Skip to main content

Advertisement

Log in

Recent Advances in the Development of Integrase Inhibitors for HIV Treatment

  • HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

The complex multistep life cycle of HIV allows it to proliferate within the host and integrate its genome in to the host chromosomal DNA. This provirus can remain dormant for an indefinite period. The process of integration, governed by integrase (IN), is highly conserved across the Retroviridae family. Hence, targeting integration is not only expected to block HIV replication but may also reveal new therapeutic strategies to treat HIV as well as other retrovirus infections.

Recent Findings

HIV integrase (IN) has gained attention as the most promising therapeutic target as there are no equivalent homologues of IN that has been discovered in humans. Although current nano-formulated long-acting IN inhibitors have demonstrated the phenomenal ability to block HIV integration and replication with extraordinary half-life, they also have certain limitations.

Summary

In this review, we have summarized the current literature on clinically established IN inhibitors, their mechanism of action, the advantages and disadvantages associated with their therapeutic application, and finally current HIV cure strategies using these inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). 1983. Rev Investig Clin. 2004;56(2):126–9. https://doi.org/10.1126/science.6189183.

    Article  CAS  Google Scholar 

  2. Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E, Kalyanaraman VS, et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):865–7. https://doi.org/10.1126/science.6601823.

    Article  CAS  PubMed  Google Scholar 

  3. Levy JA, Hoffman AD, Kramer SM, Landis JA, Shimabukuro JM, Oshiro LS. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science. 1984;225(4664):840–2. https://doi.org/10.1126/science.6206563.

    Article  CAS  PubMed  Google Scholar 

  4. Prieto P, Podzamczer D. Switching strategies in the recent era of antiretroviral therapy. Expert Rev Clin Pharmacol. 2019;12(3):235–47. https://doi.org/10.1080/17512433.2019.1575728.

    Article  CAS  PubMed  Google Scholar 

  5. Nanfack AJ, Redd AD, Bimela JS, Ncham G, Achem E, Banin AN, et al. Multimethod longitudinal HIV drug resistance analysis in antiretroviral-therapy-naive patients. J Clin Microbiol. 2017;55(9):2785–800. https://doi.org/10.1128/JCM.00634-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schauer G, Sluis-Cremer N. HIV-1 resistance to reverse transcriptase inhibitors. In: Berghuis A, Matlashewski G, Wainberg MA, Sheppard D, editors. Handbook of antimicrobial resistance. New York: Springer New York; 2017. p. 523–42.

    Chapter  Google Scholar 

  7. Holmes M, Zhang F, Bieniasz PD. Single-cell and single-cycle analysis of HIV-1 replication. PLoS Pathog. 2015;11(6):e1004961. https://doi.org/10.1371/journal.ppat.1004961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. • Schott K, Konig R. Picking the Survivor! CRISPR Reveals HIV Dependency Factors. Trends Microbiol. 2017;25(4):243–5. https://doi.org/10.1016/j.tim.2017.02.004. This interesting study highlights three HIV dependency factors by utilisation of loss-of-function CRISPR/Cas9 technology. These HIV dependency factors are vital for virus replication cycle; their knock out attenuates virus replication even in primary cells without being lethal to cells.

    Article  CAS  PubMed  Google Scholar 

  9. •• Engelman AN, Singh PK. Cellular and molecular mechanisms of HIV-1 integration targeting. Cell Mol Life Sci. 2018;75(14):2491–507. https://doi.org/10.1007/s00018-018-2772-5. Outstanding elaboration about the events that take place during integration of viral genome in to the "gene-rich" area of the chromosome. The review also briefs about the development of small molecules that block these events and ultimately hamper the virus replication cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. • Hu H, Xiao A, Zhang S, Li Y, Shi X, Jiang T, et al. DeepHINT: understanding HIV-1 integration via deep learning with attention. Bioinformatics. 2019;35(10):1660–7. https://doi.org/10.1093/bioinformatics/bty842. Interesting new approach of attention based deep learning network, DeepHINT, that predicts the integration site of provirus into the host chromosome.

    Article  CAS  PubMed  Google Scholar 

  11. Koczor CA, Lewis W. Nucleoside reverse transcriptase inhibitor toxicity and mitochondrial DNA. Expert Opin Drug Metab Toxicol. 2010;6(12):1493–504. https://doi.org/10.1517/17425255.2010.526602.

