Skip to main content

Advertisement

Log in

Friend or Foe: Innate Sensing of HIV in the Female Reproductive Tract

  • HIV Pathogenesis and Treatment (AL Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Organization, W.H., Progress report 2011: global HIV/AIDS response (WHO, 2011). 2011.

  2. Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol. 2015;15(4):217–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chow J, Franz KM, Kagan JC. PRRs are watching you: localization of innate sensing and signaling regulators. Virology. 2015;479–480:104–9.

    Article  PubMed  CAS  Google Scholar 

  4. Gurtler C, Bowie AG. Innate immune detection of microbial nucleic acids. Trends Microbiol. 2013;21(8):413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paludan SR. Activation and regulation of DNA-driven immune responses. Microbiol Mol Biol Rev. 2015;79(2):225–41.

    Article  PubMed  Google Scholar 

  6. Jakobsen MR, Olagnier D, Hiscott J. Innate immune sensing of HIV-1 infection. Curr Opin HIV AIDS. 2015;10(2):96–102.

    Article  CAS  PubMed  Google Scholar 

  7. Berlier W, Cremel M, Hamzeh H, Levy R, Lucht F, Bourlet T, et al. Seminal plasma promotes the attraction of Langerhans cells via the secretion of CCL20 by vaginal epithelial cells: involvement in the sexual transmission of HIV. Hum Reprod. 2006;21(5):1135–42.

    Article  CAS  PubMed  Google Scholar 

  8. Brown KN, Wijewardana V, Liu X, Barratt-Boyes SM. Rapid influx and death of plasmacytoid dendritic cells in lymph nodes mediate depletion in acute simian immunodeficiency virus infection. PLoS Pathog. 2009;5(5):e1000413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cavarelli M, Foglieni C, Rescigno M, Scarlatti G. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5. EMBO Mol Med. 2013;5(5):776–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McKinnon LR, Nyanga B, Kim CJ, Izulla P, Kwatampora J, Kimani M, et al. Early HIV-1 infection is associated with reduced frequencies of cervical Th17 cells. J Acquir Immune Defic Syndr. 2015;68(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  11. Berg RK, Melchjorsen J, Rintahaka J, Diget E, Soby S, Horan KA, et al. Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA. PLoS One. 2012;7(1):e29291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Solis M, Nakhaei P, Jalalirad M, Lacoste J, Douville R, Arguello M, et al. RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I. J Virol. 2011;85(3):1224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG, et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via toll-like receptor-viral RNA interactions. J Clin Invest. 2005;115(11):3265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohen KW, Dugast AS, Alter G, McElrath MJ, Stamatatos L. HIV-1 single-stranded RNA induces CXCL13 secretion in human monocytes via TLR7 activation and plasmacytoid dendritic cell-derived type I IFN. J Immunol. 2015;194(6):2769–75.

    Article  CAS  PubMed  Google Scholar 

  15. Lester RT, Yao XD, Ball TB, McKinnon LR, Kaul R, Wachihi C, et al. Toll-like receptor expression and responsiveness are increased in viraemic HIV-1 infection. AIDS. 2008;22(6):685–94.

    Article  CAS  PubMed  Google Scholar 

  16. Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science. 2013;341(6148):903–6. This study was the first to show that cGAS detects HIV DNA and initiates sensing.

    Article  CAS  PubMed  Google Scholar 

  17. Jakobsen MR, Bak RO, Andersen A, Berg RK, Jensen SB, Tengchuan J, et al. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci U S A. 2013;110(48):4571–80. This study was the first to shown that IFI16 together with cGAS drives innate immune activation toward HIV DNA and that viral replication was controlled by IFI16 expression.

    Article  Google Scholar 

  18. Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, Hurbain I, et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity. 2013;39(6):1132–42.

    Article  CAS  PubMed  Google Scholar 

  19. Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature. 2013;503(7476):402–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol. 2010;11(11):1005–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, et al. QBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell. 2015;61(6):1293–305. Here the authors demonstrate that PQBP1 binds HIV structured DNA and drives innate immune activation through direct interaction with cGAS.

