Skip to main content

Advertisement

Log in

Gut Innate Immunity and HIV Pathogenesis

  • HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In the gastro-intestinal tract, the complex network of multiple innate cell populations play critical roles not only as a first line of defense against invading pathogens and in driving adaptive immune responses but also in maintaining intestinal homeostasis. Here, we describe the roles of various innate immune cell populations in gut immunity and detail studies investigating the impact of acute and chronic HIV infection on these cell populations.

Recent Findings

Alterations in frequencies, phenotype and/or function of innate lymphoid cells, dendritic cells, macrophages, neutrophils, and innate-like T cells have been reported in people with HIV (PWH), with many of these features persisting despite anti-retroviral therapy and virological suppression.

Summary

Dysregulated gut innate immunity in PWH is a feature of gut pathogenesis. A greater understanding of the mechanisms driving impairment in the multiple different gut innate immune cell populations and the downstream consequences of an altered innate immune response on host defense and gut homeostasis in PWH is needed to develop more effective HIV treatments and cure strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Gasteiger G, D’Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. Cellular innate immunity: an old game with new players. J Innate Immun. 2017;9:111–25.

    Article  CAS  PubMed  Google Scholar 

  2. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bennett MS, Round JL, Leung DT. Innate-like lymphocytes in intestinal infections. Curr Opin Infect Dis. 2015;28:457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chou C, Li MO. Tissue-resident lymphocytes across innate and adaptive lineages. Front Immunol. 2018;9:2104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Castellanos JG, Longman RS. The balance of power: innate lymphoid cells in tissue inflammation and repair. J Clin Invest. 2019;129:2640–50.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herbert DR, Douglas B, Zullo K. Group 2 innate lymphoid cells (ILC2): type 2 immunity and helminth immunity. Int J Mol Sci. 2019;20:2276.

    Article  CAS  PubMed Central  Google Scholar 

  8. Pantazi E, Powell N. Group 3 ILCs: peacekeepers or troublemakers? What's your gut telling you?! Front Immunol. 2019;10:676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poggi A, Benelli R, Vene R, Costa D, Ferrari N, Tosetti F, et al. Human gut-associated natural killer cells in health and disease. Front Immunol. 2019;10:961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seo GY, Giles DA, Kronenberg M. The role of innate lymphoid cells in response to microbes at mucosal surfaces. Mucosal Immunol. 2020;13:399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colonna M. Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity. 2018;48:1104–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mela CM, Steel A, Lindsay J, Gazzard BG, Gotch FM, Goodier MR. Depletion of natural killer cells in the colonic lamina propria of viraemic HIV-1-infected individuals. AIDS. 2007;21:2177–82.

    Article  PubMed  Google Scholar 

  13. Sips M, Sciaranghella G, Diefenbach T, Dugast AS, Berger CT, Liu Q, et al. Altered distribution of mucosal NK cells during HIV infection. Mucosal Immunol. 2012;5:30–40.

    Article  CAS  PubMed  Google Scholar 

  14. Taborda NA, Gonzalez SM, Alvarez CM, Correa LA, Montoya CJ, Rugeles MT. Higher frequency of NK and CD4+ T-cells in mucosa and potent cytotoxic response in HIV controllers. PLoS One. 2015;10:e0136292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Taborda NA, Gonzalez SM, Correa LA, Montoya CJ, Rugeles MT. Spontaneous HIV controllers exhibit preserved immune parameters in peripheral blood and gastrointestinal mucosa. J Acquir Immune Defic Syndr. 2015;70:115–21.