    Article  CAS  PubMed  Google Scholar 

  12. Margolis AM, Heverling H, Pham PA, Stolbach A. A review of the toxicity of HIV medications. J Med Toxicol. 2014;10(1):26–39. https://doi.org/10.1007/s13181-013-0325-8.

    Article  CAS  PubMed  Google Scholar 

  13. Eron JJ Jr. HIV-1 protease inhibitors. Clin Infect Dis. 2000;30(Suppl 2):S160–70. https://doi.org/10.1086/313853.

    Article  CAS  PubMed  Google Scholar 

  14. Echecopar-Sabogal J, D'Angelo-Piaggio L, Chaname-Baca DM, Ugarte-Gil C. Association between the use of protease inhibitors in highly active antiretroviral therapy and incidence of diabetes mellitus and/or metabolic syndrome in HIV-infected patients: a systematic review and meta-analysis. Int J STD AIDS. 2018;29(5):443–52. https://doi.org/10.1177/0956462417732226.

    Article  CAS  PubMed  Google Scholar 

  15. Soriano V, Fernandez-Montero JV, Benitez-Gutierrez L, Mendoza C, Arias A, Barreiro P, et al. Dual antiretroviral therapy for HIV infection. Expert Opin Drug Saf. 2017;16(8):923–32. https://doi.org/10.1080/14740338.2017.1343300.

    Article  CAS  PubMed  Google Scholar 

  16. Engelman A, Cherepanov P. Retroviral Integrase structure and DNA recombination mechanism. Microbiol Spectr. 2014;2(6):1–22.

    Article  CAS  Google Scholar 

  17. Pommier Y, Johnson AA, Marchand C. Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov. 2005;4(3):236–48. https://doi.org/10.1038/nrd1660.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Mawsawi LQ, Al-Safi RI, Neamati N. Anti-infectives: clinical progress of HIV-1 integrase inhibitors. Expert Opin Emerg Drugs. 2008;13(2):213–25. https://doi.org/10.1517/14728214.13.2.213.

    Article  CAS  PubMed  Google Scholar 

  19. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487(7408):482–5. https://doi.org/10.1038/nature11286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coiras M, Lopez-Huertas MR, Perez-Olmeda M, Alcami J. Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol. 2009;7(11):798–812. https://doi.org/10.1038/nrmicro2223.

    Article  CAS  PubMed  Google Scholar 

  21. Chen JC, Krucinski J, Miercke LJ, Finer-Moore JS, Tang AH, Leavitt AD, et al. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc Natl Acad Sci U S A. 2000;97(15):8233–8. https://doi.org/10.1073/pnas.150220297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan P, Gupta K, Van Duyne GD. Tetrameric structure of a serine integrase catalytic domain. Structure. 2008;16(8):1275–86. https://doi.org/10.1016/j.str.2008.04.018.

    Article  CAS  PubMed  Google Scholar 

  23. Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279–90. https://doi.org/10.1038/nrmicro2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature. 2010;464(7286):232–6. https://doi.org/10.1038/nature08784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol. 1992;12(5):2331–8. https://doi.org/10.1128/mcb.12.5.2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. • Choi E, Mallareddy JR, Lu D, Kolluru S. Recent advances in the discovery of small-molecule inhibitors of HIV-1 integrase. Future Sci OA. 2018;4(9):Fso338. Interesting review about the development of novel small molecules that inhibit HIV-1 IN by targeting different sites of the enzyme which are less sensitive to point mutations.

    Article  CAS  Google Scholar 

  27. Li X, Krishnan L, Cherepanov P, Engelman A. Structural biology of retroviral DNA integration. Virology. 2011;411(2):194–205. https://doi.org/10.1016/j.virol.2010.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002;110(4):521–9. https://doi.org/10.1016/S0092-8674(02)00864-4.

    Article  CAS  PubMed  Google Scholar 

  29. Deeks ED. Raltegravir once-daily tablet: a review in HIV-1 infection. Drugs. 2017;77(16):1789–95.

    Article  CAS  Google Scholar 

  30. Croxtall JD, Lyseng-Williamson KA, Perry CM. Raltegravir. Drugs. 2008;68(1):131–8. https://doi.org/10.2165/00003495-200868010-00009.

