Skip to main content

Advertisement

Log in

Chemoprevention in hepatocellular carcinoma

  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The number of deaths due to hepatocellular carcinoma (HCC) continues to rise. Chemoprevention may be a useful strategy to prevent HCC.

Recent Findings

We summarize recent clinical and translational studies on the chemoprevention of HCC from the aspects of etiology-specific and generic chemoprevention in the context of contemporary HCC etiologies.

Summary

Use of safe and effective HCC chemopreventive agents may reduce the burden of HCC, but more data are required before these can be recommended in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. https://doi.org/10.1038/s41572-020-00240-3.

    Article  PubMed  Google Scholar 

  3. Rocha C, Doyle EH, Bowman CA, Fiel MI, Stueck AE, Goossens N, Bichoupan K, Crismale JF, Makkar J, Lewis S, Perumalswami PV, Schiano TD, Hoshida Y, Schwartz M, Branch AD, Patel N. Hepatocellular carcinoma in patients cured of chronic hepatitis C: minimal steatosis. Cancer Med. 2023; https://doi.org/10.1002/cam4.5711.

  4. Hsu YC, Huang DQ, Nguyen MH. Global burden of hepatitis B virus: current status, missed opportunities and a call for action. Nat Rev Gastroenterol Hepatol. 2023:1–4. https://doi.org/10.1038/s41575-023-00760-9.

  5. Tan DJH, Ng CH, Lin SY, Pan XH, Tay P, Lim WH, Teng M, Syn N, Lim G, Yong JN, Quek J, Xiao J, Dan YY, Siddiqui MS, Sanyal AJ, Muthiah MD, Loomba R, Huang DQ. Clinical characteristics, surveillance, treatment allocation, and outcomes of non-alcoholic fatty liver disease-related hepatocellular carcinoma: a systematic review and meta-analysis. Lancet Oncol. 2022;23(4):521–30. https://doi.org/10.1016/S1470-2045(22)00078-X.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hartmann P, Zhang X, Loomba R, Schnabl B. Global and national prevalence of nonalcoholic fatty liver disease in adolescents: an analysis of the global burden of disease study 2019. Hepatology. 2023; https://doi.org/10.1097/HEP.0000000000000383.

  7. Bruce MG, Bruden D, Hurlburt D, Morris J, Bressler S, Thompson G, Lecy D, Rudolph K, Bulkow L, Hennessy T, Simons BC, Weng MK, Nelson N, McMahon BJ. Protection and antibody levels 35 years after primary series with hepatitis B vaccine and response to a booster dose. Hepatology. 2022;76(4):1180–9. https://doi.org/10.1002/hep.32474.

    Article  CAS  PubMed  Google Scholar 

  8. Chang KC, Chang MH, Chen HL, Wu JF, Chang CH, Hsu HY, Ni YH. Universal infant hepatitis B virus (HBV) vaccination for 35 years: moving toward the eradication of HBV. J Infect Dis. 2022;225(3):431–5. https://doi.org/10.1093/infdis/jiab401.

    Article  CAS  PubMed  Google Scholar 

  9. Chiang CJ, Jhuang JR, Yang YW, Zhuang BZ, You SL, Lee WC, Chen CJ. Association of nationwide hepatitis B vaccination and antiviral therapy programs with end-stage liver disease burden in Taiwan. JAMA Netw Open. 2022;5(7):e2222367. https://doi.org/10.1001/jamanetworkopen.2022.22367.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liao SH, Chen CL, Hsu CY, Chien KL, Kao JH, Chen PJ, Chen TH, Chen CH. Long-term effectiveness of population-wide multifaceted interventions for hepatocellular carcinoma in Taiwan. J Hepatol. 2021;75(1):132–41. https://doi.org/10.1016/j.jhep.2021.02.029.

    Article  PubMed  Google Scholar 

  11. Wong GL, Hui VW, Yip TC, Liang LY, Zhang X, Tse YK, Lai JC, Chan HL, Wong VW. Universal HBV vaccination dramatically reduces the prevalence of HBV infection and incidence of hepatocellular carcinoma. Aliment Pharmacol Ther. 2022;56(5):869–77. https://doi.org/10.1111/apt.17120.

    Article  CAS  PubMed  Google Scholar 

  12. • Tan DJH, Ng CH, Tay PWL, Syn N, Muthiah MD, Lim WH, Tang ASP, Lim KE, Lim GEH, Tamaki N, Kim BK, Teng MLP, Fung J, Loomba R, Nguyen MH, Huang DQ. Risk of hepatocellular carcinoma with tenofovir vs entecavir treatment for chronic hepatitis B virus: a reconstructed individual patient data meta-analysis. JAMA Netw Open. 2022;5(6):e2219407. https://doi.org/10.1001/jamanetworkopen.2022.19407. An initial meta-analysis showing no clinical difference in the efficacy of tenofovir and entecavir in reducing HBV-related HCC.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wong GLH, Gane E, Lok ASF. How to achieve functional cure of HBV: stopping NUCs, adding interferon or new drug development? J Hepatol. 2022;76(6):1249–62. https://doi.org/10.1016/j.jhep.2021.11.024.