    Article  CAS  PubMed  Google Scholar 

  16. Kramer B, Goeser F, Lutz P, Glassner A, Boesecke C, Schwarze-Zander C, et al. Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy. PLoS Pathog. 2017;13:e1006373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang Y, Lifshitz L, Gellatly K, Vinton CL, Busman-Sahay K, McCauley S, et al. HIV-1-induced cytokines deplete homeostatic innate lymphoid cells and expand TCF7-dependent memory NK cells. Nat Immunol. 2020;21:274–86 This study elegantly demonstrates that depletion of gut ILC3s persists in people with HIV (PWH) despite effective virologic suppression by anti-retroviral therapy and lower frequencies of gut ILC3s are associated with neutrophil accumulation and with Type I Interferons.

  18. Utay NS, Vigil KJ, Somasunderam A, Aulicino PC, Smulevitz B, Chiadika S, et al. Timing of antiretroviral therapy initiation determines rectal natural killer cell populations. AIDS Res Hum Retroviruses. 2020;36:314–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Cheng L, Wang H, Yu H, Tu B, Fu Q, et al. Infection and depletion of CD4+ group-1 innate lymphoid cells by HIV-1 via type-I interferon pathway. PLoS Pathog. 2018;14:e1006819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457:722–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kim CJ, Nazli A, Rojas OL, Chege D, Alidina Z, Huibner S, et al. A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol. 2012;5:670–80.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Z, Cheng L, Zhao J, Li G, Zhang L, Chen W, et al. Plasmacytoid dendritic cells promote HIV-1-induced group 3 innate lymphoid cell depletion. J Clin Invest. 2015;125:3692–703.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fernandes SM, Pires AR, Ferreira C, Foxall RB, Rino J, Santos C, et al. Enteric mucosa integrity in the presence of a preserved innate interleukin 22 compartment in HIV type 1-treated individuals. J Infect Dis. 2014;210:630–40.

    Article  CAS  PubMed  Google Scholar 

  24. Dillon SM, Castleman MJ, Frank DN, Austin GL, Gianella S, Cogswell AC, et al. Brief Report: Inflammatory colonic innate lymphoid cells are increased during untreated HIV-1 infection and associated with markers of gut dysbiosis and mucosal immune activation. J Acquir Immune Defic Syndr. 2017;76:431–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 2014;7:983–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9.

    Article  CAS  PubMed  Google Scholar 

  27. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174:1054–66.

    Article  CAS  PubMed  Google Scholar 

  28. Kloverpris HN, Kazer SW, Mjosberg J, Mabuka JM, Wellmann A, Ndhlovu Z, et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity. 2016;44:391–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14:571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356:283.

    Article  CAS  Google Scholar 

  31. Bain CC, Schridde A. Origin, differentiation, and function of intestinal macrophages. Front Immunol. 2018;9:2733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Muller PA, Matheis F, Mucida D. Gut macrophages: key players in intestinal immunity and tissue physiology. Curr Opin Immunol. 2020;62:54–61.

    Article  CAS  PubMed  Google Scholar 

  33. Sun T, Nguyen A, Gommerman JL. Dendritic cell subsets in intestinal immunity and inflammation. J Immunol. 2020;204:1075–83.

    Article  CAS  PubMed  Google Scholar 

  34. Viola MF, Boeckxstaens G. Intestinal resident macrophages: multitaskers of the gut. Neurogastroenterol Motil. 2020;32:e13843.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Castleman MJ, Dillon SM, Purba CM, Cogswell AC, Kibbie JJ, McCarter MD, et al. Commensal and pathogenic bacteria indirectly induce IL-22 but not IFNgamma production from human colonic ILC3s via multiple mechanisms. Front Immunol. 2019;10:649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castleman MJ, Dillon SM, Purba C, Cogswell AC, McCarter M, Barker E, et al. Enteric bacteria induce IFN gamma and granzyme B from human colonic group 1 innate lymphoid cells. Gut Microbes. 2020;e1667723:12.

    Google Scholar 

  37. Dillon SM, Manuzak JA, Leone AK, Lee EJ, Rogers LM, McCarter MD, et al. HIV-1 infection of human intestinal lamina propria CD4+ T cells in vitro is enhanced by exposure to commensal Escherichia coli. J Immunol. 2012;189:885–96.

