xia D, Ndayisaba GF, van Teijlingen NH, et al. Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier. Mucosal Immunol. 2016;9(3):621–33. https://doi.org/10.1038/mi.2015.86.

    Article  CAS  PubMed  Google Scholar 

  173. Zevin AS, Xie IY, Birse K, Arnold K, Romas L, Westmacott G, et al. Microbiome composition and function drives wound-healing impairment in the female genital tract. PLoS Pathog. 2016;12(9):e1005889. https://doi.org/10.1371/journal.ppat.1005889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Anahtar MN, Byrne EH, Doherty KE, Bowman BA, Yamamoto HS, Soumillon M, et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015;42(5):965–76. https://doi.org/10.1016/j.immuni.2015.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lennard K, Dabee S, Barnabas SL, Havyarimana E, Blakney A, Jaumdally SZ, et al. Microbial composition predicts genital tract inflammation and persistent bacterial vaginosis in South African adolescent females. Infect Immun. 2018;86(1). https://doi.org/10.1128/IAI.00410-17.

  176. Alcaide ML, Rodriguez VJ, Brown MR, Pallikkuth S, Arheart K, Martinez O, et al. High levels of inflammatory cytokines in the reproductive tract of women with BV and engaging in intravaginal douching: a cross-sectional study of participants in the women interagency HIV study. AIDS Res Hum Retroviruses. 2017;33(4):309–17. https://doi.org/10.1089/AID.2016.0187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. • Wessels JM, Felker AM, Dupont HA, Kaushic C. The relationship between sex hormones, the vaginal microbiome and immunity in HIV-1 susceptibility in women. Dis Model Mech. 2018;11(9). https://doi.org/10.1242/dmm.035147This review chronicles the current understanding of the relationship between hormones, the vaginal microbiome and HIV risk in women.

  178. Anahtar MN, Gootenberg DB, Mitchell CM, Kwon DS. Cervicovaginal microbiota and reproductive health: the virtue of simplicity. Cell host & microbe. 2018;23(2):159–68. https://doi.org/10.1016/j.chom.2018.01.013.

    Article  CAS  Google Scholar 

  179. • Bradley F, Birse K, Hasselrot K, Noel-Romas L, Introini A, Wefer H, et al. The vaginal microbiome amplifies sex hormone-associated cyclic changes in cervicovaginal inflammation and epithelial barrier disruption. Am J Reprod Immunol. 2018;80(1):e12863. https://doi.org/10.1111/aji.12863This study illustrated how hormonal changes associated with the menstrual cycle modulate the FRT, which may impact HIV risk.

    Article  CAS  PubMed  Google Scholar 

  180. • Marrazzo JM. Biomedical prevention of HIV in women: challenges and approaches, with particular reference to the vaginal microbiome. Trans Am Clin Climatol Assoc. 2018;129:63–73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116616/This review highlights the challenges of HIV prevention in women in regard to the difficulties of targeting the FRT effectively with antiretrovirals in the context of the microbiome.

  181. Wessels JM, Lajoie J, Cooper M, Omollo K, Felker AM, Vitali D, et al. Medroxyprogesterone acetate alters the vaginal microbiota and microenvironment in women and increases susceptibility to HIV-1 in humanized mice. Dis Model Mech. 2019;12(10). https://doi.org/10.1242/dmm.039669.

  182. • McKinnon LR, Achilles SL, Bradshaw CS, Burgener A, Crucitti T, Fredricks DN, et al. The evolving facets of bacterial vaginosis: implications for HIV transmission. AIDS Res Hum Retroviruses. 2019;35(3):219–28. https://doi.org/10.1089/AID.2018.0304This review proposes to standardize the nomenclature regarding BV infection and HIV risk in the FRT, which will help in the future when describing the impact that BV has on HIV risk.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Tachedjian G, O'Hanlon DE, Ravel J. The implausible "in vivo" role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. Microbiome. 2018;6(1):29. https://doi.org/10.1186/s40168-018-0418-3.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Tyssen D, Wang YY, Hayward JA, Agius PA, DeLong K, Aldunate M, et al. Anti-HIV-1 activity of lactic acid in human cervicovaginal fluid. mSphere. 2018;3(4). https://doi.org/10.1128/mSphere.00055-18.