    Article  CAS  PubMed  Google Scholar 

  31. Steigbigel RT, Cooper DA, Kumar PN, Eron JE, Schechter M, Markowitz M, et al. Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med. 2008;359(4):339–54. https://doi.org/10.1056/NEJMoa0708975.

    Article  PubMed  Google Scholar 

  32. Pace P, Di Francesco ME, Gardelli C, Harper S, Muraglia E, Nizi E, et al. Dihydroxypyrimidine-4-carboxamides as novel potent and selective HIV integrase inhibitors. J Med Chem. 2007;50(9):2225–39. https://doi.org/10.1021/jm070027u.

    Article  CAS  PubMed  Google Scholar 

  33. Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, et al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem. 2008;51(18):5843–55. https://doi.org/10.1021/jm800245z.

    Article  CAS  PubMed  Google Scholar 

  34. Roquebert B, Damond F, Collin G, Matheron S, Peytavin G, Benard A, et al. HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro. J Antimicrob Chemother. 2008;62(5):914–20. https://doi.org/10.1093/jac/dkn335.

    Article  CAS  PubMed  Google Scholar 

  35. Markowitz M, Nguyen BY, Gotuzzo E, Mendo F, Ratanasuwan W, Kovacs C, et al. Rapid and durable antiretroviral effect of the HIV-1 Integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection: results of a 48-week controlled study. J Acquir Immune Defic Syndr. 2007;46(2):125–33. https://doi.org/10.1097/QAI.0b013e318157131c.

    Article  CAS  PubMed  Google Scholar 

  36. Rockstroh JK, Lennox JL, Dejesus E, Saag MS, Lazzarin A, Wan H, et al. Long-term treatment with raltegravir or efavirenz combined with tenofovir/emtricitabine for treatment-naive human immunodeficiency virus-1-infected patients: 156-week results from STARTMRK. Clin Infect Dis. 2011;53(8):807–16. https://doi.org/10.1093/cid/cir510.

    Article  CAS  PubMed  Google Scholar 

  37. Serrao E, Odde S, Ramkumar K, Neamati N. Raltegravir, elvitegravir, and metoogravir: the birth of "me-too" HIV-1 integrase inhibitors. Retrovirology. 2009;6:25. https://doi.org/10.1186/1742-4690-6-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cocohoba J, Dong BJ. Raltegravir: the first HIV integrase inhibitor. Clin Ther. 2008;30(10):1747–65. https://doi.org/10.1097/QAI.0000000000002065.

    Article  CAS  PubMed  Google Scholar 

  39. Iwamoto M, Kassahun K, Troyer MD, Hanley WD, Lu P, Rhoton A, et al. Lack of a pharmacokinetic effect of raltegravir on midazolam: in vitro/in vivo correlation. J Clin Pharmacol. 2008;48(2):209–14. https://doi.org/10.1177/0091270007310382.

    Article  CAS  PubMed  Google Scholar 

  40. Wenning LA, Friedman EJ, Kost JT, Breidinger SA, Stek JE, Lasseter KC, et al. Lack of a significant drug interaction between raltegravir and tenofovir. Antimicrob Agents Chemother. 2008;52(9):3253–8. https://doi.org/10.1128/AAC.00005-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Miller MD, Danovich RM, Vandergrift N, Cai F, Hicks CB, et al. Analysis of low-frequency mutations associated with drug resistance to raltegravir before antiretroviral treatment. Antimicrob Agents Chemother. 2011;55(3):1114–9. https://doi.org/10.1128/AAC.01492-10.

    Article  CAS  PubMed  Google Scholar 

  42. Ceccherini-Silberstein F, Malet I, D'Arrigo R, Antinori A, Marcelin AG, Perno CF. Characterization and structural analysis of HIV-1 integrase conservation. AIDS Rev. 2009;11(1):17–29. https://doi.org/10.1128/AAC.01492-10.

    Article  CAS  PubMed  Google Scholar 

  43. Quashie PK, Mesplede T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, et al. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol. 2012;86(5):2696–705. https://doi.org/10.1128/JVI.06591-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, et al. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med. 2008;359(4):355–65. https://doi.org/10.1056/NEJMoa0708978.