    Article  CAS  PubMed  Google Scholar 

  38. Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B, et al. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T cell activation in untreated HIV-1 infection. Mucosal Immunol. 2016;9:24–37.

    Article  CAS  PubMed  Google Scholar 

  39. Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L, et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med. 2010;2:32–6.

    Article  CAS  Google Scholar 

  40. Murray SM, Zhang Y, Douek DC, Sekaly RP. Myeloid cells enriched for a dendritic cell population from people living with HIV have altered gene expression not restored by antiretroviral therapy. Front Immunol. 2020;11:261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Allers K, Fehr M, Conrad K, Epple HJ, Schurmann D, Geelhaar-Karsch A, et al. Macrophages accumulate in the gut mucosa of untreated HIV-infected patients. J Infect Dis. 2014;209:739–48.

    Article  CAS  PubMed  Google Scholar 

  42. Cassol E, Rossouw T, Malfeld S, Mahasha P, Slavik T, Seebregts C, et al. CD14(+) macrophages that accumulate in the colon of African AIDS patients express pro-inflammatory cytokines and are responsive to lipopolysaccharide. BMC Infect Dis. 2015;15:430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bracq L, Xie M, Benichou S, Bouchet J. Mechanisms for cell-to-cell transmission of HIV-1. Front Immunol. 2018;9:260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Coleman CM, Gelais CS, Wu L. Cellular and viral mechanisms of HIV-1 transmission mediated by dendritic cells. Adv Exp Med Biol. 2013;762:109–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akiyama H, Ramirez NP, Gibson G, Kline C, Watkins S, Ambrose Z, et al. Interferon-inducible CD169/Siglec1 attenuates anti-HIV-1 Effects of alpha interferon. J Virol. 2017;91:e00972–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Izquierdo-Useros N, Lorizate M, Puertas MC, Rodriguez-Plata MT, Zangger N, Erikson E, et al. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 2012;e1001448:10.

    Google Scholar 

  48. Jobe O, Trinh HV, Kim J, Alsalmi W, Tovanabutra S, Ehrenberg PK, et al. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region. J Leukoc Biol. 2016;99:1089–106.

    Article  CAS  PubMed  Google Scholar 

  49. Pino M, Erkizia I, Benet S, Erikson E, Fernandez-Figueras MT, Guerrero D, et al. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology. 2015;12:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Puryear WB, Akiyama H, Geer SD, Ramirez NP, Yu X, Reinhard BM, et al. Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLoS Pathog. 2013;9:e1003291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Puryear WB, Yu X, Ramirez NP, Reinhard BM, Gummuluru S. HIV-1 incorporation of host-cell-derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc Natl Acad Sci U S A. 2012;109:7475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rempel H, Calosing C, Sun B, Pulliam L. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One. 2008;3:e1967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Akiyama H, Ramirez NG, Gudheti MV, Gummuluru S. CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies. PLoS Pathog. 2015;11:e1004751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hammonds JE, Beeman N, Ding L, Takushi S, Francis AC, Wang JJ, et al. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog. 2017;13:e1006181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sewald X, Ladinsky MS, Uchil PD, Beloor J, Pi R, Herrmann C, et al. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science. 2015;350:563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perez-Zsolt D, Cantero-Perez J, Erkizia I, Benet S, Pino M, Serra-Peinado C, et al. Dendritic cells from the cervical mucosa capture and transfer HIV-1 via Siglec-1. Front Immunol. 2019;10:825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dillon SM, Guo K, Austin GL, Gianella S, Engen PA, Mutlu EA, et al. A compartmentalized type I interferon response in the gut during chronic HIV-1 infection is associated with immunopathogenesis. AIDS. 2018;32:1599–611.