    Article  CAS  PubMed  Google Scholar 

  14. Yang H, Bae SH, Nam H, Lee HL, Lee SW, Yoo SH, Song MJ, Kwon JH, Nam SW, Choi JY, Yoon SK, Jang JW. A risk prediction model for hepatocellular carcinoma after hepatitis B surface antigen seroclearance. J Hepatol. 2022;77(3):632–41. https://doi.org/10.1016/j.jhep.2022.03.032.

    Article  CAS  PubMed  Google Scholar 

  15. Collaborators POH. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study. Lancet Gastroenterol Hepatol. 2022;7(5):396–415. https://doi.org/10.1016/S2468-1253(21)00472-6.

    Article  Google Scholar 

  16. Lockart I, Yeo MGH, Hajarizadeh B, Dore GJ, Danta M. HCC incidence after hepatitis C cure among patients with advanced fibrosis or cirrhosis: a meta-analysis. Hepatology. 2022;76(1):139–54. https://doi.org/10.1002/hep.32341.

    Article  PubMed  Google Scholar 

  17. Bandiera S, Billie Bian C, Hoshida Y, Baumert TF, M. B. Zeisel: Chronic hepatitis C virus infection and pathogenesis of hepatocellular carcinoma. Curr Opin Virol. 2016;20:99–105. https://doi.org/10.1016/j.coviro.2016.09.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barnes E, Cooke GS, Lauer GM, Chung RT. Implementation of a controlled human infection model for evaluation of HCV vaccine candidates. Hepatology. 2023;77(5):1757–72. https://doi.org/10.1002/hep.32632.

    Article  CAS  PubMed  Google Scholar 

  19. Alzua GP, Pihl AF, Offersgaard A, Duarte Hernandez CR, Duan Z, Feng S, Fahnøe U, Sølund C, Weis N, Law M, Prentoe JC, Christensen JP, Bukh J, Gottwein JM. Inactivated genotype 1a, 2a and 3a HCV vaccine candidates induced broadly neutralising antibodies in mice. Gut. 2023;72(3):560–72. https://doi.org/10.1136/gutjnl-2021-326323.

    Article  CAS  PubMed  Google Scholar 

  20. Sliepen K, Radić L, Capella-Pujol J, Watanabe Y, Zon I, Chumbe A, Lee WH, de Gast M, Koopsen J, Koekkoek S, Del Moral-Sánchez I, Brouwer PJM, Ravichandran R, Ozorowski G, King NP, Ward AB, van Gils MJ, Crispin M, Schinkel J, Sanders RW. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nat Commun. 2022;13(1):7271. https://doi.org/10.1038/s41467-022-34961-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yato K, Matsuda M, Watanabe N, Watashi K, Aizaki H, Kato T, Tamura K, Wakita T, Muramatsu M, Suzuki R. Induction of neutralizing antibodies against hepatitis C virus by a subviral particle-based DNA vaccine. Antiviral Res. 2022;199:105266. https://doi.org/10.1016/j.antiviral.2022.105266.

    Article  CAS  PubMed  Google Scholar 

  22. Jacobson JM, Zahrieh D, Strand CA, Cruz-Correa M, Pungpapong S, Roberts LR, Mandrekar SJ, Rodriguez LM, Boyer J, Marrero I, Kraynyak KA. phase I trial of a therapeutic DNA vaccine for preventing hepatocellular carcinoma from chronic hepatitis C virus (HCV) infection. Cancer Prev Res (Phila). 2023;16(3):163–73. https://doi.org/10.1158/1940-6207.CAPR-22-0217.

    Article  CAS  PubMed  Google Scholar 

  23. Llovet JM, Willoughby CE, Singal AG, Greten TF, Heikenwälder M, El-Serag HB, Finn RS, Friedman SL. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nat Rev Gastroenterol Hepatol. 2023; https://doi.org/10.1038/s41575-023-00754-7.

  24. Rinella ME, Dufour JF, Anstee QM, Goodman Z, Younossi Z, Harrison SA, Loomba R, Sanyal AJ, Bonacci M, Trylesinski A, Natha M, Shringarpure R, Granston T, Venugopal A, Ratziu V. Non-invasive evaluation of response to obeticholic acid in patients with NASH: results from the REGENERATE study. J Hepatol. 2022;76(3):536–48. https://doi.org/10.1016/j.jhep.2021.10.029.