    Article  CAS  Google Scholar 

  22. Rigby RE, Webb LM, Mackenzie KJ, Li Y, Leitch A, Reijns MA, et al. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J. 2014;33(6):542–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mankan AK, Schmidt T, Chauhan D, Goldeck M, Honing K, Gaidt M, et al. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J. 2014;33(24):2937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang Z, Santiago ML, et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell. 2010;143(5):789–801. This is the first study demonstrating that abortive HIV infection of T cells mediates innate immune activation and cell death.

  25. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505(7484):509–14. This study demonstrates that pyroptosis mediates the killing of abortively infected CD4+ T cells.

  26. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science. 2014;343(6169):428–32. This study shows that sensing of HIV in abortively infected cells is mediated by IFI16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen R, Richter HE, Smith PD. Early HIV-1 target cells in human vaginal and ectocervical mucosa. Am J Reprod Immunol. 2011;65(3):261–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Wang X, Li J, Zhou Y, Ho W. RIG-I activation inhibits HIV replication in macrophages. J Leukoc Biol. 2013;94(2):337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stacey AR, Norris PJ, Qin L, Haygreen EA, Taylor E, Heitman J, et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol. 2009;83(8):3719–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jochems SP, Jacquelin B, Chauveau L, Huot N, Petitjean G, Lepelley A, et al. Plasmacytoid dendritic cell infection and sensing capacity during pathogenic and nonpathogenic simian immunodeficiency virus infection. J Virol. 2015;89(13):6918–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jochems SP, Petitjean G, Kunkel D, Liovat AS, Ploquin MJ, Barre-Sinoussi F, et al. Modulation of type I interferon-associated viral sensing during acute simian immunodeficiency virus infection in African green monkeys. J Virol. 2015;89(1):751–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Li G, Cheng M, Nunoya J, Cheng L, Guo H, Yu H, et al. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLoS Pathog. 2014;10(7):e1004291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Simmons RP, Scully EP, Groden EE, Arnold KB, Chang JJ, Lane K, et al. HIV-1 infection induces strong production of IP-10 through TLR7/9-dependent pathways. AIDS. 2013;27(16):2505–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Benlahrech A, Patterson S. HIV-1 infection and induction of interferon alpha in plasmacytoid dendritic cells. Curr Opin HIV AIDS. 2011;6(5):373–8.

    Article  PubMed  Google Scholar 

  35. Lepelley A, Louis S, Sourisseau M, Law HK, Pothlichet J, Schilte C, et al. Innate sensing of HIV-infected cells. PLoS Pathog. 2011;7(2):e1001284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hardy AW, Graham DR, Shearer GM, Herbeuval JP. HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by toll-like receptor 7-induced IFN-alpha. Proc Natl Acad Sci U S A. 2007;104(44):17453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pan X, Baldauf HM, Keppler OT, Fackler OT. Restrictions to HIV-1 replication in resting CD4+ T lymphocytes. Cell Res. 2013;23(7):876–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bloch N, O’Brien M, Norton TD, Polsky SB, Bhardwaj N, Landau NR. HIV type 1 infection of plasmacytoid and myeloid dendritic cells is restricted by high levels of SAMHD1 and cannot be counteracted by Vpx. AIDS Res Hum Retrovir. 2014;30(2):195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li H, Evans TI, Gillis J, Connole M, Reeves RK. Bone marrow-imprinted gut-homing of plasmacytoid dendritic cells (pDCs) in acute simian immunodeficiency virus infection results in massive accumulation of hyperfunctional CD4+ pDCs in the mucosae. J Infect Dis. 2015;211(11):1717–25.