    Article  CAS  PubMed  Google Scholar 

  45. Armenia D, Vandenbroucke I, Fabeni L, Van Marck H, Cento V, D'Arrigo R, et al. Study of genotypic and phenotypic HIV-1 dynamics of integrase mutations during raltegravir treatment: a refined analysis by ultra-deep 454 pyrosequencing. J Infect Dis. 2012;205(4):557–67. https://doi.org/10.1093/infdis/jir821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Croxtall JD, Keam SJ. Raltegravir: a review of its use in the management of HIV infection in treatment-experienced patients. Drugs. 2009;69(8):1059–75. https://doi.org/10.2165/00003495-200969080-00007.

    Article  CAS  PubMed  Google Scholar 

  47. Stellbrink HJ. Antiviral drugs in the treatment of AIDS: what is in the pipeline ? Eur J Med Res. 2007;12(9):483–95.

    CAS  PubMed  Google Scholar 

  48. Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, et al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol. 2008;82(2):764–74. https://doi.org/10.1128/JVI.01534-07.

    Article  CAS  PubMed  Google Scholar 

  49. DeJesus E, Berger D, Markowitz M, Cohen C, Hawkins T, Ruane P, et al. Antiviral activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naive and treatment-experienced patients. J Acquir Immune Defic Syndr. 2006;43(1):1–5. https://doi.org/10.1097/01.qai.0000233308.82860.2f.

    Article  CAS  PubMed  Google Scholar 

  50. Natukunda E, Gaur AH, Kosalaraksa P, Batra J, Rakhmanina N, Porter D, et al. Safety, efficacy, and pharmacokinetics of single-tablet elvitegravir, cobicistat, emtricitabine, and tenofovir alafenamide in virologically suppressed, HIV-infected children: a single-arm, open-label trial. Lancet Child Adolesc Health. 2017;1(1):27–34. https://doi.org/10.1016/S2352-4642(17)30009-3.

    Article  PubMed  Google Scholar 

  51. Savarino A. In-Silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology. 2007;4:21. https://doi.org/10.1186/1742-4690-4-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Margot NA, Hluhanich RM, Jones GS, Andreatta KN, Tsiang M, McColl DJ, et al. In vitro resistance selections using elvitegravir, raltegravir, and two metabolites of elvitegravir M1 and M4. Antivir Res. 2012;93(2):288–96. https://doi.org/10.1016/j.antiviral.2011.12.008.

    Article  CAS  PubMed  Google Scholar 

  53. Kobayashi M, Nakahara K, Seki T, Miki S, Kawauchi S, Suyama A, et al. Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. Antivir Res. 2008;80(2):213–22. https://doi.org/10.1016/j.antiviral.2008.06.012.

    Article  CAS  PubMed  Google Scholar 

  54. Garrido C, Villacian J, Zahonero N, Pattery T, Garcia F, Gutierrez F, et al. Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens. Antimicrob Agents Chemother. 2012;56(6):2873–8. https://doi.org/10.1128/AAC.06170-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Malet I, Delelis O, Valantin MA, Montes B, Soulie C, Wirden M, et al. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother. 2008;52(4):1351–8. https://doi.org/10.1128/AAC.01228-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Comi L, Maggiolo F. Abacavir + dolutegravir + lamivudine for the treatment of HIV. Expert Opin Pharmacother. 2016;17(15):2097–106. https://doi.org/10.1080/14656566.2016.

    Article  CAS  PubMed  Google Scholar 

  57. Hare S, Smith SJ, Metifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, et al. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol Pharmacol. 2011;80(4):565–72. https://doi.org/10.1124/mol.111.073189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, et al. In vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother. 2011;55(2):813–21. https://doi.org/10.1128/AAC.01209-10.

    Article  CAS  PubMed  Google Scholar 

  59. Stellbrink HJ, Reynes J, Lazzarin A, Voronin E, Pulido F, Felizarta F, et al. Dolutegravir in antiretroviral-naive adults with HIV-1: 96-week results from a randomized dose-ranging study. Aids. 2013;27(11):1771–8. https://doi.org/10.1016/S1473-3099(13)70257-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grant PM, Tierney C, Budhathoki C, Daar ES, Sax PE, Collier AC, et al. Early virologic response to abacavir/lamivudine and tenofovir/emtricitabine during ACTG A5202. HIV Clin Trials. 2013;14(6):284–91.

