Skip to main content

Advertisement

Log in

Stem Cell Gene Therapy for HIV: Strategies to Inhibit Viral Entry and Replication

  • HIV Pathogenesis and Treatment (AL Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Since the demonstration of a cure of an HIV+ patient with an allogeneic stem cell transplant using naturally HIV-resistant cells, significant interest in creating similar autologous products has fueled the development of a variety of “cell engineering” approaches to stem cell therapy for HIV. Among the more well-studied strategies is the inhibition of viral entry through disruption of expression of viral co-receptors or through competitive inhibitors of viral fusion with the cell membrane. Preclinical evaluation of these approaches often starts in vitro but ultimately is tested in animal models prior to clinical implementation. In this review, we trace the development of several key approaches (meganucleases, short hairpin RNA (shRNA), and fusion inhibitors) to modification of hematopoietic stem cells designed to impart resistance to HIV to their T-cell and monocytic progeny. The basic evolution of technologies through in vitro and in vivo testing is discussed as well as the pros and cons of each approach and how the addition of postentry inhibitors may enhance the overall antiviral efficacy of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hoxie JA, June CH. Novel cell and gene therapies for HIV. Cold Spring Harbor Perspectives in Medicine. 2012 Oct;2(10).

  2. Wong-Staal F, Poeschla EM, Looney DJ. A controlled, phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum Gene Ther. 1998;9(16):2407–25.

    Article  CAS  PubMed  Google Scholar 

  3. Amado RG, Mitsuyasu RT, Rosenblatt JD, Ngok FK, Bakker A, Cole S, et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther. 2004;15(3):251–62.

    Article  CAS  PubMed  Google Scholar 

  4. Podsakoff GM, Engel BC, Carbonaro DA, Choi C, Smogorzewska EM, Bauer G, et al. Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34(+) cells. Mol Ther. 2005;12(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  5. Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, Lu X, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci U S A. 2006;103(46):17372–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. van Lunzen J, Glaunsinger T, Stahmer I, von Baehr V, Baum C, Schilz A, et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol Ther. 2007;15(5):1024–33.

    PubMed  Google Scholar 

  7. Wang GP, Levine BL, Binder GK, Berry CC, Malani N, McGarrity G, et al. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol Ther. 2009;17(5):844–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, Workman C, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med. 2009;15(3):285–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kohn DB, Bauer G, Rice CR, Rothschild JC, Carbonaro DA, Valdez P, et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood. 1999;94(1):368–71.

    CAS  PubMed  Google Scholar 

  10. Kang EM, de Witte M, Malech H, Morgan RA, Phang S, Carter C, et al. Nonmyeloablative conditioning followed by transplantation of genetically modified HLA-matched peripheral blood progenitor cells for hematologic malignancies in patients with acquired immunodeficiency syndrome. Blood. 2002;99(2):698–701.

    Article  CAS  PubMed  Google Scholar 

  11. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med. 2010;2(36):36ra43.

    Article  PubMed Central  PubMed  Google Scholar 

  12. DiGiusto DL, Stan R, Krishnan A, Li H, Rossi JJ, Zaia JA. Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice. Viruses. 2013;5(11):2898–919.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Savkovic B, Nichols J, Birkett D, Applegate T, Ledger S, Symonds G, et al. A quantitative comparison of anti-HIV gene therapy delivered to hematopoietic stem cells versus CD4+ T cells. PLoS Comput Biol. 2014;10(6):e1003681. This reference calculates the relative longevity and contribution of stem cells versus T-cell as gene modified therapeutic agents.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Viardot A, Kronenwett R, Deichmann M, Haas R. The human immunodeficiency virus (HIV)-type 1 coreceptor CXCR-4 (fusin) is preferentially expressed on the more immature CD34+ hematopoietic stem cells. Ann Hematol. 1998;77(5):193–7.

    Article  CAS  PubMed  Google Scholar 

  15. Nixon CC, Vatakis DN, Reichelderfer SN, Dixit D, Kim SG, Uittenbogaart CH, et al. HIV-1 infection of hematopoietic progenitor cells in vivo in humanized mice. Blood. 2013;122(13):2195–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. McNamara LA, Ganesh JA, Collins KL. Latent HIV-1 infection occurs in multiple subsets of hematopoietic progenitor cells and is reversed by NF-kappaB activation. J Virol. 2012;86(17):9337–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.

    Article  PubMed  Google Scholar 

  18. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011;117(10):2791–9. Landmark paper demonstrating a cure for HIV by allogeneic transplantation of CCR5 D32/D32 bone marrow.

  19. Schneidawind D, Dorn C, Faul C, Vogel W, Berg C, Beck R, et al. [Allogeneic stem cell transplantation for acute myeloid leukemia and HIV infection—case 3/2012]. Deutsche medizinische Wochenschrift. 2012 Mar;137(10):495. Allogene Stammzelltransplantation bei Akuter Myeloischer Leukamie und HIV-Infektion--Fall 3/2012.