    Article  CAS  PubMed  Google Scholar 

  25. • Ng CH, Tang ASP, Xiao J, Wong ZY, Yong JN, Fu CE, Zeng RW, Tan C, Wong GHZ, Teng M, Chee D, Tan DJH, Chan KE, Huang DQ, Chew NWS, Nah B, Siddqui MS, Sanyal AJ, Noureddin M, Muthiah M. Safety and tolerability of obeticholic acid in chronic liver disease: a pooled analysis of 1878 individuals. Hepatol Commun. 2023;7(3), e0005 https://doi.org/10.1097/HC9.0000000000000005. Important meta-analysis that systematically examined the safety profile of obeticholic acid in patients with chronic liver disease.

  26. Zhuge A, Li S, Yuan Y, Han S, Xia J, Wang Q, Wang S, Lou P, Li B, Li L. Microbiota-induced lipid peroxidation impairs obeticholic acid-mediated antifibrotic effect towards nonalcoholic steatohepatitis in mice. Redox Biol. 2023;59:102582. https://doi.org/10.1016/j.redox.2022.102582.

    Article  CAS  PubMed  Google Scholar 

  27. Harrison SA, Bashir M, Moussa SE, McCarty K, Pablo Frias J, Taub R, Alkhouri N. Effects of resmetirom on noninvasive endpoints in a 36-week phase 2 active treatment extension study in patients with NASH. Hepatol Commun. 2021;5(4):573–88. https://doi.org/10.1002/hep4.1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Wang L, Geng L, Tanaka N, Ye B. Resmetirom ameliorates NASH-model mice by suppressing STAT3 and NF-κB signaling pathways in an RGS5-dependent manner. Int J Mol Sci. 2023;24(6) https://doi.org/10.3390/ijms24065843.

  29. Hua L, Li J, Yang Y, Jiang D, Jiang X, Han X, Chao J, Feng B, Che L, Xu S, Lin Y, Fang Z, Sun M, Du S, Luo T, Wu D, Zhuo Y. Liver-derived FGF21 is required for the effect of time-restricted feeding on high-fat diet-induced fatty liver in mice. FASEB J. 2023;37(5):e22898. https://doi.org/10.1096/fj.202202031R.

    Article  CAS  PubMed  Google Scholar 

  30. Harrison SA, Ruane PJ, Freilich B, Neff G, Patil R, Behling C, Hu C, Shringarpure R, de Temple B, Fong E, Tillman EJ, Rolph T, Cheng A, Yale K. A randomized, double-blind, placebo-controlled phase IIa trial of efruxifermin for patients with compensated NASH cirrhosis. JHEP Rep. 2023;5(1):100563. https://doi.org/10.1016/j.jhepr.2022.100563.

    Article  PubMed  Google Scholar 

  31. Lee JH, Kang YE, Chang JY, Park KC, Kim HW, Kim JT, Kim HJ, Yi HS, Shong M, Chung HK, Kim KS. An engineered FGF21 variant, LY2405319, can prevent non-alcoholic steatohepatitis by enhancing hepatic mitochondrial function. Am J Transl Res. 2016;8(11):4750–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawakubo M, Tanaka M, Ochi K, Watanabe A, Saka-Tanaka M, Kanamori Y, Yoshioka N, Yamashita S, Goto M, Itoh M, Shirakawa I, Kanai S, Suzuki H, Sawada M, Ito A, Ishigami M, Fujishiro M, Arima H, Ogawa Y, Suganami T. Dipeptidyl peptidase-4 inhibition prevents nonalcoholic steatohepatitis-associated liver fibrosis and tumor development in mice independently of its anti-diabetic effects. Sci Rep. 2020;10(1):983. https://doi.org/10.1038/s41598-020-57935-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, McGowan BM, Rosenstock J, Tran MTD, Wadden TA, Wharton S, Yokote K, Zeuthen N, Kushner RF, S. S. Group. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989–1002. https://doi.org/10.1056/NEJMoa2032183.

    Article  CAS  PubMed  Google Scholar 

  34. Loomba R, Abdelmalek MF, Armstrong MJ, Jara M, Kjær MS, Krarup N, Lawitz E, Ratziu V, Sanyal AJ, Schattenberg JM, Newsome PN, Investigators N. Semaglutide 2·4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: a randomised, placebo-controlled phase 2 trial. Lancet. Gastroenterol Hepatol. 2023;8(6):511–22. https://doi.org/10.1016/S2468-1253(23)00068-7.

    Article  Google Scholar 

  35. Kojima M, Takahashi H, Kuwashiro T, Tanaka K, Mori H, Ozaki I, Kitajima Y, Matsuda Y, Ashida K, Eguchi Y, Anzai K. Glucagon-like peptide-1 receptor agonist prevented the progression of hepatocellular carcinoma in a mouse model of nonalcoholic steatohepatitis. Int J Mol Sci. 2020;21(16) https://doi.org/10.3390/ijms21165722.