    Article  CAS  PubMed  Google Scholar 

  58. Dillon SM, Guo K, Castleman MJ, Santiago ML, Wilson CC. Quantifying HIV-1-mediated gut CD4+ T cell death in the Lamina Propria Aggregate Culture (LPAC) Model. Bio-protocol. 2020;10:e3486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bujko A, Atlasy N, Landsverk OJB, Richter L, Yaqub S, Horneland R, et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J Exp Med. 2018;215:441–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mann ER, Bernardo D, English NR, Landy J, Al-Hassi HO, Peake ST, et al. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum. Gut. 2016;65:256–70.

    Article  PubMed  Google Scholar 

  61. Dillon SM, Lee EJ, Donovan AM, Guo K, Harper MS, Frank DN, et al. Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection. Retrovirology. 2016;13:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Scagnolari C, Antonelli G. Type I interferon and HIV: subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev. 2018;40:19–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lombardi VC, Khaiboullina SF. Plasmacytoid dendritic cells of the gut: relevance to immunity and pathology. Clin Immunol. 2014;153:165–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Won HY, Lee JY, Ryu D, Kim HT, Chang SY. The role of plasmacytoid dendritic cells in gut health. Immune Netw. 2019;19:e6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Boichuk SV, Khaiboullina SF, Ramazanov BR, Khasanova GR, Ivanovskaya KA, Nizamutdinov EZ, et al. Gut-associated plasmacytoid dendritic cells display an immature phenotype and upregulated granzyme B in subjects with HIV/AIDS. Front Immunol. 2015;6:485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lehmann C, Jung N, Forster K, Koch N, Leifeld L, Fischer J, et al. Longitudinal analysis of distribution and function of plasmacytoid dendritic cells in peripheral blood and gut mucosa of HIV infected patients. J Infect Dis. 2014;209:940–9.

    Article  CAS  PubMed  Google Scholar 

  67. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–89.

    Article  CAS  PubMed  Google Scholar 

  68. Fournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5:354–66.

    Article  CAS  PubMed  Google Scholar 

  69. Deleage C, Schuetz A, Alvord WG, Johnston L, Hao XP, Morcock DR, et al. Impact of early cART in the gut during acute HIV infection. JCI Insight. 2016;e87065:1.

    Google Scholar 

  70. Somsouk M, Estes JD, Deleage C, Dunham RM, Albright R, Inadomi JM, et al. Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS. 2015;29:43–51.

    Article  CAS  PubMed  Google Scholar 

  71. Hensley-McBain T, Wu MC, Manuzak JA, Cheu RK, Gustin A, Driscoll CB, et al. Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection. PLoS Pathog. 2019;15:e1007672 This study highlights that the accumulation of neutrophils in the gut of chronically infected, anti-retroviral therapy-treated people with HIV (PWH) is linked to alterations in the enteric microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ioannidis M, Cerundolo V, Salio M. The immune modulating properties of mucosal-associated invariant T cells. Front Immunol. 2020;11:1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leeansyah E, Ganesh A, Quigley MF, Sonnerborg A, Andersson J, Hunt PW, et al. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood. 2013;121:1124–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Greathead L, Metcalf R, Gazzard B, Gotch F, Steel A, Kelleher P. CD8+/CD161++ mucosal-associated invariant T-cell levels in the colon are restored on long-term antiretroviral therapy and correlate with CD8+ T-cell immune activation. AIDS. 2014;28:1690–2.

    Article  CAS  PubMed  Google Scholar 

  75. Cosgrove C, Ussher JE, Rauch A, Gartner K, Kurioka A, Huhn MH, et al. Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection. Blood. 2013;121:951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kok A, Hocqueloux L, Hocini H, Carriere M, Lefrou L, Guguin A, et al. Early initiation of combined antiretroviral therapy preserves immune function in the gut of HIV-infected patients. Mucosal Immunol. 2015;8:127–40.