  20. Hutter G, Zaia JA. Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: the experiences of more than 25 years. Clin Exp Immunol. 2011;163(3):284–95.

  21. Henrich TJ, Hu Z, Li JZ, Sciaranghella G, Busch MP, Keating SM, et al. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis. 2013;207(11):1694–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Henrich TJ, Hanhauser E, Marty FM, Sirignano MN, Keating S, Lee TH, et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med. 2014;161(5):319–27. This reference demonstrates that allogeneic transplantation by itself is not curative for HIV.

    Article  PubMed  Google Scholar 

  23. Cillo AR, Krishnan S, McMahon DK, Mitsuyasu RT, Para MF, Mellors JW. Impact of chemotherapy for HIV-1 related lymphoma on residual viremia and cellular HIV-1 DNA in patients on suppressive antiretroviral therapy. PLoS ONE. 2014;9(3):e92118. Reference demonstrates the persistence of latent viral reservoirs following high dose chemotherapy for lymphoma, demonstrating that chemotherapy alone is not curative for HIV.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Manjunath N, Yi G, Dang Y, Shankar P. Newer gene editing technologies toward HIV gene therapy. Viruses. 2013;5(11):2748–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mani M, Kandavelou K, Dy FJ, Durai S, Chandrasegaran S. Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. 2005;335(2):447–57.

    Article  CAS  PubMed  Google Scholar 

  26. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10. This reference demonstrates the control of HIV viremia in patients receiving CCR5-specific ZFN-treated T-cells and thus the therapeutic potential of the approach.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Li L, Krymskaya L, Wang J, Henley J, Rao A, Cao LF, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther. 2013;21(6):1259–69. This paper demonstrates the potential for disrupting CCR5 in hematopoietic stem cells using ZFN.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011;8(9):765–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29(9):816–23. This reference describes the empirical determination of off target sites for ZFN treated cells.

    Article  CAS  PubMed  Google Scholar 

  32. Badia R, Riveira-Munoz E, Clotet B, Este JA, Ballana E. Gene editing using a zinc-finger nuclease mimicking the CCR5Delta32 mutation induces resistance to CCR5-using HIV-1. J Antimicrob Chemother. 2014;69(7):1755–9.

    Article  CAS  PubMed  Google Scholar 

  33. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39(21):9283–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(3):230–2.

    Article  CAS  PubMed  Google Scholar 

  35. Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013;41(20):9584–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hunt PW, Harrigan PR, Huang W, Bates M, Williamson DW, McCune JM, et al. Prevalence of CXCR4 tropism among antiretroviral-treated HIV-1-infected patients with detectable viremia. J Infect Dis. 2006;194(7):926–30.

    Article  CAS  PubMed  Google Scholar 

  37. Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med. 1997;185(4):621–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kordelas L, Verheyen J, Beelen DW, Horn PA, Heinold A, Kaiser R, et al. Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N Engl J Med. 2014;371(9):880–2. This reference demonstrates the shift to X4 tropic virus following inhibition of R5 tropic virus by stem cell transplantation with CCR5 D32/D32 bone marrow.

  39. Didigu CA, Wilen CB, Wang J, Duong J, Secreto AJ, Danet-Desnoyers GA, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123(1):61–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Li MJ, Bauer G, Michienzi A, Yee JK, Lee NS, Kim J, et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther. 2003;8(2):196–206.

    Article  CAS  PubMed  Google Scholar 

  41. Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J, et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther. 2005;12(5):900–9.

    Article  CAS  PubMed  Google Scholar 

  42. An DS, Qin FX, Auyeung VC, Mao SH, Kung SK, Baltimore D, et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther. 2006;14(4):494–504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Anderson J, Li MJ, Palmer B, Remling L, Li S, Yam P, et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes—CCR5 ribozyme, Tat-rev siRNA, and TAR decoy—in SCID-hu mouse-derived T cells. Mol Ther. 2007;15(6):1182–8.

    CAS  PubMed  Google Scholar 

  44. An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao SH, et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci U S A. 2007;104(32):13110–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Qin XF, An DS, Chen IS, Baltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A. 2003;100(1):183–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Liang M, Kamata M, Chen KN, Pariente N, An DS, Chen IS. Inhibition of HIV-1 infection by a unique short hairpin RNA to chemokine receptor 5 delivered into macrophages through hematopoietic progenitor cell transduction. J Gene Med. 2010;12(3):255–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Chung J, Scherer LJ, Gu A, Gardner AM, Torres-Coronado M, Epps EW, et al. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT (P140K) drug resistance gene. Mol Ther. 2014;22(5):952–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chung J, DiGiusto DL, Rossi JJ. Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS. Expert Opin Biol Ther. 2013;13(3):437–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Li L, Torres-Coronado M, Gu A, Rao A, Gardner AM, Epps EW, et al. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin. Stem Cells Transl Med. 2014;3(10):1199–208.