  185. McClelland RS, Lingappa JR, Srinivasan S, Kinuthia J, John-Stewart GC, Jaoko W, et al. Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of HIV acquisition in African women from five cohorts: a nested case-control study. The Lancet Infectious diseases. 2018;18(5):554–64. https://doi.org/10.1016/S1473-3099(18)30058-6.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Manhanzva MT, Abrahams AG, Gamieldien H, Froissart R, Jaspan H, Jaumdally SZ, et al. Inflammatory and antimicrobial properties differ between vaginal Lactobacillus isolates from South African women with non-optimal versus optimal microbiota. Sci Rep. 2020;10(1):6196. https://doi.org/10.1038/s41598-020-62184-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kaur H, Merchant M, Haque MM, Mande SS. Crosstalk between female gonadal hormones and vaginal microbiota across various phases of women’s gynecological lifecycle. Front Microbiol. 2020;11:551. https://www.frontiersin.org/articles/10.3389/fmicb.2020.00551/full

  188. Smith SB, Ravel J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 2017;595(2):451–63. https://doi.org/10.1113/JP271694.

    Article  CAS  PubMed  Google Scholar 

  189. Gliniewicz K, Schneider GM, Ridenhour BJ, Williams CJ, Song Y, Farage MA, et al. Comparison of the vaginal microbiomes of premenopausal and postmenopausal women. Front Microbiol. 2019;10:193. https://doi.org/10.3389/fmicb.2019.00193.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hickey RJ, Zhou X, Settles ML, Erb J, Malone K, Hansmann MA, et al. Vaginal microbiota of adolescent girls prior to the onset of menarche resemble those of reproductive-age women. mBio. 2015;6(2):e00097-15. https://doi.org/10.1128/mBio.00097-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Morrison CS, Chen PL, Kwok C, Baeten JM, Brown J, Crook AM, et al. Hormonal contraception and the risk of HIV acquisition: an individual participant data meta-analysis. PLoS medicine. 2015;12(1):e1001778. https://doi.org/10.1371/journal.pmed.1001778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Curtis LT, Sebens S, Frieboes HB. Modeling of tumor response to macrophage and T lymphocyte interactions in the liver metastatic microenvironment. Cancer Immunol Immunother. 2020. https://doi.org/10.1007/s00262-020-02785-4.

  193. Hapgood JP. Is the Injectable contraceptive depo-medroxyprogesterone acetate (DMPA-IM) associated with an increased risk for HIV acquisition? The Jury Is Still Out. AIDS Research and Human Retroviruses. 2020;36(5):357–66. https://doi.org/10.1089/AID.2019.0228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. • Hapgood JP, Kaushic C, Hel Z. Hormonal contraception and HIV-1 acquisition: biological mechanisms. Endocr Rev. 2018;39(1):36–78. https://doi.org/10.1210/er.2017-00103This study reviews current knowledge on how hormonal contraception modifies HIV risk.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Woods BS, Sideris E, Sydes MR, Gannon MR, Parmar MKB, Alzouebi M, et al. Addition of docetaxel to first-line long-term hormone therapy in prostate cancer (STAMPEDE): modelling to estimate long-term survival, quality-adjusted survival, and cost-effectiveness. Eur Urol Oncol. 2018;1(6):449–58. https://doi.org/10.1016/j.euo.2018.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Edfeldt G, Lajoie J, Rohl M, Oyugi J, Ahlberg A, Khalilzadeh-Binicy B, et al. Regular use of depot medroxyprogesterone acetate causes thinning of the superficial lining and apical distribution of HIV target cells in the human ectocervix. J Infect Dis. 2020. https://doi.org/10.1093/infdis/jiaa514.

  197. Huijbregts RP, Helton ES, Michel KG, Sabbaj S, Richter HE, Goepfert PA, et al. Hormonal contraception and HIV-1 infection: medroxyprogesterone acetate suppresses innate and adaptive immune mechanisms. Endocrinology. 2013;154(3):1282–95. https://doi.org/10.1210/en.2012-1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ray RM, Maritz MF, Avenant C, Tomasicchio M, Dlamini S, van der Spuy Z, et al. The contraceptive medroxyprogesterone acetate, unlike norethisterone, directly increases R5 HIV-1 infection in human cervical explant tissue at physiologically relevant concentrations. Sci Rep. 2019;9(1):4334. https://doi.org/10.1038/s41598-019-40756-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Evidence for Contraceptive O, Consortium HIVOT. HIV incidence among women using intramuscular depot medroxyprogesterone acetate, a copper intrauterine device, or a levonorgestrel implant for contraception: a randomised, multicentre, open-label trial. Lancet (London, England). 2019;394(10195):303–13 S0140-6736(19)31288-7 [pii]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675739/