    Article  CAS  PubMed  Google Scholar 

  77. Lawand M, Dechanet-Merville J, Dieu-Nosjean MC. Key features of gamma-delta T-cell subsets in human diseases and their immunotherapeutic implications. Front Immunol. 2017;8:761.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. McCarthy NE, Eberl M. Human gammadelta T-cell control of mucosal immunity and inflammation. Front Immunol. 2018;9:985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Nilssen DE, Brandtzaeg P. Intraepithelial gammadelta T cells remain increased in the duodenum of AIDS patients despite antiretroviral treatment. PLoS One. 2012;7:e29066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nilssen DE, Muller F, Oktedalen O, Froland SS, Fausa O, Halstensen TS, et al. Intraepithelial gamma/delta T cells in duodenal mucosa are related to the immune state and survival time in AIDS. J Virol. 1996;70:3545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Poles MA, Barsoum S, Yu W, Yu J, Sun P, Daly J, et al. Human immunodeficiency virus type 1 induces persistent changes in mucosal and blood gammadelta T cells despite suppressive therapy. J Virol. 2003;77:10456–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cimini E, Agrati C, D’Offizi G, Vlassi C, Casetti R, Sacchi A, et al. Primary and chronic HIV infection differently modulates mucosal Vdelta1 and Vdelta2 T-cells differentiation profile and effector functions. PLoS One. 2015;e0129771:10.

    Google Scholar 

  83. Olson GS, Moore SW, Richter JM, Garber JJ, Bowman BA, Rawlings CA, et al. Increased frequency of systemic pro-inflammatory Vdelta1(+) gammadelta T cells in HIV elite controllers correlates with gut viral load. Sci Rep. 2018;8:16471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kinjo Y, Kitano N, Kronenberg M. The role of invariant natural killer T cells in microbial immunity. J Infect Chemother. 2013;19:560–70.

    Article  CAS  PubMed  Google Scholar 

  85. Montoya CJ, Pollard D, Martinson J, Kumari K, Wasserfall C, Mulder CB, et al. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology. 2007;122:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou L, Adrianto I, Wang J, Wu X, Datta I, Mi QS. Single-cell RNA-Seq analysis uncovers distinct functional human NKT cell sub-populations in peripheral blood. Front Cell Dev Biol. 2020;8:384.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ibarrondo FJ, Wilson SB, Hultin LE, Shih R, Hausner MA, Hultin PM, et al. Preferential depletion of gut CD4-expressing iNKT cells contributes to systemic immune activation in HIV-1 infection. Mucosal Immunol. 2013;6:591–600.

    Article  CAS  PubMed  Google Scholar 

  88. Paquin-Proulx D, Ching C, Vujkovic-Cvijin I, Fadrosh D, Loh L, Huang Y, et al. Bacteroides are associated with GALT iNKT cell function and reduction of microbial translocation in HIV-1 infection. Mucosal Immunol. 2017;10:69–78.

    Article  CAS  PubMed  Google Scholar 

  89. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guo K, Shen G, Kibbie J, Gonzalez T, Dillon SM, Smith HA, et al. Qualitative differences between the IFNalpha subtypes and IFNbeta influence chronic mucosal HIV-1 pathogenesis. PLoS Pathog. 2020;e1008986:16.

    Google Scholar 

  91. Hughes SM, Levy CN, Calienes FL, Stekler JD, Pandey U, Vojtech L, et al. Treatment with commonly used antiretroviral drugs induces a type I/III interferon signature in the gut in the absence of HIV infection. Cell Rep Med. 2020;1:100096.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yoder AC, Guo K, Dillon SM, Phang T, Lee EJ, Harper MS, et al. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria. PLoS Pathog. 2017;13:e1006226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Pinacchio C, Scagnolari C, Iebba V, Santinelli L, Innocenti GP, Frasca F, et al. High abundance of genus Prevotella is associated with dysregulation of IFN-I and T cell response in HIV-1-infected patients. AIDS. 2020;34:1467–73.