    Article  CAS  Google Scholar 

  61. Sax PE, Tierney C, Collier AC, Fischl MA, Mollan K, Peeples L, et al. Abacavir-lamivudine versus tenofovir-emtricitabine for initial HIV-1 therapy. N Engl J Med. 2009;361(23):2230–40. https://doi.org/10.1056/NEJMoa0906768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Castagna A, Maggiolo F, Penco G, Wright D, Mills A, Grossberg R, et al. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. J Infect Dis. 2014;210(3):354–62. https://doi.org/10.1093/infdis/jiu051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Molina JM, Clotet B, van Lunzen J, Lazzarin A, Cavassini M, Henry K, et al. Once-daily dolutegravir versus darunavir plus ritonavir for treatment-naive adults with HIV-1 infection (FLAMINGO): 96 week results from a randomised, open-label, phase 3b study. Lancet HIV. 2015;2(4):e127–36. https://doi.org/10.1016/S2352-3018(15)00027-2.

    Article  PubMed  Google Scholar 

  64. Raffi F, Jaeger H, Quiros-Roldan E, Albrecht H, Belonosova E, Gatell JM, et al. Once-daily dolutegravir versus twice-daily raltegravir in antiretroviral-naive adults with HIV-1 infection (SPRING-2 study): 96 week results from a randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2013;13(11):927–35. https://doi.org/10.1016/S1473-3099(13)70257-3.

    Article  CAS  PubMed  Google Scholar 

  65. Elliot E, Amara A, Jackson A, Moyle G, Else L, Khoo S, et al. Dolutegravir and elvitegravir plasma concentrations following cessation of drug intake. J Antimicrob Chemother. 2016;71(4):1031–6. https://doi.org/10.1093/jac/dkv425.

    Article  CAS  PubMed  Google Scholar 

  66. Shah BM, Schafer JJ, Desimone JA Jr. Dolutegravir: a new integrase strand transfer inhibitor for the treatment of HIV. Pharmacotherapy. 2014;34(5):506–20. https://doi.org/10.1002/phar.1386.

    Article  CAS  PubMed  Google Scholar 

  67. Cahn P, Pozniak AL, Mingrone H, Shuldyakov A, Brites C, Andrade-Villanueva JF, et al. Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: week 48 results from the randomised, double-blind, non-inferiority SAILING study. Lancet. 2013;382(9893):700–8. https://doi.org/10.1016/S0140-6736(13)61221-0.

    Article  CAS  PubMed  Google Scholar 

  68. Pham HT, Labrie L, Wijting IEA, Hassounah S, Lok KY, Portna I, et al. The S230R Integrase substitution associated with virus load rebound during Dolutegravir Monotherapy confers low-level resistance to Integrase Strand-transfer inhibitors. J Infect Dis. 2018;218(5):698–706. https://doi.org/10.1093/infdis/jiy175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wijting I, Rokx C, Boucher C, van Kampen J, Pas S, de Vries-Sluijs T, et al. Dolutegravir as maintenance monotherapy for HIV (DOMONO): a phase 2, randomised non-inferiority trial. Lancet HIV. 2017;4(12):e547–e54. https://doi.org/10.1016/S2352-3018(17)30152-2.

    Article  PubMed  Google Scholar 

  70. Wijting IEA, Lungu C, Rijnders BJA, van der Ende ME, Pham HT, Mesplede T, et al. HIV-1 resistance dynamics in patients with Virologic failure to Dolutegravir maintenance Monotherapy. J Infect Dis. 2018;218(5):688–97. https://doi.org/10.1093/infdis/jiy176.

    Article  CAS  PubMed  Google Scholar 

  71. •• Malet I, Subra F, Charpentier C, Collin G, Descamps D, Calvez V, et al. Mutations located outside the Integrase gene can confer resistance to HIV-1 Integrase Strand transfer inhibitors. MBio. 2017;8(5). https://doi.org/10.1128/mBio.00922-17. This report is an alarming signal showing that a mutation that occurred outside the integrase gene can also contribute to the resistance to INSTIs.