  200. Shaw JL, Petraki C, Watson C, Bocking A, Diamandis EP. Role of tissue kallikrein-related peptidases in cervical mucus remodeling and host defense. Biological chemistry. 2008;389(12):1513–22. https://doi.org/10.1515/BC.2008.171.

    Article  CAS  PubMed  Google Scholar 

  201. Baral SD, Poteat T, Strömdahl S, Wirtz AL, Guadamuz TE, Beyrer C. Worldwide burden of HIV in transgender women: a systematic review and meta-analysis. The Lancet infectious diseases. 2013;13(3):214–22. https://pubmed.ncbi.nlm.nih.gov/23260128/

  202. Poteat T, Scheim A, Xavier J, Reisner S, Baral S. Global Epidemiology of HIV infection and related syndemics affecting transgender people. Journal of acquired immune deficiency syndromes (1999). 2016;72(Suppl 3):S210-9. https://doi.org/10.1097/QAI.0000000000001087.

    Article  Google Scholar 

  203. Birse KD, Kratzer K, Zuend CF, Mutch S, Noël-Romas L, Lamont A, et al. The neovaginal microbiome of transgender women post-gender reassignment surgery. 2020;2049-2618(Electronic).

  204. Winston McPherson G, Long T, Salipante SJ, Rongitsch JA, Hoffman NG, Stephens K, et al. The vaginal microbiome of transgender men. Clin Chem. 2019;65(1):199–207. https://doi.org/10.1373/clinchem.2018.293654.

    Article  CAS  PubMed  Google Scholar 

  205. Draughon JE. Sexual assault injuries and increased risk of HIV transmission. Advanced emergency nursing journal. 2012;34(1):82–7. https://doi.org/10.1097/TME.0b013e3182439e1a.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Klot JF, Auerbach JD, Veronese F, Brown G, Pei A, Wira CR, et al. Greentree white paper: sexual violence, genitoanal injury, and HIV: priorities for research, policy, and practice. AIDS Research and Human Retroviruses. 2012;28(11):1379–88. https://doi.org/10.1089/AID.2012.0273.

    Article  PubMed  PubMed Central  Google Scholar 

  207. • Ghosh M, Daniels J, Pyra M, Juzumaite M, Jais M, Murphy K, et al. Impact of chronic sexual abuse and depression on inflammation and wound healing in the female reproductive tract of HIV-uninfected and HIV-infected women. PLoS one. 2018;13(6):e0198412. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997353/. HIV risk is increased in women who experience sexual trauma. This study describes the immuno-biological changes in the FRT among women with a history of chronic sexual abuse.

  208. Brezing C, Ferrara M, Freudenreich O. The syndemic illness of HIV and trauma: implications for a trauma-informed model of care. Psychosomatics. 2015;56(2):107–18. https://doi.org/10.1016/j.psym.2014.10.006.

    Article  PubMed  Google Scholar 

  209. Sales JM, Swartzendruber A, Phillips AL. Trauma-informed HIV prevention and treatment. Current HIV/AIDS reports. 2016;13(6):374–82. https://doi.org/10.1007/s11904-016-0337-5.

  210. Espino SR, Fletcher J, Gonzalez M, Precht A, Xavier J, Matoff-Stepp S. Violence screening and viral load suppression among HIV-positive women of color. AIDS Patient Care and STDs. 2015;29(Suppl 1):S36-41. https://doi.org/10.1089/apc.2014.0275.

    Article  PubMed  Google Scholar 

  211. Organization WH. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. 2015.

    Google Scholar 

  212. Saag MS, Gandhi RT, Hoy JF, Landovitz RJ, Thompson MA, Sax PE, et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2020 recommendations of the International Antiviral Society-USA Panel. JAMA. 2020;324(16):1651–69. https://doi.org/10.1001/jama.2020.17025.