    Article  PubMed  Google Scholar 

  40. Reeves RK, Evans TI, Gillis J, Wong FE, Kang G, Li Q, et al. SIV infection induces accumulation of plasmacytoid dendritic cells in the gut mucosa. J Infect Dis. 2012;206(9):1462–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abdulhaqq SA, Martinez MI, Kang G, Foulkes AS, Rodriguez IV, Nichols SM, et al. Serial cervicovaginal exposures with replication-deficient SIVsm induce higher dendritic cell (pDC) and CD4+ T-cell infiltrates not associated with prevention but a more severe SIVmac251 infection of rhesus macaques. J Acquir Immune Defic Syndr. 2014;65(4):405–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fitzgerald-Bocarsly P, Jacobs ES. Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol. 2010;87(4):609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sabado RL, O’Brien M, Subedi A, Qin L, Hu N, Taylor E, et al. Evidence of dysregulation of dendritic cells in primary HIV infection. Blood. 2010;116(19):3839–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang JJ, Lacas A, Lindsay RJ, Doyle EH, Axten KL, Pereyra F, et al. Differential regulation of toll-like receptor pathways in acute and chronic HIV-1 infection. AIDS. 2012;26(5):533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campbell GR, Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathog. 2012;8(11):e1003017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hart KM, Murphy AJ, Barrett KT, Wira CR, Guyre PM, Pioli PA. Functional expression of pattern recognition receptors in tissues of the human female reproductive tract. J Reprod Immunol. 2009;80(1–2):33–40. This is one of the few studies demonstrating the distribution of TLRs within the FRT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Abel K, Lantz K, Krieg AM, McChesney MB, Miller CJ. The toll-like receptor 7 (TLR7) agonist, imiquimod, and the TLR9 agonist, CpG ODN, induce antiviral cytokines and chemokines but do not prevent vaginal transmission of simian immunodeficiency virus when applied intravaginally to rhesus macaques. J Virol. 2005;79(22):14355–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dominguez-Villar M, Gautron AS, de Marcken M, Keller MJ, Hafler DA. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol. 2015;16(1):118–28. In this study, the authors find that triggering T cells with TLR7 agonists renders cells more permissive for HIV-1 infection. It may be that HIV transmission activates local T cells through TLR7 to render them more permissive to infection.

  49. Nazli A, Kafka JK, Ferreira VH, Anipindi V, Mueller K, Osborne BJ, et al. HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium. J Immunol. 2013;191(8):4246–58.

    Article  CAS  PubMed  Google Scholar 

  50. Wei W, Clarke CJ, Somers GR, Cresswell KS, Loveland KA, Trapani JA, et al. Expression of IFI 16 in epithelial cells and lymphoid tissues. Histochem Cell Biol. 2003;119(1):45–54.

    CAS  PubMed  Google Scholar 

  51. Li T, Diner BA, Chen J, Cristea IM. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc Natl Acad Sci U S A. 2012;109(26):10558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ansari MA, Dutta S, Veettil MV, Dutta D, Iqbal J, Kumar B, et al. Herpesvirus genome recognition induced acetylation of nuclear IFI16 is essential for its cytoplasmic translocation, inflammasome and IFN-beta responses. PLoS Pathogens. 2015;11(7):e1005019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, et al. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 2012;36(4):561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brazda V, Coufal J, Liao JC, Arrowsmith CH. Preferential binding of IFI16 protein to cruciform structure and superhelical DNA. Biochem Biophys Res Commun. 2012;422(4):716–20.

    Article  CAS  PubMed  Google Scholar 

  55. Morrone SR, Wang T, Constantoulakis LM, Hooy RM, Delannoy MJ, Sohn J. Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc Natl Acad Sci U S A. 2014;111(1):E62–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ni, X., H. Ru, F. Ma, L. Zhao, N. Shaw, Y. Feng, W. Ding, W. Gong, Q. Wang, S. Ouyang, G. Cheng, and Z.J. Liu, New insights into the structural basis of DNA recognition by HINa and HINb domains of IFI16. J Mol Cell Biol, 2015.

