Skip to main content

Advertisement

Log in

The Opioid Epidemic: Impact on Inflammation and Cardiovascular Disease Risk in HIV

  • Complications of HIV and Antiretroviral Therapy (GA McComsey, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

People infected with HIV through injection drug use are more likely to experience progression to AIDS, death due to AIDS, and all-cause mortality even when controlling for access to care and antiretroviral therapy. While high-risk behavior and concurrent infections most certainly are contributors, chronic immune activation, downstream metabolic comorbidities may play an important role.

Recent Findings

Altered intestinal integrity plays a major role in HIV-related immune activation and microbial translocation markers are heightened in active heroin users. Additionally, greater injection frequency drives systemic inflammation and is associated with HIV viral rebound. Finally, important systemic inflammation markers have been linked with frailty and mortality in people who inject drugs with and without concurrent HIV infection.

Summary

Heroin use may work synergistically with HIV infection to cause greater immune activation than either factor alone. Further research is needed to understand the impact on downstream metabolic comorbidities including cardiovascular disease. Medication-assisted treatment for opioid use disorder with methadone or buprenorphine may ameliorate some of this risk; however, there is presently limited research in humans, including in non-HIV populations, describing changes in immune activation on these treatments which is of paramount importance for those with HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Collaborators GBDCoD. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–88.

    Article  Google Scholar 

  2. Teeraananchai S, Kerr SJ, Amin J, Ruxrungtham K, Law MG. Life expectancy of HIV-positive people after starting combination antiretroviral therapy: a meta-analysis. HIV Med. 2017;18(4):256–66.

    Article  CAS  PubMed  Google Scholar 

  3. Adih WK, Selik RM, Hall HI, Babu AS, Song R. Associations and trends in cause-specific rates of death among persons reported with HIV infection, 23 U.S. Jurisdictions, through 2011. Open AIDS J. 2016;10:144–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petoumenos K, Reiss P, Ryom L, Rickenbach M, Sabin CA, El-Sadr W, et al. Increased risk of cardiovascular disease (CVD) with age in HIV-positive men: a comparison of the D:A:D CVD risk equation and general population CVD risk equations. HIV Med. 2014;15(10):595–603.

    CAS  PubMed  Google Scholar 

  5. •• Shah ASV, Stelzle D, Lee KK, Beck EJ, Alam S, Clifford S, et al. Global burden of atherosclerotic cardiovascular disease in people living with HIV. Circulation. 2018;138(11):1100–12. This systematic review and meta-analysis across 80 studies reports that the risk of cardiovascular disease in people living with HIV is two times higher than the general population solidifying HIV infection as an important risk factor for cardiovascular disease.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marcus JL, Leyden WA, Chao CR, Chow FC, Horberg MA, Hurley LB, et al. HIV infection and incidence of ischemic stroke. AIDS. 2014;28(13):1911–9.

    Article  CAS  PubMed  Google Scholar 

  7. Hsu DC, Ma YF, Hur S, Li D, Rupert A, Scherzer R, et al. Plasma IL-6 levels are independently associated with atherosclerosis and mortality in HIV-infected individuals on suppressive antiretroviral therapy. AIDS. 2016;30(13):2065–74.

    Article  CAS  PubMed  Google Scholar 

  8. Tang N, Sun B, Gupta A, Rempel H, Pulliam L. Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. FASEB J. 2016;30(9):3097–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kelesidis T, Kendall MA, Yang OO, Hodis HN, Currier JS. Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection. J Infect Dis. 2012;206(10):1558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Subramanian S, Tawakol A, Burdo TH, Abbara S, Wei J, Vijayakumar J, et al. Arterial inflammation in patients with HIV. JAMA. 2012;308(4):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ross AC, Rizk N, O’Riordan MA, Dogra V, El-Bejjani D, Storer N, et al. Relationship between inflammatory markers, endothelial activation markers, and carotid intima-media thickness in HIV-infected patients receiving antiretroviral therapy. Clin Infect Dis. 2009;49(7):1119–27.