  72. Van Duyne R, Kuo LS, Pham P, Fujii K, Freed EO. Mutations in the HIV-1 envelope glycoprotein can broadly rescue blocks at multiple steps in the virus replication cycle. Proc Natl Acad Sci U S A. 2019;116(18):9040–9. https://doi.org/10.1073/pnas.1820333116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zash R, Makhema J, Shapiro RL. Neural-tube defects with Dolutegravir treatment from the time of conception. N Engl J Med. 2018;379(10):979–81. https://doi.org/10.1056/NEJMc1807653.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sax PE, DeJesus E, Crofoot G, Ward D, Benson P, Dretler R, et al. Bictegravir versus dolutegravir, each with emtricitabine and tenofovir alafenamide, for initial treatment of HIV-1 infection: a randomised, double-blind, phase 2 trial. Lancet HIV. 2017;4(4):e154–e60. https://doi.org/10.1016/S2352-3018(17)30016-4.

    Article  PubMed  Google Scholar 

  75. Hassounah SA, Alikhani A, Oliveira M, Bharaj S, Ibanescu RI, Osman N, et al. Antiviral activity of bictegravir and cabotegravir against integrase inhibitor-resistant SIVmac239 and HIV-1. Antimicrob Agents Chemother. 2017;61(12). https://doi.org/10.1128/AAC.01695-17.

  76. Smith SJ, Zhao XZ, Burke TR Jr, Hughes SH. Efficacies of cabotegravir and bictegravir against drug-resistant HIV-1 integrase mutants. Retrovirology. 2018;15(1):37. https://doi.org/10.1186/s12977-018-0420-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsiang M, Jones GS, Goldsmith J, Mulato A, Hansen D, Kan E, et al. Antiviral activity of bictegravir (GS-9883), a novel potent HIV-1 integrase strand transfer inhibitor with an improved resistance profile. Antimicrob Agents Chemother. 2016;60(12):7086–97. https://doi.org/10.1128/AAC.01474-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Anstett K, Brenner B, Mesplede T, Wainberg MA. HIV drug resistance against strand transfer integrase inhibitors. Retrovirology. 2017;14(1):36. https://doi.org/10.1186/s12977-017-0360-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou T, Su H, Dash P, Lin Z, Dyavar Shetty BL, Kocher T, et al. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials. 2018;151:53–65. https://doi.org/10.1016/j.biomaterials.2017.10.023.

    Article  CAS  PubMed  Google Scholar 

  80. Markowitz M, Frank I, Grant RM, Mayer KH, Elion R, Goldstein D, et al. Safety and tolerability of long-acting cabotegravir injections in HIV-uninfected men (ECLAIR): a multicentre, double-blind, randomised, placebo-controlled, phase 2a trial. Lancet HIV. 2017;4(8):e331–e40. https://doi.org/10.1016/S2352-3018(17)30068-1.

    Article  PubMed  Google Scholar 

  81. Yoshinaga T, Kobayashi M, Seki T, Miki S, Wakasa-Morimoto C, Suyama-Kagitani A, et al. Antiviral characteristics of GSK1265744, an HIV integrase inhibitor dosed orally or by long-acting injection. Antimicrob Agents Chemother. 2015;59(1):397–406. https://doi.org/10.1128/AAC.03909-14.

    Article  CAS  PubMed  Google Scholar 

  82. Rusconi S, Marcotullio S, Cingolani A. Long-acting agents for HIV infection: biological aspects, role in treatment and prevention, and patient's perspective. New Microbiol. 2017;40(2):75–9.

    CAS  PubMed  Google Scholar 

  83. Margolis DA, Brinson CC, Smith GHR, de Vente J, Hagins DP, Eron JJ, et al. Cabotegravir plus rilpivirine, once a day, after induction with cabotegravir plus nucleoside reverse transcriptase inhibitors in antiretroviral-naive adults with HIV-1 infection (LATTE): a randomised, phase 2b, dose-ranging trial. Lancet Infect Dis. 2015;15(10):1145–55. https://doi.org/10.1016/S1473-3099(15)00152-8.

    Article  CAS  PubMed  Google Scholar 

  84. Margolis DA, Gonzalez-Garcia J, Stellbrink HJ, Eron JJ, Yazdanpanah Y, Podzamczer D, et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial. Lancet. 2017;390(10101):1499–510. https://doi.org/10.1016/S0140-6736(17)31917-7.

    Article  CAS  PubMed  Google Scholar 

  85. Whitfield T, Torkington A, van Halsema C. Profile of cabotegravir and its potential in the treatment and prevention of HIV-1 infection: evidence to date. HIV AIDS (Auckl). 2016;8:157–64.