  57. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dutta D, Dutta S, Veettil MV, Roy A, Ansari MA, Iqbal J, et al. BRCA1 regulates IFI16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon-beta responses. PLoS Pathog. 2015;11(6):e1005030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gariano GR, Dell’Oste V, Bronzini M, Gatti D, Luganini A, De Andrea M, et al. The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLoS Pathog. 2012;8(1):e1002498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hansen K, Prabakaran T, Laustsen A, Jorgensen SE, Rahbaek SH, Jensen SB, et al. Listeria monocytogenes induces IFNbeta expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J. 2014;33(15):1654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lo Cigno I, De Andrea M, Borgogna C, Albertini S, Landini MM, Peretti A, et al. The nuclear DNA sensor IFI16 acts as a restriction factor for human papillomavirus replication through epigenetic modifications of the viral promoters. J Virol. 2015;89(15):7506–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM, et al. cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci U S A. 2015;112(14):E1773–81. In this study, the authors describes an interesting cross-stability function of cGAS and IFI16, arguing that these two host factors may potentially regulate each others function in the innate immune response.

  63. Singh VV, Kerur N, Bottero V, Dutta S, Chakraborty S, Ansari MA, et al. Kaposi’s sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J Virol. 2013;87(8):4417–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Storek KM, Gertsvolf NA, Ohlson MB, Monack DM. cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J Immunol. 2015;194(7):3236–45. This study, based on a mouse model, confirm that cGAS and IFI16 cooperate in sensing DNA and initiate an early innate immune response.

  65. Schattgen SA, Fitzgerald KA. The PYHIN protein family as mediators of host defenses. Immunol Rev. 2011;243(1):109–18.

    Article  CAS  PubMed  Google Scholar 

  66. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe. 2011;9(5):363–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Steele AK, Lee EJ, Manuzak JA, Dillon SM, Beckham JD, McCarter MD, et al. Microbial exposure alters HIV-1-induced mucosal CD4+ T cell death pathways ex vivo. Retrovirology. 2014;11:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Galloway NL, Doitsh G, Monroe KM, Yang Z, Munoz-Arias I, Levy DN, et al. Cell-to-cell transmission of HIV-1 is required to trigger pyroptotic death of lymphoid-tissue-derived CD4 T cells. Cell Rep. 2015;12(10):1555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nissen SK, Hojen JF, Andersen KL, Kofod-Olsen E, Berg RK, Paludan SR, et al. Innate DNA sensing is impaired in HIV patients and IFI16 expression correlates with chronic immune activation. Clin Exp Immunol. 2014;177(1):295–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alunno A, Caneparo V, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, et al. Interferon gamma-inducible protein 16 in primary Sjogren’s syndrome: a novel player in disease pathogenesis? Arthritis Res Ther. 2015;17:208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Baer, A.N., M. Petri, J. Sohn, A. Rosen, and L. Casciola-Rosen, Antibodies to interferon-inducible protein-16 in primary Sjogren’s syndrome are associated with markers of more severe disease. Arth Care Res (Hoboken), 2015

  72. Vanhove W, Peeters PM, Staelens D, Schraenen A, Van der Goten J, Cleynen I, et al. Strong upregulation of AIM2 and IFI16 inflammasomes in the mucosa of patients with active inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(11):2673–82.

    Article  PubMed  Google Scholar 

  73. Gariglio M, Azzimonti B, Pagano M, Palestro G, De Andrea M, Valente G, et al. Immunohistochemical expression analysis of the human interferon-inducible gene IFI16, a member of the HIN200 family, not restricted to hematopoietic cells. J Interferon Cytokine Res. 2002;22(7):815–21.

    Article  CAS  PubMed  Google Scholar 

  74. Berg RK, Rahbek SH, Kofod-Olsen E, Holm CK, Melchjorsen J, Jensen DG, et al. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication. PLoS One. 2014;9(1):e84513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013;39(6):1019–31.

    Article  CAS  PubMed  Google Scholar 

  76. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786–91. This paper reported the discovery of cGAS and described its function and mechanism in regulating the innate immune pathway against DNA.

  77. Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 2014;159(7):1563–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159(7):1549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y, Rybniker J, et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe. 2015;17(6):799–810.

    Article  CAS  PubMed  Google Scholar 

  80. Collins AC, Cai H, Li T, Franco LH, Li XD, Nair VR, et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for mycobacterium tuberculosis. Cell Host Microbe. 2015;17(6):820–8.