    Article  CAS  PubMed  Google Scholar 

  12. Shaked I, Hanna DB, Gleissner C, Marsh B, Plants J, Tracy D, et al. Macrophage inflammatory markers are associated with subclinical carotid artery disease in women with human immunodeficiency virus or hepatitis C virus infection. Arterioscler Thromb Vasc Biol. 2014;34(5):1085–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008;5(10):e203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Subramanya V, McKay HS, Brusca RM, Palella FJ, Kingsley LA, Witt MD, et al. Inflammatory biomarkers and subclinical carotid atherosclerosis in HIV-infected and HIV-uninfected men in the multicenter AIDS cohort study. PLoS One. 2019;14(4):e0214735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanna DB, Lin J, Post WS, Hodis HN, Xue X, Anastos K, et al. Association of macrophage inflammation biomarkers with progression of subclinical carotid artery atherosclerosis in HIV-infected women and men. J Infect Dis. 2017;215(9):1352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strategies for Management of Antiretroviral Therapy Study G, El-Sadr WM, Lundgren J, Neaton JD, Gordin F, Abrams D, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006;355(22):2283–96.

    Article  Google Scholar 

  17. Bahrami H, Budoff M, Haberlen SA, Rezaeian P, Ketlogetswe K, Tracy R, et al. Inflammatory markers associated with subclinical coronary artery disease: the multicenter AIDS cohort study. J Am Heart Assoc. 2016;5(6).

  18. Triant VA, Meigs JB, Grinspoon SK. Association of C-reactive protein and HIV infection with acute myocardial infarction. J Acquir Immune Defic Syndr. 2009;51(3):268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. An Q, Song R, Hernandez A, Hall HI. Trends and differences among three new indicators of HIV infection progression. Public Health Rep. 2015;130(5):468–74.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ingle SM, May MT, Gill MJ, Mugavero MJ, Lewden C, Abgrall S, et al. Impact of risk factors for specific causes of death in the first and subsequent years of antiretroviral therapy among HIV-infected patients. Clin Infect Dis. 2014;59(2):287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moore RD, Keruly JC, Chaisson RE. Differences in HIV disease progression by injecting drug use in HIV-infected persons in care. J Acquir Immune Defic Syndr. 2004;35(1):46–51.

    Article  PubMed  Google Scholar 

  22. Trickey A, May MT, Vehreschild J, Obel N, Gill MJ, Crane H, et al. Cause-specific mortality in HIV-positive patients who survived ten years after starting antiretroviral therapy. PLoS One. 2016;11(8):e0160460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Piggott DA, Varadhan R, Mehta SH, Brown TT, Li H, Walston JD, et al. Frailty, inflammation, and mortality among persons aging with hiv infection and injection drug use. J Gerontol A Biol Sci Med Sci. 2015;70(12):1542–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salter ML, Lau B, Mehta SH, Go VF, Leng S, Kirk GD. Correlates of elevated interleukin-6 and C-reactive protein in persons with or at high risk for HCV and HIV infections. J Acquir Immune Defic Syndr. 2013;64(5):488–95.

    Article  CAS  PubMed  Google Scholar 

  25. McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ. Opioids, opioid receptors, and the immune response. Drug Alcohol Depend. 2001;62(2):111–23.

    Article  CAS  PubMed  Google Scholar 

  26. Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, et al. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J NeuroImmune Pharmacol. 2011;6(4):442–65.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liang X, Liu R, Chen C, Ji F, Li T. Opioid system modulates the immune function: a review. Transl Perioper Pain Med. 2016;1(1):5–13.

    PubMed  PubMed Central  Google Scholar 

  28. Plein LM, Rittner HL. Opioids and the immune system - friend or foe. Br J Pharmacol. 2018;175(14):2717–25.

    Article  CAS  PubMed  Google Scholar 

  29. Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW. Residual immune dysregulation syndrome in treated HIV infection. Adv Immunol. 2013;119:51–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.

    Article  CAS  PubMed  Google Scholar 

  31. Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013;26(1):2–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6(4):e1000852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Estes JD, Harris LD, Klatt NR, Tabb B, Pittaluga S, Paiardini M, et al. Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PLoS Pathog. 2010;6(8):e1001052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2009;199(8):1177–85.

    Article  CAS  PubMed  Google Scholar 

  35. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol. 2000;12(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  36. Caradonna L, Amati L, Magrone T, Pellegrino NM, Jirillo E, Caccavo D. Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res. 2000;6(3):205–14.

