Skip to main content

Advertisement

Log in

Precision Medicine in Myeloid Malignancies: Hype or Hope?

  • Health Economics (N Khera, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract 

Purpose of Review

We review how understanding the fitness and comorbidity burden of patients, and molecular landscape of underlying acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) at the time of diagnosis is now integral to treatment.

Recent Findings

The upfront identification of patients’ fitness and molecular profile facilitates selection of targeted and novel agents, enables risk stratification, allows consideration of allogeneic hematopoietic cell transplantation in high-risk patients, and provides treatment selection for older (age ≥ 75) or otherwise unfit patients who may not tolerate conventional treatment. The use of measurable residual disease (MRD) assessment improves outcome prediction and can also guide therapeutic strategies such as chemotherapy maintenance and transplant. In recent years, several novel drugs have received FDA approval for treating patients with AML with or without specific mutations. A doublet and triplet combination of molecular targeted and other novel treatments have resulted in high response rates in early trials. Following the initial success in AML, novel drugs are undergoing clinical trials in MDS.

Summary

Unprecedented advances have been made in precision medicine approaches in AML and MDS. However, lack of durable responses and long-term disease control in many patients still present significant challenges, which can only be met, to some extent, with innovative combination strategies throughout the course of treatment from induction to consolidation and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References 

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–2074.

  2. Papaemmanuil E, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. UpadhyayBanskota S, Khanal N, Bhatt VR. A precision medicine approach to management of acute myeloid leukemia in older adults. Curr Opin Oncol. 2020;32(6):650–5.

    Article  CAS  Google Scholar 

  4. Koenig K, et al. The changing landscape of treatment in acute myeloid leukemia. Am Soc Clin Oncol Educ Book. 2020;40:1–12.

    PubMed  Google Scholar 

  5. Khanal N, UpadhyayBanskota S, Bhatt VR. Novel treatment paradigms in acute myeloid leukemia. Clin Pharmacol Ther. 2020;108(3):506–14.

    Article  PubMed  Google Scholar 

  6. Bhatt VR. Personalizing therapy for older adults with acute myeloid leukemia role of geriatric assessment and genetic profiling. Cancer Treat Rev. 2019;75:52–61.

    Article  PubMed  Google Scholar 

  7. Dhakal P, et al. Preferences of adults with cancer for systemic cancer treatment: do preferences differ based on age? Future Oncol. 2022;18(3):311–21.

    Article  CAS  PubMed  Google Scholar 

  8. Bhatt VR, et al. Integrating geriatric assessment and genetic profiling to personalize therapy selection in older adults with acute myeloid leukemia. J Geriatr Oncol 2022.

  9. Perl AE. The role of targeted therapy in the management of patients with AML. Hematology. 2017;2017(1):54–65.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schlenk RF, et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood. 2014;124(23):3441–9.

    Article  CAS  PubMed  Google Scholar 

  11. Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J. 2021;11(5):104.

    Article  PubMed  PubMed Central  Google Scholar 

  12. •• Stone RM, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64. A phase 3 trial that established addition of midostaurin to intensive chemotherapy as a standard in FLT3 mutated AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rollig C, et al. The addition of sorafenib to standard AML treatment results in a substantial reduction in relapse risk and improved survival. Updated results from long-term follow-up of the randomized-controlled Soraml trial. Blood. 2017;130(Supplement 1):721–721.

    Article  Google Scholar 

  14. •• Perl AE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019;381(18):1728–40. A phase 3 trial that demonstrated gilteritinib to be superior than salvage intensive chemotherapy relapsed or refractory FLT3 mutated AML.

    Article  CAS  PubMed  Google Scholar 

  15. Xuan L, et al. Sorafenib maintenance in patients with FLT3-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised phase 3 trial. Lancet Oncol. 2020;21(9):1201–12.

    Article  CAS  PubMed  Google Scholar 

  16. Short NJ, et al. A triplet combination of azacitidine, venetoclax and gilteritinib for patients with FLT3-mutated acute myeloid leukemia: results from a phase I/II study. Blood. 2021;138(Supplement 1):696–696.

    Article  Google Scholar 

  17. Maiti A, et al. Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer J. 2021;11(2):25.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Malaise M, Steinbach D, Corbacioglu S. Clinical implications of c-Kit mutations in acute myelogenous leukemia. Curr Hematol Malig Rep. 2009;4(2):77–82.