    Article  CAS  PubMed  Google Scholar 

  81. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, et al. The cytosolic sensor cGAS detects mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe. 2015;17(6):811–9.

    Article  CAS  PubMed  Google Scholar 

  82. Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E, et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. 2013;503(7477):530–4. This paper described the ability of cGAMP to transfer between cGAMP- producing cells and bystander cells using gap junctions.

  83. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153(5):1094–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shu C, Li X, Li P. The mechanism of double-stranded DNA sensing through the cGAS-STING pathway. Cytokine Growth Factor Rev. 2014;25(6):641–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. 2014;54(2):289–96.

    Article  CAS  PubMed  Google Scholar 

  86. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347(6227):aaa2630.

    Article  PubMed  CAS  Google Scholar 

  87. Ge R, Zhou Y, Peng R, Wang R, Li M, Zhang Y, et al. Conservation of the STING-mediated cytosolic DNA sensing pathway in zebrafish. J Virol. 2015;89(15):7696–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE. Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling. Mol Cell. 2015;59(6):891–903.

    Article  CAS  PubMed  Google Scholar 

  89. Herzner AM, Hagmann CA, Goldeck M, Wolter S, Kubler K, Wittmann S, et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat Immunol. 2015;16(10):1025–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y, Mayer A, et al. Viruses transfer the antiviral second messenger cGAMP between cells. Science. 2015;349(6253):1228–32. Together with reference 91, these two groups described the possibility for cGAMP to be packed into HIV viral particles and through this activate the STING-IFN pathway in newly infected cells.

  91. Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X, Conrad C, et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science. 2015;349(6253):1232–6. Together with reference 90, these two groups described the possibility for cGAMP to be packed into HIV viral particles and through this activate the STING-IFN pathway in newly infected cells.

    Article  CAS  PubMed  Google Scholar 

  92. Germanaud D, Rossi M, Bussy G, Gerard D, Hertz-Pannier L, Blanchet P, et al. The Renpenning syndrome spectrum: new clinical insights supported by 13 new PQBP1-mutated males. Clin Genet. 2011;79(3):225–35.

    Article  CAS  PubMed  Google Scholar 

  93. Takahashi M, Mizuguchi M, Shinoda H, Aizawa T, Demura M, Okazawa H, et al. Polyglutamine tract binding protein-1 is an intrinsically unstructured protein. Biochim Biophys Acta. 2009;1794(6):936–43.

    Article  CAS  PubMed  Google Scholar 

  94. Pioli PA, Amiel E, Schaefer TM, Connolly JE, Wira CR, Guyre PM. Differential expression of toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infect Immun. 2004;72(10):5799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ghosh M, Shen Z, Fahey JV, Crist SG, Patel M, Smith JM, et al. Pathogen recognition in the human female reproductive tract: expression of intracellular cytosolic sensors NOD1, NOD2, RIG-1, and MDA5 and response to HIV-1 and Neisseria gonorrhea. Am J Reprod Immunol. 2013;69(1):41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TB. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol. 2010;11(5):419–26.

    Article  CAS  PubMed  Google Scholar 

  97. Tang Y, George A, Nouvet F, Sweet S, Emeagwali N, Taylor HE, et al. Infection of female primary lower genital tract epithelial cells after natural pseudotyping of HIV-1: possible implications for sexual transmission of HIV-1. PLoS One. 2014;9(7):e101367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Shen R, Kappes JC, Smythies LE, Richter HE, Novak L, Smith PD. Vaginal myeloid dendritic cells transmit founder HIV-1. J Virol. 2014;88(13):7683–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Ballweber L, Robinson B, Kreger A, Fialkow M, Lentz G, McElrath MJ, et al. Vaginal langerhans cells nonproductively transporting HIV-1 mediate infection of T cells. J Virol. 2011;85(24):13443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286(5443):1353–7.

    Article  CAS  PubMed  Google Scholar 

  101. Masson L, Salkinder AL, Olivier AJ, McKinnon LR, Gamieldien H, Mlisana K, et al. Relationship between female genital tract infections, mucosal IL-17 production and local Th17 cells. Immunology. 2015;146(4):557–67.