    CAS  PubMed  Google Scholar 

  37. Schietroma M, Carlei F, Cappelli S, Amicucci G. Intestinal permeability and systemic endotoxemia after laparotomic or laparoscopic cholecystectomy. Ann Surg. 2006;243(3):359–63.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol. 2000;12(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  39. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis. 2014;210(8):1228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gordon SN, Cervasi B, Odorizzi P, Silverman R, Aberra F, Ginsberg G, et al. Disruption of intestinal CD4+ T cell homeostasis is a key marker of systemic CD4+ T cell activation in HIV-infected individuals. J Immunol. 2010;185(9):5169–79.

    Article  CAS  PubMed  Google Scholar 

  41. Chege D, Sheth PM, Kain T, Kim CJ, Kovacs C, Loutfy M, et al. Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy. AIDS. 2011;25(6):741–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lester RT, Yao XD, Ball TB, McKinnon LR, Omange WR, Kaul R, et al. HIV-1 RNA dysregulates the natural TLR response to subclinical endotoxemia in Kenyan female sex-workers. PLoS One. 2009;4(5):e5644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis. 2008;197(5):714–20.

    Article  CAS  PubMed  Google Scholar 

  44. Cory TJ, Schacker TW, Stevenson M, Fletcher CV. Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS. 2013;8(3):190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chun TW, Nickle DC, Justement JS, Large D, Semerjian A, Curlin ME, et al. HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J Clin Invest. 2005;115(11):3250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zidar DA, Juchnowski S, Ferrari B, Clagett B, Pilch-Cooper HA, Rose S, et al. Oxidized LDL levels are increased in HIV infection and may drive monocyte activation. J Acquir Immune Defic Syndr. 2015;69(2):154–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Naeger DM, Martin JN, Sinclair E, Hunt PW, Bangsberg DR, Hecht F, et al. Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease. PLoS One. 2010;5(1):e8886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Crane M, Avihingsanon A, Rajasuriar R, Velayudham P, Iser D, Solomon A, et al. Lipopolysaccharide, immune activation, and liver abnormalities in HIV/hepatitis B virus (HBV)-coinfected individuals receiving HBV-active combination antiretroviral therapy. J Infect Dis. 2014;210(5):745–51.

    Article  CAS  PubMed  Google Scholar 

  49. Strickler HD, Blanchard JF, Vlahov D, Taylor E, Munoz A, Nelson KE, et al. Elevated serum levels of neopterin but not beta 2-microglobulin in HIV-1-seronegative injecting drug users. AIDS. 1993;7(3):361–7.

    Article  CAS  PubMed  Google Scholar 

  50. Phillips KT, Stein MD. Risk practices associated with bacterial infections among injection drug users in Denver, Colorado. Am J Drug Alcohol Abuse. 2010;36(2):92–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Smith ME, Robinowitz N, Chaulk P, Johnson KE. High rates of abscesses and chronic wounds in community-recruited injection drug users and associated risk factors. J Addict Med. 2015;9(2):87–93.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mars SG, Bourgois P, Karandinos G, Montero F, Ciccarone D. The Textures of Heroin: User Perspectives on “Black Tar” and powder heroin in two U.S. cities. J Psychoactive Drugs. 2016;48(4):270–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Summers PJ, Struve IA, Wilkes MS, Rees VW. Injection-site vein loss and soft tissue abscesses associated with black tar heroin injection: a cross-sectional study of two distinct populations in USA. Int J Drug Policy. 2017;39:21–7.

    Article  PubMed  Google Scholar 

  54. Torka P, Gill S. Cotton fever: an evanescent process mimicking sepsis in an intravenous drug abuser. J Emerg Med. 2013;44(6):e385–7.

    Article  PubMed  Google Scholar 

  55. Dwyer R, Topp L, Maher L, Power R, Hellard M, Walsh N, et al. Prevalences and correlates of non-viral injecting-related injuries and diseases in a convenience sample of Australian injecting drug users. Drug Alcohol Depend. 2009;100(1–2):9–16.

    Article  CAS  PubMed  Google Scholar 

  56. Siegel AJ, Mendelson JH, Sholar MB, McDonald JC, Lewandrowski KB, Lewandrowski EL, et al. Effect of cocaine usage on C-reactive protein, von Willebrand factor, and fibrinogen. Am J Cardiol. 2002;89(9):1133–5.