  36. Nishina S, Yamauchi A, Kawaguchi T, Kaku K, Goto M, Sasaki K, Hara Y, Tomiyama Y, Kuribayashi F, Torimura T, Hino K. Dipeptidyl peptidase 4 inhibitors reduce hepatocellular carcinoma by activating lymphocyte chemotaxis in mice. Cell Mol Gastroenterol Hepatol. 2019;7(1):115–34. https://doi.org/10.1016/j.jcmgh.2018.08.008.

    Article  PubMed  Google Scholar 

  37. Kawaguchi T, Nakano D, Koga H, Torimura T. Effects of a DPP4 inhibitor on progression of NASH-related HCC and the p62/ Keap1/Nrf2-pentose phosphate pathway in a mouse model. Liver Cancer. 2019;8(5):359–72. https://doi.org/10.1159/000491763.

    Article  CAS  PubMed  Google Scholar 

  38. Simon TG, Duberg AS, Aleman S, Chung RT, Chan AT, Ludvigsson JF. Association of aspirin with hepatocellular carcinoma and liver-related mortality. N Engl J Med. 2020;382(11):1018–28. https://doi.org/10.1056/NEJMoa1912035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishikawa H, Mutoh M, Sato Y, Doyama H, Tajika M, Tanaka S, Horimatsu T, Takeuchi Y, Kashida H, Tashiro J, Ezoe Y. Chemoprevention with low-dose aspirin, mesalazine, or both in patients with familial adenomatous polyposis without previous colectomy (J-FAPP Study IV): a multicentre, double-blind, randomised, two-by-two factorial design trial. Lancet Gastroenterol Hepatol. 2021;6(6):474–81. https://doi.org/10.1016/S2468-1253(21)00018-2.

    Article  PubMed  Google Scholar 

  40. Wang YF, Feng JY, Zhao LN, Zhao M, Wei XF, Geng Y, Yuan HF, Hou CY, Zhang HH, Wang GW, Yang G, Zhang XD. Aspirin triggers ferroptosis in hepatocellular carcinoma cells through restricting NF-κB p65-activated SLC7A11 transcription. Acta Pharmacol Sin. 2023; https://doi.org/10.1038/s41401-023-01062-1.

  41. Shi T, Fujita K, Gong J, Nakahara M, Iwama H, Liu S, Yoneyama H, Morishita A, Nomura T, Tani J, Takuma K, Tadokoro T, Himoto T, Oura K, Tsutsui K, Kobara H, Masaki T. Aspirin inhibits hepatocellular carcinoma cell proliferation in vitro and in vivo via inducing cell cycle arrest and apoptosis. Oncol Rep. 2020;44(2):457–68. https://doi.org/10.3892/or.2020.7630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Memel ZN, Arvind A, Moninuola O, Philpotts L, Chung RT, Corey KE, Simon TG. Aspirin use is associated with a reduced incidence of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatol Commun. 2021;5(1):133–43. https://doi.org/10.1002/hep4.1640.

    Article  CAS  PubMed  Google Scholar 

  43. •• Zeng RW, Yong JN, Tan DJH, Fu CE, Lim WH, Xiao J, Chan KE, Tan C, Goh XL, Chee D, Syn N, Tan EX, Muthiah MD, Ng CH, Tamaki N, Lee SW, Kim BK, Nguyen MH, Loomba R, Huang DQ. Meta-analysis: chemoprevention of hepatocellular carcinoma with statins, aspirin and metformin. Aliment Pharmacol Ther. 2023;57(6):600–9. https://doi.org/10.1111/apt.17371. An important updated meta-analysis that overcame the limitation of previous meta-analyses such as pooling odds ratios that are not time-to-event measurements, or pooling data that had not been adequately adjusted for background differences in treated versus untreated patients.

    Article  CAS  PubMed  Google Scholar 

  44. Jang H, Lee YB, Moon H, Chung JW, Nam JY, Cho EJ, Lee JH, Yu SJ, Kim YJ, Lee J, Yoon JH. Aspirin use and risk of hepatocellular carcinoma in patients with chronic hepatitis B with or without cirrhosis. Hepatology. 2022;76(2):492–501. https://doi.org/10.1002/hep.32380.

    Article  CAS  PubMed  Google Scholar 

  45. Chen H, Cai W, Chu ESH, Tang J, Wong CC, Wong SH, Sun W, Liang Q, Fang J, Sun Z, Yu J. Hepatic cyclooxygenase-2 overexpression induced spontaneous hepatocellular carcinoma formation in mice. Oncogene. 2017;36(31):4415–26. https://doi.org/10.1038/onc.2017.73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiong H, Li B, He J, Zeng Y, Zhang Y, He F. lncRNA HULC promotes the growth of hepatocellular carcinoma cells via stabilizing COX-2 protein. Biochem Biophys Res Commun. 2017;490(3):693–9. https://doi.org/10.1016/j.bbrc.2017.06.103.