    Article  CAS  PubMed  Google Scholar 

  102. Baxter AE, Russell RA, Duncan CJ, Moore MD, Willberg CB, Pablos JL, et al. Macrophage infection via selective capture of HIV-1-infected CD4+ T cells. Cell Host Microbe. 2014;16(6):711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Coleman CM, Gelais CS, Wu L. Cellular and viral mechanisms of HIV-1 transmission mediated by dendritic cells. Adv Exp Med Biol. 2013;762:109–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Robertson SA. Immune regulation of conception and embryo implantation—all about quality control? J Reprod Immunol. 2010;85(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  105. Chen JC, Johnson BA, Erikson DW, Piltonen TT, Barragan F, Chu S, et al. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts. Hum Reprod. 2014;29(6):1255–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6(4):e1000852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Rollenhagen C, Asin SN. Enhanced HIV-1 replication in ex vivo ectocervical tissues from post-menopausal women correlates with increased inflammatory responses. Mucosal Immunol. 2011;4(6):671–81.

    Article  CAS  PubMed  Google Scholar 

  108. Kreisberg JF, Yonemoto W, Greene WC. Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J Exp Med. 2006;203(4):865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kinter AL, Poli G, Fox L, Hardy E, Fauci AS. HIV replication in IL-2-stimulated peripheral blood mononuclear cells is driven in an autocrine/paracrine manner by endogenous cytokines. J Immunol. 1995;154(5):2448–59.

    CAS  PubMed  Google Scholar 

  110. Kinter AL, Ostrowski M, Goletti D, Oliva A, Weissman D, Gantt K, et al. HIV replication in CD4+ T cells of HIV-infected individuals is regulated by a balance between the viral suppressive effects of endogenous beta-chemokines and the viral inductive effects of other endogenous cytokines. Proc Natl Acad Sci U S A. 1996;93(24):14076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lajoie J, Poudrier J, Massinga Loembe M, Guedou F, Leblond F, Labbe AC, et al. Chemokine expression patterns in the systemic and genital tract compartments are associated with HIV-1 infection in women from Benin. J Clin Immunol. 2010;30(1):90–8.

    Article  CAS  PubMed  Google Scholar 

  112. Lajoie J, Juno J, Burgener A, Rahman S, Mogk K, Wachihi C, et al. A distinct cytokine and chemokine profile at the genital mucosa is associated with HIV-1 protection among HIV-exposed seronegative commercial sex workers. Mucosal Immunol. 2012;5(3):277–87.

    Article  CAS  PubMed  Google Scholar 

  113. Card CM, Ball TB, Fowke KR. Immune quiescence: a model of protection against HIV infection. Retrovirology. 2013;10:141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ghosh M, Rodriguez-Garcia M, Wira CR. Immunobiology of genital tract trauma: endocrine regulation of HIV acquisition in women following sexual assault or genital tract mutilation. Am J Reprod Immunol. 2013;69 Suppl 1:51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bromfield JJ, Schjenken JE, Chin PY, Care AS, Jasper MJ, Robertson SA. Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc Natl Acad Sci U S A. 2014;111(6):2200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Politch JA, Tucker L, Bowman FP, Anderson DJ. Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men. Hum Reprod. 2007;22(11):2928–35.

    Article  CAS  PubMed  Google Scholar 

  117. Introini A, Vanpouille C, Lisco A, Grivel JC, Margolis L. Interleukin-7 facilitates HIV-1 transmission to cervico-vaginal tissue ex vivo. PLoS Pathog. 2013;9(2):e1003148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kafka JK, Sheth PM, Nazli A, Osborne BJ, Kovacs C, Kaul R, et al. Endometrial epithelial cell response to semen from HIV-infected men during different stages of infection is distinct and can drive HIV-1-long terminal repeat. AIDS. 2012;26(1):27–36.

    Article  PubMed  Google Scholar 

  119. Sharkey DJ, Macpherson AM, Tremellen KP, Robertson SA. Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells. Mol Hum Reprod. 2007;13(7):491–501.