    Article  CAS  PubMed  Google Scholar 

  57. • Kidd SE, Grey JA, Torrone EA, Weinstock HS. Increased methamphetamine, injection drug, and heroin use among women and heterosexual men with primary and secondary syphilis - United States, 2013–2017. MMWR Morb Mortal Wkly Rep. 2019;68(6):144–8. This report from the Centers for Disease Control highlights that a substantial percentage of syphilis transmission through heterosexual sex occurs among people who inject drugs.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Petersen KL, Marsland AL, Flory J, Votruba-Drzal E, Muldoon MF, Manuck SB. Community socioeconomic status is associated with circulating interleukin-6 and C-reactive protein. Psychosom Med. 2008;70(6):646–52.

    Article  CAS  PubMed  Google Scholar 

  59. Asher AK, Zhong Y, Garfein RS, Cuevas-Mota J, Teshale E. Association of self-reported abscess with high-risk injection-related behaviors among young persons who inject drugs. J Assoc Nurses AIDS Care. 2019;30(2):142–50.

    Article  PubMed  Google Scholar 

  60. Summers PJ, Hellman JL, MacLean MR, Rees VW, Wilkes MS. Negative experiences of pain and withdrawal create barriers to abscess care for people who inject heroin. A mixed methods analysis. Drug Alcohol Depend. 2018;190:200–8.

    Article  PubMed  Google Scholar 

  61. Herold M, Meise U, Gunther V, Rossler H, Zangerle R. Serum concentrations of circulating endogenous granulocyte-macrophage colony-stimulating factor in HIV-1-seropositive injecting drug users. Presse Med. 1994;23(40):1854–8.

    CAS  PubMed  Google Scholar 

  62. Mehandru S, Deren S, Kang SY, Banfield A, Garg A, Garmon D, et al. Behavioural, mucosal and systemic immune parameters in HIV-infected and uninfected injection drug users. J Addict Res Ther. 2015;6(4):1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. El-Hage N, Dever SM, Fitting S, Ahmed T, Hauser KF. HIV-1 coinfection and morphine coexposure severely dysregulate hepatitis C virus-induced hepatic proinflammatory cytokine release and free radical production: increased pathogenesis coincides with uncoordinated host defenses. J Virol. 2011;85(22):11601–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peterson PK, Sharp BM, Gekker G, Jackson B, Balfour HH Jr. Opiates, human peripheral blood mononuclear cells, and HIV. Adv Exp Med Biol. 1991;288:171–8.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu JW, Liu FL, Mu D, Deng DY, Zheng YT. Heroin use is associated with lower levels of restriction factors and type I interferon expression and facilitates HIV-1 replication. Microbes Infect. 2017;19(4–5):288–94.

    Article  CAS  PubMed  Google Scholar 

  66. Guo CJ, Li Y, Tian S, Wang X, Douglas SD, Ho WZ. Morphine enhances HIV infection of human blood mononuclear phagocytes through modulation of beta-chemokines and CCR5 receptor. J Investig Med. 2002;50(6):435–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, et al. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One. 2008;3(6):e2516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lewden C, Bouteloup V, De Wit S, Sabin C, Mocroft A, Wasmuth JC, et al. All-cause mortality in treated HIV-infected adults with CD4 >/=500/mm3 compared with the general population: evidence from a large European observational cohort collaboration. Int J Epidemiol. 2012;41(2):433–45.

    Article  PubMed  Google Scholar 

  69. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008;372(9635):293–9.

  70. Marcus JL, Chao CR, Leyden WA, Xu L, Quesenberry CP Jr, Klein DB, et al. Narrowing the gap in life expectancy between HIV-infected and HIV-uninfected individuals with access to care. J Acquir Immune Defic Syndr. 2016;73(1):39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brown TT, Cole SR, Li X, Kingsley LA, Palella FJ, Riddler SA, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84.

    Article  PubMed  Google Scholar 

  72. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165–74.

    Article  PubMed  Google Scholar 

  73. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen CH, Chung CY, Wang LH, Lin C, Lin HL, Lin HC. Risk of cancer among HIV-infected patients from a population-based nested case-control study: implications for cancer prevention. BMC Cancer. 2015;15:133.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kooij KW, Wit FW, Schouten J, van der Valk M, Godfried MH, Stolte IG, et al. HIV infection is independently associated with frailty in middle-aged HIV type 1-infected individuals compared with similar but uninfected controls. AIDS. 2016;30(2):241–50.