    Article  CAS  PubMed  Google Scholar 

  47. Loo TM, Kamachi F, Watanabe Y, Yoshimoto S, Kanda H, Arai Y, Nakajima-Takagi Y, Iwama A, Koga T, Sugimoto Y, Ozawa T. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov. 2017;7(5):522–38. https://doi.org/10.1158/2159-8290.CD-16-0932.

    Article  CAS  PubMed  Google Scholar 

  48. Xu G, Wang Y, Li W, Cao Y, Xu J, Hu Z, Hao Y, Hu L, Sun Y. COX-2 forms regulatory loop with YAP to promote proliferation and tumorigenesis of hepatocellular carcinoma cells. Neoplasia. 2018;20(4):324–34. https://doi.org/10.1016/j.neo.2017.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision making. Hepatology. 2023; https://doi.org/10.1097/HEP.0000000000000513.

  50. Marron TU, Schwartz M, Corbett V, Merad M. Neoadjuvant immunotherapy for hepatocellular carcinoma. J Hepatocell Carcinoma. 2022;9:571–81. https://doi.org/10.2147/JHC.S340935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marron TU, Fiel MI, Hamon P, Fiaschi N, Kim E, Ward SC, Zhao Z, Kim J, Kennedy P, Gunasekaran G, Tabrizian P. Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: a single-arm, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 2022;7(3):219–29. https://doi.org/10.1016/S2468-1253(21)00385-X.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kaseb AO, Hasanov E, Cao HS, Xiao L, Vauthey JN, Lee SS, Yavuz BG, Mohamed YI, Qayyum A, Jindal S, Duan F. Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: a randomised, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 2022;7(3):208–18. https://doi.org/10.1016/S2468-1253(21)00427-1.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhao M, Chen S, Li C, Du Y, Li P. Neoadjuvant immune checkpoint inhibitors for resectable hepatocellular carcinoma: a systematic review and meta-analysis. Cancers (Basel). 2023;15(3) https://doi.org/10.3390/cancers15030600.

  54. Deza Z, Caimi GR, Noelia M, Coli L, Ridruejo E, Alvarez L. Atorvastatin shows antitumor effect in hepatocellular carcinoma development by inhibiting angiogenesis via TGF-β1/pERK signaling pathway. Mol Carcinog. 2023;62(3):398–407. https://doi.org/10.1002/mc.23494.

    Article  CAS  PubMed  Google Scholar 

  55. Kim MH, Kim MY, Salloum S, Qian T, Wong LP, Xu M, Lee Y, Shroff SG, Sadreyev RI, Corey KE, Baumert TF, Hoshida Y, Chung RT. Atorvastatin favorably modulates a clinical hepatocellular carcinoma risk gene signature. Hepatol Commun. 2022;6(9):2581–93. https://doi.org/10.1002/hep4.1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Longo J, van Leeuwen JE, Elbaz M, Branchard E, Penn LZ. Statins as anticancer agents in the era of precision medicine. Clin Cancer Res. 2020;26(22):5791–800. https://doi.org/10.1158/1078-0432.CCR-20-1967.

    Article  CAS  PubMed  Google Scholar 

  57. Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab. 2023:1–25. https://doi.org/10.1038/s42255-023-00786-y.

  58. Sung FC, Yeh YT, Muo CH, Hsu CC, Tsai WC, Hsu YH. Statins reduce hepatocellular carcinoma risk in patients with chronic kidney disease and end-stage renal disease: a 17-year longitudinal study. Cancers (Basel). 2022;14(3) https://doi.org/10.3390/cancers14030825.

  59. Chong LW, Hsu YC, Lee TF, Lin Y, Chiu YT, Yang KC, Wu JC, Huang YT. Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells. BMC Gastroenterol. 2015;15:22. https://doi.org/10.1186/s12876-015-0248-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma R, Simon TG, Hagström H, Lochhead P, Roelstraete B, Söderling J, Verna EC, Emond J, Ludvigsson JF. Statins are associated with a decreased risk of severe liver disease in individuals with non-cirrhotic chronic liver disease. Clin Gastroenterol Hepatol. 2023; https://doi.org/10.1016/j.cgh.2023.04.017.

  61. Zou B, Odden MC, Nguyen MH. Statin use and reduced hepatocellular carcinoma risk in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2023;21(2):435–444.e6. https://doi.org/10.1016/j.cgh.2022.01.057.