    Article  CAS  PubMed  Google Scholar 

  50. Ringpis GE, Shimizu S, Arokium H, Camba-Colon J, Carroll MV, Cortado R, et al. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice. PLoS ONE. 2012;7(12):e53492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Peterson CW, Younan P, Jerome KR, Kiem HP. Combinatorial anti-HIV gene therapy: using a multipronged approach to reach beyond HAART. Gene Ther. 2013;20(7):695–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Burke BP, Boyd MP, Impey H, Breton LR, Bartlett JS, Symonds GP, et al. CCR5 as a natural and modulated target for inhibition of HIV. Viruses. 2014;6(1):54–68.

    Article  PubMed Central  Google Scholar 

  53. Walker JE, Chen RX, McGee J, Nacey C, Pollard RB, Abedi M, et al. Generation of an HIV-1-resistant immune system with CD34(+) hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector. J Virol. 2012;86(10):5719–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Egelhofer M, Brandenburg G, Martinius H, Schult-Dietrich P, Melikyan G, Kunert R, et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol. 2004;78(2):568–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zahn RC, Hermann FG, Kim EY, Rett MD, Wolinsky SM, Johnson RP, et al. Efficient entry inhibition of human and nonhuman primate immunodeficiency virus by cell surface-expressed gp41-derived peptides. Gene Ther. 2008;15(17):1210–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Taylor JA, Vojtech L, Bahner I, Kohn DB, Laer DV, Russell DW, et al. Foamy virus vectors expressing anti-HIV transgenes efficiently block HIV-1 replication. Mol Ther. 2008;16(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  57. Brauer F, Schmidt K, Zahn RC, Richter C, Radeke HH, Schmitz JE, et al. A rationally engineered anti-HIV peptide fusion inhibitor with greatly reduced immunogenicity. Antimicrob Agents Chemother. 2013;57(2):679–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kilby JM, Hopkins S, Venetta TM, DiMassimo B, Cloud GA, Lee JY, et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med. 1998;4(11):1302–7.

    Article  CAS  PubMed  Google Scholar 

  59. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother. 2002;46(6):1896–905.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kimpel J, Braun SE, Qiu G, Wong FE, Conolle M, Schmitz JE, et al. Survival of the fittest: positive selection of CD4+ T cells expressing a membrane-bound fusion inhibitor following HIV-1 infection. PLoS ONE. 2010;5(8):e12357.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Trobridge GD, Wu RA, Beard BC, Chiu SY, Munoz NM, von Laer D, et al. Protection of stem cell-derived lymphocytes in a primate AIDS gene therapy model after in vivo selection. PLoS ONE. 2009;4(11):e7693.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kiem HP, Wu RA, Sun G, von Laer D, Rossi JJ, Trobridge GD. Foamy combinatorial anti-HIV vectors with MGMTP140K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo. Gene Ther. 2010;17(1):37–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Trobridge GD, Kiem HP. Large animal models of hematopoietic stem cell gene therapy. Gene Ther. 2010;17(8):939–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Stone D, Kiem HP, Jerome KR. Targeted gene disruption to cure HIV. Curr Opin HIV AIDS. 2013;8(3):217–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Younan PM, Polacino P, Kowalski JP, Peterson CW, Maurice NJ, Williams NP, et al. Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood. 2013;122(2):179–87. Seminal manuscript demonstrating the control of HIV viremia through normal immune function following transplantation with syngeneic HSPC expressing a C46 viral fusion inhibitor.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Ms. Nancy Gonzalez for her help in preparing Table 1 and Drs. Angel Gu, Monica Torres Coronado, Janet Chung, and Ms. Elizabeth Epps for performing NSG mouse transplant and HIV challenge studies presented in Fig. 1.

Compliance with Ethics Guidelines

Conflict of Interest

David L. DiGiusto declares that he is a co-investigator on a grant from CIRM to develop zinc finger nucleases for modifying hematopoietic stem cells that includes Sangamo Biosciences as a corporate partner. Dr. DiGiusto is currently a paid consultant to CalImmune who is developing stem cell-based HIV entry inhibitors currently being tested in phase 1 clinical trials. In addition, Dr. DiGiusto has a patent MCM-7 construct with siRNA to HIV pending. Dr. DiGiusto declares he has no stock or stock options in either of these companies and is not compensated for the work or views presented in this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. DiGiusto.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiGiusto, D.L. Stem Cell Gene Therapy for HIV: Strategies to Inhibit Viral Entry and Replication. Curr HIV/AIDS Rep 12, 79–87 (2015). https://doi.org/10.1007/s11904-014-0242-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-014-0242-8

Keywords

Navigation