    Article  CAS  PubMed  Google Scholar 

  213. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, et al. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. The New England journal of medicine. 2012;367(5):399–410. https://doi.org/10.1056/NEJMoa1108524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. The New England journal of medicine. 2010;363(27):2587–99. https://doi.org/10.1056/NEJMoa1011205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM, et al. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. The New England journal of medicine. 2012;367(5):423–34. https://doi.org/10.1056/NEJMoa1110711.

    Article  CAS  PubMed  Google Scholar 

  216. Hodges-Mameletzis I, Fonner VA, Dalal S, Mugo N, Msimanga-Radebe B, Baggaley R. Pre-exposure prophylaxis for HIV prevention in women: current status and future directions. Drugs. 2019;79(12):1263–76. https://doi.org/10.1007/s40265-019-01143-8.

    Article  CAS  PubMed  Google Scholar 

  217. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168–74. science.1193748 [pii]. https://doi.org/10.1126/science.1193748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G, et al. Tenofovir-based preexposure prophylaxis for HIV infection among African women. The New England journal of medicine. 2015;372(6):509–18. https://doi.org/10.1056/NEJMoa1402269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Van Damme L, Corneli A, Ahmed K, Agot K, Lombaard J, Kapiga S, et al. Preexposure prophylaxis for HIV infection among African women. The New England journal of medicine. 2012;367(5):411–22. https://doi.org/10.1056/NEJMoa1202614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Delany-Moretlwe S, Lombard C, Baron D, Bekker LG, Nkala B, Ahmed K, et al. Tenofovir 1% vaginal gel for prevention of HIV-1 infection in women in South Africa (FACTS-001): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2018;18(11):1241–50. https://doi.org/10.1016/S1473-3099(18)30428-6.

    Article  CAS  PubMed  Google Scholar 

  221. Nel A, van Niekerk N, Kapiga S, Bekker LG, Gama C, Gill K, et al. Safety and efficacy of a dapivirine vaginal ring for HIV prevention in women. The New England journal of medicine. 2016;375(22):2133–43. https://doi.org/10.1056/NEJMoa1602046.

    Article  CAS  PubMed  Google Scholar 

  222. Baeten JM, Hendrix CW, Hillier SL. Topical microbicides in HIV prevention: state of the promise. Annu Rev Med. 2020;71:361–77. https://doi.org/10.1146/annurev-med-090518-093731.

    Article  CAS  PubMed  Google Scholar 

  223. Palanee-Phillips T, Baeten JM. Topical delivery of long-acting antiretrovirals to prevent HIV acquisition. Curr Opin HIV AIDS. 2020;15(1):42–8. https://doi.org/10.1097/COH.0000000000000598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. van der Straten A, Van Damme L, Haberer JE, Bangsberg DR. Unraveling the divergent results of pre-exposure prophylaxis trials for HIV prevention. AIDS. 2012;26(7):F13–9. https://doi.org/10.1097/QAD.0b013e3283522272.