    Article  CAS  PubMed  Google Scholar 

  62. Huang DQ, Wilson LA, Behling C, Kleiner DE, Kowdley KV, Dasarathy S, Amangurbanova M, Terrault NA, Diehl AM, Chalasani N, Neuschwander-Tetri BA, Sanyal AJ, Tonascia J, Loomba R, Network NCR. Fibrosis progression rate in biopsy-proven nonalcoholic fatty liver disease among people with diabetes versus people without diabetes: a multicenter study. Gastroenterology. 2023; https://doi.org/10.1053/j.gastro.2023.04.025.

  63. Zhao D, Xia L, Geng W, Xu D, Zhong C, Zhang J, Xia Q. Metformin suppresses interleukin-22 induced hepatocellular carcinoma by upregulating Hippo signaling pathway. J Gastroenterol Hepatol. 2021;36(12):3469–76. https://doi.org/10.1111/jgh.15674.

    Article  CAS  PubMed  Google Scholar 

  64. Hu A, Hu Z, Ye J, Liu Y, Lai Z, Zhang M, Ji W, Huang L, Zou H, Chen B, Zhong J. Metformin exerts anti-tumor effects via sonic hedgehog signaling pathway by targeting AMPK in HepG2 cells. Biochem Cell Biol. 2022;100(2):142–51. https://doi.org/10.1139/bcb-2021-0409.

    Article  CAS  PubMed  Google Scholar 

  65. Tsai PC, Kuo HT, Hung CH, Tseng KC, Lai HC, Peng CY, Wang JH, Chen JJ, Lee PL, Chien RN, Yang CC. Metformin reduces hepatocellular carcinoma incidence after successful antiviral therapy in patients with diabetes and chronic hepatitis C in Taiwan. J Hepatol. 2023;78(2):281–92. https://doi.org/10.1016/j.jhep.2022.09.019.

    Article  CAS  PubMed  Google Scholar 

  66. Li Q, Xu H, Sui C, Zhang H. Impact of metformin use on risk and mortality of hepatocellular carcinoma in diabetes mellitus. Clin Res Hepatol Gastroenterol. 2022;46(2):101781. https://doi.org/10.1016/j.clinre.2021.101781.

    Article  CAS  PubMed  Google Scholar 

  67. Nakano D, Kawaguchi T, Iwamoto H, Hayakawa M, Koga H, Torimura T. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT). PLoS One. 2020;15(4):e0232283. https://doi.org/10.1371/journal.pone.0232283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu WS, Lin CL. Sodium-glucose cotransporter-2 inhibitor versus beta-blocker use for hepatocellular carcinoma risk among people with hepatitis B or C virus infection and diabetes mellitus. Cancers (Basel). 2023;15(7) https://doi.org/10.3390/cancers15072104.

  69. Lee CH, Mak LY, Tang EH, Lui DT, Mak JH, Li L, Wu T, Chan WL, Yuen MF, Lam KS, Wong CKH. SGLT2i reduces risk of developing HCC in patients with co-existing T2D and CHB infection - a territory-wide cohort study in Hong Kong. Hepatology. 2023; https://doi.org/10.1097/HEP.0000000000000404.

  70. Hendryx M, Dong Y, Ndeke JM, Luo J. Sodium-glucose cotransporter 2 (SGLT2) inhibitor initiation and hepatocellular carcinoma prognosis. PLoS One. 2022;17(9):e0274519. https://doi.org/10.1371/journal.pone.0274519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsu WH, Sue SP, Liang HL, Tseng CW, Lin HC, Wen WL, Lee MY. Dipeptidyl peptidase 4 inhibitors decrease the risk of hepatocellular carcinoma in patients with chronic hepatitis C infection and type 2 diabetes mellitus: a nationwide study in Taiwan. Front Public Health. 2021;9:711723. https://doi.org/10.3389/fpubh.2021.711723.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chen TI, Lee FJ, Hsu WL, Chen YC, Chen M. Association of dipeptidyl peptidase-4 inhibitors use with reduced risk of hepatocellular carcinoma in type 2 diabetes patients with chronic HBV infection. Cancers (Basel). 2023;15(4) https://doi.org/10.3390/cancers15041148.

  73. Komposch K, Sibilia M. EGFR signaling in liver diseases. Int J Mol Sci. 2016;17(1) https://doi.org/10.3390/ijms17010030.

  74. Fuchs BC, Hoshida Y, Fujii T, Wei L, Yamada S, Lauwers GY, McGinn CM, DePeralta DK, Chen X, Kuroda T, Lanuti M. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology. 2014;59(4):1577–90. https://doi.org/10.1002/hep.26898.