    Article  CAS  PubMed  Google Scholar 

  120. Gutsche S, von Wolff M, Strowitzki T, Thaler CJ. Seminal plasma induces mRNA expression of IL-1beta, IL-6 and LIF in endometrial epithelial cells in vitro. Mol Hum Reprod. 2003;9(12):785–91.

    Article  CAS  PubMed  Google Scholar 

  121. Joseph T, Zalenskaya IA, Sawyer LC, Chandra N, Doncel GF. Seminal plasma induces prostaglandin-endoperoxide synthase (PTGS) 2 expression in immortalized human vaginal cells: involvement of semen prostaglandin E2 in PTGS2 upregulation. Biol Reprod. 2013;88(1):13.

    Article  PubMed  CAS  Google Scholar 

  122. Sharkey DJ, Macpherson AM, Tremellen KP, Mottershead DG, Gilchrist RB, Robertson SA. TGF-beta mediates proinflammatory seminal fluid signaling in human cervical epithelial cells. J Immunol. 2012;189(2):1024–35.

    Article  CAS  PubMed  Google Scholar 

  123. Prakash M, Patterson S, Gotch F, Kapembwa MS. Recruitment of CD4 T lymphocytes and macrophages into the cervical epithelium of women after coitus. Am J Obstet Gynecol. 2003;188(2):376–81.

    Article  PubMed  Google Scholar 

  124. Sharkey DJ, Tremellen KP, Jasper MJ, Gemzell-Danielsson K, Robertson SA. Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus. J Immunol. 2012;188(5):2445–54.

    Article  CAS  PubMed  Google Scholar 

  125. Munch J, Rucker E, Standker L, Adermann K, Goffinet C, Schindler M, et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell. 2007;131(6):1059–71.

    Article  PubMed  CAS  Google Scholar 

  126. Roan NR, Muller JA, Liu H, Chu S, Arnold F, Sturzel CM, et al. Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe. 2011;10(6):541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Usmani SM, Zirafi O, Muller JA, Sandi-Monroy NL, Yadav JK, Meier C, et al. Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nat Commun. 2014;5:3508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Zirafi O, Kim KA, Roan NR, Kluge SF, Muller JA, Jiang S, et al. Semen enhances HIV infectivity and impairs the antiviral efficacy of microbicides. Sci Transl Med. 2014;6(262):262ra157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Vishwanathan SA, Guenthner PC, Lin CY, Dobard C, Sharma S, Adams DR, et al. High susceptibility to repeated, low-dose, vaginal SHIV exposure late in the luteal phase of the menstrual cycle of pigtail macaques. J Acquir Immune Defic Syndr. 2011;57(4):261–4.

    Article  CAS  PubMed  Google Scholar 

  130. Marx PA, Spira AI, Gettie A, Dailey PJ, Veazey RS, Lackner AA, et al. Progesterone implants enhance SIV vaginal transmission and early virus load. Nat Med. 1996;2(10):1084–9.

    Article  CAS  PubMed  Google Scholar 

  131. Polis CB, Phillips SJ, Curtis KM, Westreich DJ, Steyn PS, Raymond E, et al. Hormonal contraceptive methods and risk of HIV acquisition in women: a systematic review of epidemiological evidence. Contraception. 2014;90(4):360–90.

    Article  CAS  PubMed  Google Scholar 

  132. Giles SL, Lester F. Should women with HIV, or at high risk of contracting HIV, use progestogen-containing contraception? BMJ. 2013;347:f6695.

    Article  PubMed  Google Scholar 

  133. Morrison CS, Chen PL, Kwok C, Baeten JM, Brown J, Crook AM, et al. Hormonal contraception and the risk of HIV acquisition: an individual participant data meta-analysis. PLoS Med. 2015;12(1):e1001778.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ralph LJ, McCoy SI, Shiu K, Padian NS. Hormonal contraceptive use and women’s risk of HIV acquisition: a meta-analysis of observational studies. Lancet Infect Dis. 2015;15(2):181–9.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Noguchi LM, Richardson BA, Baeten JM, Hillier SL, Balkus JE, Chirenje ZM, et al. Risk of HIV-1 acquisition among women who use different types of injectable progestin contraception in South Africa: a prospective cohort study. Lancet HIV. 2015;2(7):e279–87.