    CAS  Google Scholar 

  86. Radzio-Basu J, Council O, Cong ME, Ruone S, Newton A, Wei X, et al. Drug resistance emergence in macaques administered cabotegravir long-acting for pre-exposure prophylaxis during acute SHIV infection. Nat Commun. 2019;10(1):2005. https://doi.org/10.1038/s41467-019-10047-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Korolev SP, Agapkina YY, Gottikh MB. Clinical use of inhibitors of HIV-1 integration: problems and prospects. Acta Nat. 2011;3(3):12–28.

    Article  CAS  Google Scholar 

  88. Langley DR, Samanta HK, Lin Z, Walker MA, Krystal MR, Dicker IB. The terminal (catalytic) adenosine of the HIV LTR controls the kinetics of binding and dissociation of HIV integrase strand transfer inhibitors. Biochemistry. 2008;47(51):13481–8. https://doi.org/10.1021/bi801372d.

    Article  CAS  PubMed  Google Scholar 

  89. Smith SJ, Zhao XZ, Burke TR Jr, Hughes SH. HIV-1 integrase inhibitors that are broadly effective against drug-resistant mutants. Antimicrob Agents Chemother. 2018;62(9). https://doi.org/10.1128/AAC.01035-18.

  90. Dicker IB, Samanta HK, Li Z, Hong Y, Tian Y, Banville J, et al. Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors. J Biol Chem. 2007;282(43):31186–96. https://doi.org/10.1074/jbc.M704935200.

    Article  CAS  PubMed  Google Scholar 

  91. Naidu BN, Walker MA, Sorenson ME, Ueda Y, Matiskella JD, Connolly TP, et al. The discovery and preclinical evaluation of BMS-707035, a potent HIV-1 integrase strand transfer inhibitor. Bioorg Med Chem Lett. 2018;28(12):2124–30. https://doi.org/10.1016/j.bmcl.2018.05.027.

    Article  CAS  PubMed  Google Scholar 

  92. Hoesley CJ, Chen BA, Anderson PL, Dezzutti CS, Strizki J, Sprinkle C, et al. Phase 1 safety and pharmacokinetics study of MK-2048/Vicriviroc (MK-4176)/MK-2048A Intravaginal rings. Clin Infect Dis. 2019;68(7):1136–43. https://doi.org/10.1093/cid/ciy653.

    Article  PubMed  Google Scholar 

  93. Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A. 2010;107(46):20057–62. https://doi.org/10.1073/pnas.1010246107.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Scopelliti F, Pollicita M, Ceccherini-Silberstein F, Di Santo F, Surdo M, Aquaro S, et al. Comparative antiviral activity of integrase inhibitors in human monocyte-derived macrophages and lymphocytes. Antivir Res. 2011;92(2):255–61. https://doi.org/10.1016/j.antiviral.2011.08.008.

    Article  CAS  PubMed  Google Scholar 

  95. Bar-Magen T, Sloan RD, Donahue DA, Kuhl BD, Zabeida A, Xu H, et al. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J Virol. 2010;84(18):9210–6. https://doi.org/10.1128/JVI.01164-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Van Wesenbeeck L, Rondelez E, Feyaerts M, Verheyen A, Van der Borght K, Smits V, et al. Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrob Agents Chemother. 2011;55(1):321–5. https://doi.org/10.1128/AAC.01733-09.

    Article  CAS  PubMed  Google Scholar 

  97. Fader LD, Malenfant E, Parisien M, Carson R, Bilodeau F, Landry S, et al. Discovery of BI 224436, a noncatalytic site Integrase inhibitor (NCINI) of HIV-1. ACS Med Chem Lett. 2014;5(4):422–7. https://doi.org/10.1021/ml500002n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fenwick C, Amad M, Bailey MD, Bethell R, Bos M, Bonneau P, et al. Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor. Antimicrob Agents Chemother. 2014;58(6):3233–44. https://doi.org/10.1128/AAC.02719-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kaushik A, Jayant RD, Nair M. Advancements in nano-enabled therapeutics for neuroHIV management. Int J Nanomedicine. 2016;11:4317–25. https://doi.org/10.2147/IJN.S109943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li W, Gorantla S, Gendelman HE, Poluektova LY. Systemic HIV-1 infection produces a unique glial footprint in humanized mouse brains. Dis Model Mech. 2017;10(12):1489–502. https://doi.org/10.1242/dmm.031773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. • Montenegro-Burke JR, Woldstad CJ, Fang M, Bade AN, McMillan J, Edagwa B, et al. Nanoformulated antiretroviral therapy attenuates brain metabolic oxidative stress. Mol Neurobiol. 2019;56(4):2896–907. https://doi.org/10.1007/s12035-018-1273-8. Interesting discovery that highlights the critical importance of formulation design by convincingly demonstrating the metabolic stress in rodent brain upon administration of nano-DTG as compared to the native drug treatment.