    Article  CAS  PubMed  Google Scholar 

  75. Nakagawa S, Wei L, Song WM, Higashi T, Ghoshal S, Kim RS, Bian CB, Yamada S, Sun X, Venkatesh A, Goossens N. Precision liver cancer prevention: molecular liver cancer prevention in cirrhosis by organ transcriptome analysis and lysophosphatidic acid pathway inhibition. Cancer Cell. 2016;30(6):879–90. https://doi.org/10.1016/j.ccell.2016.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Luo YD, Fang L, Yu HQ, Zhang J, Lin XT, Liu XY, Wu D, Li GX, Huang D, Zhang YJ, Chen S, Jiang Y, Shuai L, He Y, Zhang LD, Bie P, Xie CM. p53 haploinsufficiency and increased mTOR signalling define a subset of aggressive hepatocellular carcinoma. J Hepatol. 2021;74(1):96–108. https://doi.org/10.1016/j.jhep.2020.07.036.

    Article  CAS  PubMed  Google Scholar 

  77. Schnitzbauer AA, Filmann N, Adam R, Bachellier P, Bechstein WO, Becker T, Bhoori S, Bilbao I, Brockmann J, Burra P, Chazoullières O. mTOR inhibition is most beneficial after liver transplantation for hepatocellular carcinoma in patients with active tumors. Ann Surg. 2020;272(5):855–62. https://doi.org/10.1097/SLA.0000000000004280.

    Article  PubMed  Google Scholar 

  78. Yan X, Huang S, Yang Y, Lu Z, Li F, Jiang L, Jiang Y, Liu J. Sirolimus or everolimus improves survival after liver transplantation for hepatocellular carcinoma: a systematic review and meta-analysis. Liver Transpl. 2022;28(6):1063–77. https://doi.org/10.1002/lt.26387.

    Article  PubMed  Google Scholar 

  79. Niezen S, Mehta M, Jiang ZG, Tapper EB. Coffee consumption is associated with lower liver stiffness: a nationally representative study. Clin Gastroenterol Hepatol. 2022;20(9):2032–2040.e6. https://doi.org/10.1016/j.cgh.2021.09.042.

    Article  CAS  PubMed  Google Scholar 

  80. Kennedy OJ, Roderick P, Buchanan R, Fallowfield JA, Hayes PC, Parkes J. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis. BMJ Open. 2017;7(5):e013739. https://doi.org/10.1136/bmjopen-2016-013739.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Deng Y, Huang J, Wong MCS. Associations between six dietary habits and risk of hepatocellular carcinoma: a Mendelian randomization study. Hepatol Commun. 2022;6(8):2147–54. https://doi.org/10.1002/hep4.1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu J, Liang D, Li J, Liu Z, Zhou F, Wang T, Ma S, Wang G, Chen B, Chen W. Coffee, green tea intake, and the risk of hepatocellular carcinoma: a systematic review and meta-analysis of observational studies. Nutr Cancer. 2023;1-14 https://doi.org/10.1080/01635581.2023.2178949.

  83. European Association for the Study of the Liver. Electronic address and L. European Association for the Study of the: EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236. https://doi.org/10.1016/j.jhep.2018.03.019.

    Article  Google Scholar 

  84. Singal AG, Llovet JM, Yarchoan M, Mehta N, Heimbach JK, Dawson LA, Jou JH, Kulik LM, Agopian VG, Marrero JA, Mendiratta-Lala M, Brown DB, Rilling WS, Goyal L, Wei AC, Taddei TH. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatol. 2023:10–97. https://doi.org/10.1097/HEP.0000000000000466.

  85. van Dijk AM, Bruins Slot AS, Portincasa P, Siegerink SN, Chargi N, Verstraete CJR, de Bruijne J, Vleggaar FP, van Erpecum KJ. Systematic review with meta-analysis: Branched-chain amino acid supplementation in liver disease. Eur J Clin Invest. 2023;53(3):e13909. https://doi.org/10.1111/eci.13909.

    Article  CAS  PubMed  Google Scholar 

  86. Wu T, Wang M, Ning F, Zhou S, Hu X, Xin H, Reilly S, Zhang X. Emerging role for branched-chain amino acids metabolism in fibrosis. Pharmacol Res. 2023;187:106604. https://doi.org/10.1016/j.phrs.2022.106604.

    Article  CAS  PubMed  Google Scholar 

  87. Terakura D, Shimizu M, Iwasa J, Baba A, Kochi T, Ohno T, Kubota M, Shirakami Y, Shiraki M, Takai K, Tsurumi H, Tanaka T, Moriwaki H. Preventive effects of branched-chain amino acid supplementation on the spontaneous development of hepatic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Carcinogenesis. 2012;33(12):2499–506. https://doi.org/10.1093/carcin/bgs303.

    Article  CAS  PubMed  Google Scholar 

  88. Kawaguchi T, Shiraishi K, Ito T, Suzuki K, Koreeda C, Ohtake T, Iwasa M, Tokumoto Y, Endo R, Kawamura NH, Shiraki M. Branched-chain amino acids prevent hepatocarcinogenesis and prolong survival of patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12(6):1012–8 e1. https://doi.org/10.1016/j.cgh.2013.08.050.