    Article  CAS  PubMed  Google Scholar 

  76. Lifson AR, Lando HA. Smoking and HIV: prevalence, health risks, and cessation strategies. Curr HIV/AIDS Rep. 2012;9(3):223–30.

    Article  PubMed  Google Scholar 

  77. Kotler DP. HIV and antiretroviral therapy: lipid abnormalities and associated cardiovascular risk in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;49(Suppl 2):S79–85.

    Article  CAS  PubMed  Google Scholar 

  78. Oh JY, Greene K, He H, Schafer S, Hedberg K. Population-based study of risk factors for coronary heart disease among HIV-infected persons. Open AIDS J. 2012;6:177–80.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mercie P, Thiebaut R, Lavignolle V, Pellegrin JL, Yvorra-Vives MC, Morlat P, et al. Evaluation of cardiovascular risk factors in HIV-1 infected patients using carotid intima-media thickness measurement. Ann Med. 2002;34(1):55–63.

    Article  PubMed  Google Scholar 

  80. Currier JS, Kendall MA, Zackin R, Henry WK, Alston-Smith B, Torriani FJ, et al. Carotid artery intima-media thickness and HIV infection: traditional risk factors overshadow impact of protease inhibitor exposure. AIDS. 2005;19(9):927–33.

    Article  CAS  PubMed  Google Scholar 

  81. Currier JS, Kendall MA, Henry WK, Alston-Smith B, Torriani FJ, Tebas P, et al. Progression of carotid artery intima-media thickening in HIV-infected and uninfected adults. AIDS. 2007;21(9):1137–45.

    Article  PubMed  Google Scholar 

  82. Friis-Moller N, Reiss P, Sabin CA, Weber R, Monforte A, El-Sadr W, et al. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356(17):1723–35.

    Article  PubMed  Google Scholar 

  83. Sabin CA, Worm SW, Weber R, Reiss P, El-Sadr W, Dabis F, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet. 2008;371(9622):1417–26.

    Article  CAS  PubMed  Google Scholar 

  84. Dorjee K, Choden T, Baxi SM, Steinmaus C, Reingold AL. Risk of cardiovascular disease associated with exposure to abacavir among individuals with HIV: a systematic review and meta-analyses of results from 17 epidemiologic studies. Int J Antimicrob Agents. 2018;52(5):541–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hileman CO, Longenecker CT, Carman TL, McComsey GA. C-reactive protein predicts 96-week carotid intima media thickness progression in HIV-infected adults naive to antiretroviral therapy. J Acquir Immune Defic Syndr. 2014;65(3):340–4.

    Article  CAS  PubMed  Google Scholar 

  86. Maisa A, Hearps AC, Angelovich TA, Pereira CF, Zhou J, Shi MD, et al. Monocytes from HIV-infected individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration. AIDS. 2015;29(12):1445–57.

    Article  CAS  PubMed  Google Scholar 

  87. • Ladak F, Socias E, Nolan S, Dong H, Kerr T, Wood E, et al. Substance use patterns and HIV-1 RNA viral load rebound among HIV-positive illicit drug users in a Canadian setting. Antivir Ther. 2019;24(1):19–25. This prospective cohort of HIV-infected people who use illicit drugs in Vancouver, Canada, shows that high-intensity heroin use is a risk factor for HIV viral rebound.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Seth P, Scholl L, Rudd RA, Bacon S. Overdose deaths involving opioids, cocaine, and psychostimulants - United States, 2015–2016. MMWR Morb Mortal Wkly Rep. 2018;67(12):349–58.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Helm S, Trescot AM, Colson J, Sehgal N, Silverman S. Opioid antagonists, partial agonists, and agonists/antagonists: the role of office-based detoxification. Pain Physician. 2008;11(2):225–35.

    Article  PubMed  Google Scholar 

  90. Connock M, Juarez-Garcia A, Jowett S, Frew E, Liu Z, Taylor RJ, et al. Methadone and buprenorphine for the management of opioid dependence: a systematic review and economic evaluation. Health Technol Assess. 2007;11(9):1–171 iii-iv.