    Article  CAS  PubMed  Google Scholar 

  225. Brown ER, Hendrix CW, van der Straten A, Kiweewa FM, Mgodi NM, Palanee-Philips T, et al. Greater dapivirine release from the dapivirine vaginal ring is correlated with lower risk of HIV-1 acquisition: a secondary analysis from a randomized, placebo-controlled trial. J Int AIDS Soc. 2020;23(11):e25634. https://doi.org/10.1002/jia2.25634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. • McKinnon LR, Liebenberg LJ, Yende-Zuma N, Archary D, Ngcapu S, Sivro A, et al. Genital inflammation undermines the effectiveness of tenofovir gel in preventing HIV acquisition in women. Nature medicine. 2018;24(4):491–6. https://doi.org/10.1038/nm.4506This study showed that tenofovir is more effective in reducing HIV incidence in women without genital inflammation. The study highlights the importance that inflammation in the gential tract may have on the efficacy of antiretrovirals in women.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hendrix CW, Chen BA, Guddera V, Hoesley C, Justman J, Nakabiito C, et al. MTN-001: randomized pharmacokinetic cross-over study comparing tenofovir vaginal gel and oral tablets in vaginal tissue and other compartments. PLoS One. 2013;8(1):e55013. https://doi.org/10.1371/journal.pone.0055013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Patterson KB, Prince HA, Kraft E, Jenkins AJ, Shaheen NJ, Rooney JF, et al. Penetration of tenofovir and emtricitabine in mucosal tissues: implications for prevention of HIV-1 transmission. Science translational medicine. 2011;3(112):112re4. https://doi.org/10.1126/scitranslmed.3003174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Shen Z, Fahey JV, Bodwell JE, Rodriguez-Garcia M, Kashuba AD, Wira CR. Sex hormones regulate tenofovir-diphosphate in female reproductive tract cells in culture. PloS one. 2014;9(6):e100863. https://doi.org/10.1371/journal.pone.0100863.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Chuchuen O, Maher JR, Henderson MH, Desoto M, Rohan LC, Wax A, et al. Label-free analysis of tenofovir delivery to vaginal tissue using co-registered confocal Raman spectroscopy and optical coherence tomography. PLoS One. 2017;12(9):e0185633. https://doi.org/10.1371/journal.pone.0185633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Maher JR, Chuchuen O, Henderson MH, Kim S, Rinehart MT, Kashuba AD, et al. Co-localized confocal Raman spectroscopy and optical coherence tomography (CRS-OCT) for depth-resolved analyte detection in tissue. Biomed Opt Express. 2015;6(6):2022–35. https://doi.org/10.1364/BOE.6.002022.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Zheng S, Liu L, Lu J, Zhang X, Shen H, Zhang H, et al. Efficacy and safety of tenofovir disoproxil fumarate in Chinese patients with chronic hepatitis B virus infection: A 2-year prospective study. Medicine (Baltimore). 2019;98(42):e17590. https://doi.org/10.1097/MD.0000000000017590.

    Article  CAS  Google Scholar 

  233. • Rodriguez-Garcia M, Patel MV, Shen Z, Bodwell J, Rossoll RM, Wira CR. Tenofovir inhibits wound healing of epithelial cells and fibroblasts from the upper and lower human female reproductive Tract. Sci Rep. 2017;8:45725. https://doi.org/10.1038/srep45725This study demonstrates that the antiretroviral tenofovir inhibits wound healing in the FRT. As damage to the epithelial barrier may enhance HIV infection, understanding effects of antiretrovirals on wound healing is critical to develop HIV preventatives for women.

    Article  CAS  PubMed  Google Scholar 

  234. Romas L, Birse K, Mayer KH, Abou M, Westmacott G, Giguere R, et al. Rectal 1% tenofovir gel use associates with altered epidermal protein expression. AIDS research and human retroviruses. 2016. https://doi.org/10.1089/AID.2015.0381.

  235. •• Keller MJ, Wood L, Billingsley JM, Ray LL, Goymer J, Sinclair S, et al. Tenofovir disoproxil fumarate intravaginal ring for HIV pre-exposure prophylaxis in sexually active women: a phase 1, single-blind, randomised, controlled trial. Lancet HIV. 2019;6(8):e498–508. https://doi.org/10.1016/S2352-3018(19)30145-6A recent clinical trial that was interrupted due to the development of genital ulcers in women.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV cure: the latent reservoir. AIDS research and human retroviruses. 2018;34(9):739–59. https://doi.org/10.1089/AID.2018.0118.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Estes JD, Kityo C, Ssali F, Swainson L, Makamdop KN, Del Prete GQ et al. Defining total-body AIDS-virus burden with implications for curative strategies. 2017(1546-170X (Electronic)).

  238. El-Badry E, Macharia G, Claiborne D, Brooks K, Dilernia DA, Goepfert P, et al. Better viral control despite higher CD4<sup>+</sup> T cell activation during acute HIV-1 infection in Zambian women is linked to the sex hormone estradiol. Journal of Virology. 2020;94(16):e00758-20. https://doi.org/10.1128/JVI.00758-20.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Dizzell S, Nazli A, Reid G, Kaushic C. Protective Effect of probiotic bacteria and estrogen in preventing HIV-1-mediated impairment of epithelial barrier integrity in female genital tract. Cells. 2019;8(10):1120. https://doi.org/10.3390/cells8101120.