    Article  CAS  PubMed  Google Scholar 

  102. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–72. https://doi.org/10.1038/nrd4363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kevadiya BD, Woldstad C, Ottemann BM, Dash P, Sajja BR, Lamberty B, et al. Multimodal theranostic nanoformulations permit magnetic resonance bioimaging of antiretroviral drug particle tissue-cell biodistribution. Theranostics. 2018;8(1):256–76. https://doi.org/10.7150/thno.22764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Roy U, Drozd V, Durygin A, Rodriguez J, Barber P, Atluri V, et al. Characterization of nanodiamond-based anti-HIV drug delivery to the brain. Sci Rep. 2018;8(1):1603. https://doi.org/10.1038/s41598-017-16703-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McMillan J, Szlachetka A, Slack L, Sillman B, Lamberty B, Morsey B, et al. Pharmacokinetics of a long-acting nanoformulated dolutegravir prodrug in rhesus macaques. Antimicrob Agents Chemother. 2018;62(1). https://doi.org/10.1128/AAC.01316-17.

  106. •• Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM, et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun. 2019;10(1):2753. https://doi.org/10.1038/s41467-019-10366-y. Excellent first ever report that demonstrates elimination of latent HIV-1 proviral reservoirs from humanized mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McMillan J, Szlachetka A, Zhou T, Morsey B, Lamberty B, Callen S, et al. Pharmacokinetic testing of a first-generation cabotegravir prodrug in rhesus macaques. Aids. 2019;33(3):585–8. https://doi.org/10.1097/QAD.0000000000002032.

    Article  CAS  PubMed  Google Scholar 

  108. •• Sillman B, Bade AN, Dash PK, Bhargavan B, Kocher T, Mathews S, et al. Creation of a long-acting nanoformulated dolutegravir. Nat Commun. 2018;9(1):443. https://doi.org/10.1038/s41467-018-02885-x. Excellent first report of nano-formulated DTG with hydrophobic and lipophilic modifications in DTG prodrug.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang J, Vernekar SKV, Chen YL, Miller L, Huber AD, Myshakina N, et al. Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase. Eur J Med Chem. 2017;133:85–96. https://doi.org/10.1016/j.ejmech.2017.03.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang Z, Bennett EM, Wilson DJ, Salomon C, Vince R. Rationally designed dual inhibitors of HIV reverse transcriptase and integrase. J Med Chem. 2007;50(15):3416–9. https://doi.org/10.1021/jm070512p.

    Article  CAS  PubMed  Google Scholar 

  111. Rogolino D, Carcelli M, Compari C, De Luca L, Ferro S, Fisicaro E, et al. Diketoacid chelating ligands as dual inhibitors of HIV-1 integration process. Eur J Med Chem. 2014;78:425–30. https://doi.org/10.1016/j.ejmech.2014.03.070.

    Article  CAS  PubMed  Google Scholar 

  112. •• Singh K, Sarafianos SG, Sonnerborg A. Long-acting anti-HIV drugs targeting HIV-1 reverse transcriptase and Integrase. Pharmaceuticals (Basel). 2019;12(2). https://doi.org/10.3390/ph12020062. Excellent detailed information provided on long acting forms of RT and IN inhibitors that are at various stages of clinical trials.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Robin Taylor for editorial help.

Funding

This work is partially supported by National Institute of Allergy and Infectious Diseases Grant R01 AI129745. This work was also supported by the JC Bose fellowship to DM and DST-INSPIRE Fellowship to JT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debashis Mitra or Siddappa N. Byrareddy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, J., Mahajan, D., Jaffe, R.J. et al. Recent Advances in the Development of Integrase Inhibitors for HIV Treatment. Curr HIV/AIDS Rep 17, 63–75 (2020). https://doi.org/10.1007/s11904-019-00480-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-019-00480-3

Keywords

Navigation