    Article  PubMed  Google Scholar 

  136. Wira CR, Fahey JV. A new strategy to understand how HIV infects women: identification of a window of vulnerability during the menstrual cycle. AIDS. 2008;22(15):1909–17.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Leyendecker G, Kunz G, Wildt L, Beil D, Deininger H. Uterine hyperperistalsis and dysperistalsis as dysfunctions of the mechanism of rapid sperm transport in patients with endometriosis and infertility. Hum Reprod. 1996;11(7):1542–51.

    Article  CAS  PubMed  Google Scholar 

  138. Barnhart KT, Stolpen A, Pretorius ES, Malamud D. Distribution of a spermicide containing nonoxynol-9 in the vaginal canal and the upper female reproductive tract. Hum Reprod. 2001;16(6):1151–4.

    Article  CAS  PubMed  Google Scholar 

  139. Stieh DJ, Maric D, Kelley ZL, Anderson MR, Hattaway HZ, Beilfuss BA, et al. Vaginal challenge with an SIV-based dual reporter system reveals that infection can occur throughout the upper and lower female reproductive tract. PLoS Pathog. 2014;10(10):e1004440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Quillay H, El Costa H, Marlin R, Duriez M, Cannou C, Chretien F, et al. Distinct endometrial and decidual macrophage characteristics and regulation of their permissivity to HIV-1 infection by SAMHD1. J Virol. 2014;89(2):1329–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Burgener A, Tjernlund A, Kaldensjo T, Abou M, McCorrister S, Westmacott GR, et al. A systems biology examination of the human female genital tract shows compartmentalization of immune factor expression. J Virol. 2013;87(9):5141–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Panchanathan R, Liu H, Leung YK, Ho SM, Choubey D. Bisphenol A (BPA) stimulates the interferon signaling and activates the inflammasome activity in myeloid cells. Mol Cell Endocrinol. 2015 Nov 5;415:45-55.

  143. Choubey D, Panchanathan R, Duan X, Liu H, Liu H. Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res. 2011;31(12):893–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Panchanathan R, Shen H, Zhang X, Ho SM, Choubey D. Mutually positive regulatory feedback loop between interferons and estrogen receptor-alpha in mice: implications for sex bias in autoimmunity. PLoS One. 2010;5(5):e10868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G. Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod Biol. 2008;8(3):179–211.

    Article  PubMed  Google Scholar 

  146. Tasker C, Ding J, Schmolke M, Rivera-Medina A, Garcia-Sastre A, Chang TL. 17beta-estradiol protects primary macrophages against HIV infection through induction of interferon-alpha. Viral Immunol. 2014;27(4):140–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Poonia B, Walter L, Dufour J, Harrison R, Marx PA, Veazey RS. Cyclic changes in the vaginal epithelium of normal rhesus macaques. J Endocrinol. 2006;190(3):829–35.

    Article  CAS  PubMed  Google Scholar 

  148. Saba E, Origoni M, Taccagni G, Ferrari D, Doglioni C, Nava A, et al. Productive HIV-1 infection of human cervical tissue ex vivo is associated with the secretory phase of the menstrual cycle. Mucosal Immunol. 2013;6(6):1081–90.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The current review is supported by grants from the Danish Research Council of Independent Research 4004-00237B (to M.R.J.), the Lundbeck foundation R151-2013-14443 (to M.R.J.), the Aarhus Research Centre of Innate Immunology (to M.R.J.), and the NIH R00 AI 104262 and R21 AI 116252 (to N.R.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Jakobsen.

Ethics declarations

Conflict of Interest

Nadia R. Roan and Martin R. Jakobsen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roan, N.R., Jakobsen, M.R. Friend or Foe: Innate Sensing of HIV in the Female Reproductive Tract. Curr HIV/AIDS Rep 13, 53–63 (2016). https://doi.org/10.1007/s11904-016-0305-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0305-0

Keywords

Navigation