    Article  CAS  PubMed  Google Scholar 

  89. Goto RL, Tablas MB, Prata GB, Espírito Santo SG, Fernandes AAH, Cogliati B, Barbisan LF, Romualdo GR. Vitamin D. J Steroid Biochem Mol Biol. 2022;215:106022. https://doi.org/10.1016/j.jsbmb.2021.106022.

    Article  CAS  PubMed  Google Scholar 

  90. Eitah HE, Attia HN, Soliman AAF, Gamal El Din AA, Mahmoud K, Sayed RH, Maklad YA, El-Sahar AE. Vitamin D ameliorates diethylnitrosamine-induced liver preneoplasia: A pivotal role of CYP3A4/CYP2E1 via DPP-4 enzyme inhibition. Toxicol Appl Pharmacol. 2023;458:116324. https://doi.org/10.1016/j.taap.2022.116324.

    Article  CAS  PubMed  Google Scholar 

  91. Chen PT, Hsieh CC, Chen MF. Role of vitamin D3 in tumor aggressiveness and radiation response for hepatocellular carcinoma. Mol Carcinog. 2022;61(8):787–96. https://doi.org/10.1002/mc.23421.

    Article  CAS  PubMed  Google Scholar 

  92. Kwon HJ, Won YS, Suh HW, Jeon JH, Shao Y, Yoon SR, Chung JW, Kim TD, Kim HM, Nam KH, Yoon WK, Kim DG, Kim JH, Kim YS, Kim DY, Kim HC, Choi I. Vitamin D3 upregulated protein 1 suppresses TNF-alpha-induced NF-kappaB activation in hepatocarcinogenesis. J Immunol. 2010;185(7):3980–9. https://doi.org/10.4049/jimmunol.1000990.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Q, Jia R, Chen M, Wang J, Huang F, Shi M, Sheng H, Xu L. Antagonizing EZH2 combined with vitamin D3 exerts a synergistic role in anti-fibrosis through bidirectional effects on hepatocytes and hepatic stellate cells. J Gastroenterol Hepatol. 2023;38(3):441–50. https://doi.org/10.1111/jgh.16126.

    Article  CAS  PubMed  Google Scholar 

  94. Ibrahim MN, Khalifa AA, Hemead DA, Alsemeh AE, Habib MA. 1,25-Dihydroxycholecalciferol down-regulates 3-mercaptopyruvate sulfur transferase and caspase-3 in rat model of non-alcoholic fatty liver disease. J Mol Histol. 2023;54(2):119–34. https://doi.org/10.1007/s10735-023-10118-9.

    Article  CAS  PubMed  Google Scholar 

  95. Crudele L, De Matteis C, Piccinin E, Gadaleta RM, Cariello M, Di Buduo E, Piazzolla G, Suppressa P, Berardi E, Sabbà C, Moschetta A. Low HDL-cholesterol levels predict hepatocellular carcinoma development in individuals with liver fibrosis. JHEP Rep. 2023;5(1):100627. https://doi.org/10.1016/j.jhepr.2022.100627.

    Article  PubMed  Google Scholar 

  96. Omata M, Cheng AL, Kokudo N, Kudo M, Lee JM, Jia J, Tateishi R, Han KH, Chawla YK, Shiina S, Jafri W. Asia–Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int. 2017;11(4):317–70. https://doi.org/10.1007/s12072-017-9799-9.

    Article  PubMed  Google Scholar 

Download references

Data availability

All articles in this manuscript are available from the Medline and Embase.

Author information

Authors and Affiliations

Authors

Contributions

HS drafted the manuscript. CHN, DQH, and TK critically revised the manuscript for important intellectual content. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Cheng Han Ng.

Ethics declarations

Ethics Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Competing Interests

Cheng Han Ng has serves as a consultant for the Boxer Capital. Takumi Kawaguchi received lecture fee from the Janssen Pharmaceutical K.K., Taisho Pharmaceutical Co., Ltd., Kowa Company, Ltd., Otsuka Pharmaceutical Co., Ltd., Eisai Co., Ltd., ASKA Pharmaceutical Co., Ltd., AbbVie GK., and EA Pharma Co., Ltd. Daniel Q. Huang has served as an advisory board member for Eisai and receives funding support from the Singapore Ministry of Health’s National Medical Research Council under its NMRC Research Training Fellowship (MOH-000595-01). The rest of the authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hepatic Cancer

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, H., Ng, C.H., Tan, D.J.H. et al. Chemoprevention in hepatocellular carcinoma. Curr Hepatology Rep 22, 108–117 (2023). https://doi.org/10.1007/s11901-023-00614-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-023-00614-7

Keywords

Navigation