    Article  CAS  PubMed  Google Scholar 

  94. Pinacchio C, Scheri GC, Statzu M, Santinelli L, Ceccarelli G, Innocenti GP, et al. Type I/II Interferon in HIV-1-infected patients: expression in gut mucosa and in peripheral blood mononuclear cells and its modification upon probiotic supplementation. J Immunol Res. 2018;1738676:2018.

    Google Scholar 

  95. Harper MS, Guo K, Gibbert K, Lee EJ, Dillon SM, Barrett BS, et al. Interferon-alpha subtypes in an ex vivo model of acute HIV-1 infection: expression, potency and effector mechanisms. PLoS Pathog. 2015;e1005254:11.

    Google Scholar 

  96. Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, De Oliveira MF, et al. HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J Clin Invest. 2020;130:1699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis. 2008;197:714–20.

    Article  CAS  PubMed  Google Scholar 

  98. Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol. 2020. https://doi.org/10.1016/j.smim.2020.101412.

  99. Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, Duan L, et al. Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J Infect Dis. 2010;202:1553–61.

    Article  PubMed  Google Scholar 

  100. Estes JD, Kityo C, Ssali F, Swainson L, Makamdop KN, Del Prete GQ, et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat Med. 2017;23:1271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Olesen R, Vigano S, Rasmussen TA, Sogaard OS, Ouyang Z, Buzon M, et al. Innate immune activity correlates with CD4 T cell-associated HIV-1 DNA decline during latency-reversing treatment with panobinostat. J Virol. 2015;89:10176–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Van der Sluis RM, Zerbato JM, Rhodes JW, Pascoe RD, Solomon A, Kumar NA, et al. Diverse effects of interferon alpha on the establishment and reversal of HIV latency. PLoS Pathog. 2020;e1008151:16.

    Google Scholar 

  103. Wong ME, Jaworowski A, Hearps AC. The HIV reservoir in monocytes and macrophages. Front Immunol. 2019;10:1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zalar A, Figueroa MI, Ruibal-Ares B, Bare P, Cahn P, de Bracco MM, et al. Macrophage HIV-1 infection in duodenal tissue of patients on long term HAART. Antiviral Res. 2010;87:269–71.

    Article  CAS  PubMed  Google Scholar 

  105. Yukl SA, Sinclair E, Somsouk M, Hunt PW, Epling L, Killian M, et al. A comparison of methods for measuring rectal HIV levels suggests that HIV DNA resides in cells other than CD4+ T cells, including myeloid cells. AIDS. 2014;28:439–42.

    Article  CAS  PubMed  Google Scholar 

  106. Cattin A, Wiche Salinas TR, Gosselin A, Planas D, Shacklett B, Cohen EA, et al. HIV-1 is rarely detected in blood and colon myeloid cells during viral-suppressive antiretroviral therapy. AIDS. 2019;33:1293–306.

    Article  CAS  PubMed  Google Scholar 

  107. Calantone N, Wu F, Klase Z, Deleage C, Perkins M, Matsuda K, et al. Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. Immunity. 2014;41:493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge and give our sincere thanks to all the study participants who generously contributed their time and biological samples to the many clinical studies detailed in this review. We would also like to acknowledge and thank Steven Lada for his assistance with the in vitro studies detailed in Fig. 1.

Funding

S.M.D. and C.C.W. are currently supported by funding from NIH (R01AI118983; R01AI134220; R21AG062932). Previously unpublished studies included in this review were supported by R01AI134220. Published studies conducted by Drs. Dillon and Wilson mentioned in this review were supported by R01DK088663, R01AI118983, and R01AI108404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie M. Dillon.

Ethics declarations

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors that were previously published complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dillon, S.M., Wilson, C.C. Gut Innate Immunity and HIV Pathogenesis. Curr HIV/AIDS Rep 18, 128–138 (2021). https://doi.org/10.1007/s11904-021-00544-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-021-00544-3

Keywords

Navigation