    Article  CAS  PubMed Central  Google Scholar 

  240. Calenda G, Villegas G, Reis A, Millen L, Barnable P, Mamkina L, et al. Mucosal susceptibility to human immunodeficiency virus infection in the proliferative and secretory phases of the menstrual cycle. AIDS research and human retroviruses. 2019;35(3):335–47. https://doi.org/10.1089/AID.2018.0154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Patel MV, Shen Z, Rossoll RM, Wira CR. Estradiol-regulated innate antiviral responses of human endometrial stromal fibroblasts. American journal of reproductive immunology (New York, NY : 1989). 2018;80(5):e13042-e. https://doi.org/10.1111/aji.13042.

    Article  CAS  Google Scholar 

  242. Szotek EL, Narasipura SD, Al-Harthi L. 17β-Estradiol inhibits HIV-1 by inducing a complex formation between β-catenin and estrogen receptor α on the HIV promoter to suppress HIV transcription. Virology. 2013;443(2):375–83. https://doi.org/10.1016/j.virol.2013.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Rodriguez-Garcia M, Biswas N, Patel MV, Barr FD, Crist SG, Ochsenbauer C, et al. Estradiol reduces susceptibility of CD4+ T cells and macrophages to HIV-infection. PloS one. 2013;8(4):e62069-e. https://doi.org/10.1371/journal.pone.0062069.

    Article  CAS  Google Scholar 

  244. Das B, Dobrowolski C, Luttge B, Valadkhan S, Chomont N, Johnston R, et al. Estrogen receptor-1 is a key regulator of HIV-1 latency that imparts gender-specific restrictions on the latent reservoir. Proceedings of the National Academy of Sciences of the United States of America. 2018, 115(33):E7795–E804. https://doi.org/10.1073/pnas.1803468115.

  245. Griesbeck M, Scully E, Altfeld M. Sex and gender differences in HIV-1 infection. Clinical Science. 2016;130(16):1435–51. https://doi.org/10.1042/CS20160112.

    Article  CAS  PubMed  Google Scholar 

  246. Gornalusse GG, Valdez R, Fenkart G, Vojtech L, Fleming LM, Pandey U, et al. Mechanisms of endogenous HIV-1 reactivation by endocervical epithelial cells. Journal of virology. 2020;94(9):e01904-19. https://doi.org/10.1128/JVI.01904-19.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Prodger JL, Capoferri AA, Yu K, Lai J, Reynolds SJ, Kasule J, et al. Reduced HIV-1 latent reservoir outgrowth and distinct immune correlates among women in Rakai, Uganda. JCI insight. 2020;5(14):e139287. https://doi.org/10.1172/jci.insight.139287.

    Article  PubMed Central  Google Scholar 

  248. Johnston RE, Heitzeg MM. Sex, age, race and intervention type in clinical studies of HIV cure: a systematic review. AIDS research and human retroviruses. 2015;31(1):85–97. https://doi.org/10.1089/AID.2014.0205.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Barr L. Jefferys R. A landscape analysis of HIV cure-related clinical trials and observational studies in 2018. J Virus Erad. 2019;5(4):212–9.

    Article  Google Scholar 

  250. World Health O. Violence Against Women and HIV/AIDS: Critical Intersections - Intimate Partner Violence and HIV/AIDS. . WHO, Online. 2004. https://www.who.int/hac/techguidance/pht/InfoBulletinIntimatePartnerViolenceFinal.pdf. 2020.

  251. Centers for Disease C, Prevention. Intersection of intimate partner violence and HIV in women.2014. Atlanta, GA: AuthorRetrieved from http://www.cdcgov/violenceprevention/pdf/ipv/13_243567_green_aag-apdf

  252. Dezzutti CS, Hendrix CW, Marrazzo JM, Pan Z, Wang L, Louissaint N, et al. Performance of swabs, lavage, and diluents to quantify biomarkers of female genital tract soluble mucosal mediators. PloS one. 2011;6(8):e23136. https://doi.org/10.1371/annotation/7824df54-632a-48d6-bfbe-42d069d40c6e

Download references

Funding

R01 AI154518-01 (Ghosh), R21 AI145654-01A1 (Ghosh), R01 AG060801 (Rodriguez Garcia)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimi Ghosh.

Ethics declarations

Human Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Garcia, M., Connors, K. & Ghosh, M. HIV Pathogenesis in the Human Female Reproductive Tract. Curr HIV/AIDS Rep 18, 139–156 (2021). https://doi.org/10.1007/s11904-021-00546-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-021-00546-1

Keywords

Navigation