    Article  CAS  PubMed  Google Scholar 

  91. Johnson RE, Jaffe JH, Fudala PJ. A controlled trial of buprenorphine treatment for opioid dependence. Jama. 1992;267(20):2750–5.

    Article  CAS  PubMed  Google Scholar 

  92. Johnson RE, Chutuape MA, Strain EC, Walsh SL, Stitzer ML, Bigelow GE. A comparison of levomethadyl acetate, buprenorphine, and methadone for opioid dependence. N Engl J Med. 2000;343(18):1290–7.

    Article  CAS  PubMed  Google Scholar 

  93. Ahmadi J, Ahmadi K, Ohaeri J. Controlled, randomized trial in maintenance treatment of intravenous buprenorphine dependence with naltrexone, methadone or buprenorphine: a novel study. Eur J Clin Investig. 2003;33(9):824–9.

    Article  CAS  Google Scholar 

  94. Mattick RP, Ali R, White JM, O’Brien S, Wolk S, Danz C. Buprenorphine versus methadone maintenance therapy: a randomized double-blind trial with 405 opioid-dependent patients. Addiction. 2003;98(4):441–52.

    Article  PubMed  Google Scholar 

  95. •• Jaureguiberry-Bravo M, Wilson R, Carvallo L, Berman JW. Opioids and opioid maintenance therapies: their impact on monocyte-mediated HIV neuropathogenesis. Curr HIV Res. 2016;14(5):417–30. This review summarizes relavent literature on the effect of opioids on monocyte activation as it relates to HIV-associated neurcognitive disease. Additionally, evidence for why buprenorphine could be beneficial in the management of neurocognitive disease in HIV is presented.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. • Jaureguiberry-Bravo M, Lopez L, Berman JW. Frontline Science: Buprenorphine decreases CCL2-mediated migration of CD14(+) CD16(+) monocytes. J Leukoc Biol. 2018;104(6):1049–59. This study shows that buprenorphine decreases several steps of CCL2-mediated human mature monocyte transmigration, an effect the authors hypothesize that could reduce HIV-related neuroinflammation.

    Article  CAS  PubMed  Google Scholar 

  97. Garrido MJ, Troconiz IF. Methadone: a review of its pharmacokinetic/pharmacodynamic properties. J Pharmacol Toxicol Methods. 1999;42(2):61–6.

    Article  CAS  PubMed  Google Scholar 

  98. Borner C, Lanciotti S, Koch T, Hollt V, Kraus J. mu opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J Neuroimmunol. 2013;263(1–2):35–42.

    Article  PubMed  CAS  Google Scholar 

  99. Boland JW, Foulds GA, Ahmedzai SH, Pockley AG. A preliminary evaluation of the effects of opioids on innate and adaptive human in vitro immune function. BMJ Support Palliat Care. 2014;4(4):357–67.

    Article  PubMed  Google Scholar 

  100. Sacerdote P, Franchi S, Gerra G, Leccese V, Panerai AE, Somaini L. Buprenorphine and methadone maintenance treatment of heroin addicts preserves immune function. Brain Behav Immun. 2008;22(4):606–13.

    Article  CAS  PubMed  Google Scholar 

  101. Neri S, Bruno CM, Pulvirenti D, Malaguarnera M, Italiano C, Mauceri B, et al. Randomized clinical trial to compare the effects of methadone and buprenorphine on the immune system in drug abusers. Psychopharmacology. 2005;179(3):700–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors report funding from NIH NIDA R01DA044576 to COH and GAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrilynn O. Hileman.

Ethics declarations

Conflict of Interest

COH has served on medical advisory boards for Gilead Sciences and as site PI for Gilead Sciences sponsored clinical trials.

GAM has served as a scientific consultant for Gilead, Merck, and ViiV and had received research grants from Roche, Tetraphase, and Astellas.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Complications of HIV and Antiretroviral Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hileman, C.O., McComsey, G.A. The Opioid Epidemic: Impact on Inflammation and Cardiovascular Disease Risk in HIV. Curr HIV/AIDS Rep 16, 381–388 (2019). https://doi.org/10.1007/s11904-019-00463-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-019-00463-4

Keywords

Navigation