    Article  PubMed  Google Scholar 

  19. Ayatollahi H, et al. Prognostic importance of C-KIT mutations in core binding factor acute myeloid leukemia: a systematic review. Hematol Oncol Stem Cell Ther. 2017;10(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  20. Marcucci G, et al. Combination of dasatinib with chemotherapy in previously untreated core binding factor acute myeloid leukemia: CALGB 10801. Blood Adv. 2020;4(4):696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paschka P, et al. Adding dasatinib to intensive treatment in core-binding factor acute myeloid leukemia—results of the AMLSG 11–08 trial. Leukemia. 2018;32(7):1621–30.

    Article  CAS  PubMed  Google Scholar 

  22. DeAngelo DJ, et al. Safety and efficacy of avapritinib in advanced systemic mastocytosis: the phase 1 EXPLORER trial. Nat Med. 2021;27(12):2183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gotlib J, et al. Efficacy and safety of avapritinib in advanced systemic mastocytosis: interim analysis of the phase 2 PATHFINDER trial. Nat Med. 2021;27(12):2192–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xue, S., et al., Rapid response to avapritinib of acute myeloid leukemia with t(8;21) and KIT mutation relapse post allo-HSCT. Leukemia & Lymphoma, 2022 1–4.

  25. • DiNardo CD, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98. This early phase trial demonstrated the role of ivosidenib in relapsed or refractory IDH1 mutated AML.

    Article  CAS  PubMed  Google Scholar 

  26. • Stein EM, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31. This early phase trial demonstrated the role of enasidenib in relapsed or refractory IDH1 mutated AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. • Roboz GJ, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood. 2020;135(7):463–71. This early phase trial demonstrated the role of ivosidenib as an initial treated in newly diagnosed IDH1 mutated AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amatangelo MD, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017;130(6):732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choe S, et al. Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML. Blood Adv. 2020;4(9):1894–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. •• Montesinos P, et al. Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia. New England Journal of Medicine. 2022;386(16):1519–31. This phase 3 trial demonstrated that a combination of ivosidenib and azacitidine is superior to azacitidine alone in newly diagnosed IDH1 mutated AML.

    Article  CAS  PubMed  Google Scholar 

  31. DiNardo CD, et al. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial. Lancet Oncol. 2021;22(11):1597–608.

    Article  CAS  PubMed  Google Scholar 

  32. Venugopal S, et al. Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer J. 2022;12(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Falini B, et al. NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood. 2020;136(15):1707–21.

    Article  PubMed  Google Scholar 

  34. •• Schlenk RF, et al. Gemtuzumab ozogamicin in NPM1-mutated acute myeloid leukemia: early results from the prospective randomized AMLSG 09–09 phase III study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2020;38(6):623–32. This phase 3 trial demonstrated that the addition of gemtuzumab ozogamicin can reduce the risk of relapse in NPM1 mutated AML.

    Article  CAS  PubMed  Google Scholar 

  35. Kapp-Schwoerer S, et al. Impact of gemtuzumab ozogamicin on MRD and relapse risk in patients with NPM1-mutated AML: results from the AMLSG 09–09 trial. Blood. 2020;136(26):3041–50.

    Article  CAS  PubMed  Google Scholar 

  36. DiNardo CD, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020;135(11):791–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Otoukesh S, et al. The efficacy of venetoclax and hypomethylating agents in acute myeloid leukemia with extramedullary involvement. Leuk Lymphoma. 2020;61(8):2020–3.

    Article  CAS  PubMed  Google Scholar 

  38. Issa GC, et al. Therapeutic implications of menin inhibition in acute leukemias. Leukemia. 2021;35(9):2482–95.

    Article  CAS  PubMed  Google Scholar 

  39. Kuykendall A, et al. Acute myeloid leukemia: the good, the bad, and the ugly. Am Soc Clin Oncol Educ Book. 2018;38:555–73.

    Article  PubMed  Google Scholar 

  40. Hunter AM, Sallman DA. Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol. 2019;32(2):134–44.

    Article  PubMed  Google Scholar 

  41. Welch JS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• DiNardo CD, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–29. This phase 3 trial demonstrated that a combination of venetoclax and azacitidine is superior to azacitidine alone in newly diagnosed AML in older adults.

    Article  CAS  PubMed  Google Scholar 

  43. Sallman DA, et al. Phase 1b/2 combination study of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Blood. 2018;132:3091.

    Article  Google Scholar 

  44. Sallman DA, et al. The first-in-class anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: ongoing phase 1b results. Blood. 2019;134:569.

    Article  Google Scholar 

  45. • Heuser M, et al. Clinical benefit of glasdegib plus low-dose cytarabine in patients with de novo and secondary acute myeloid leukemia: long-term analysis of a phase II randomized trial. Ann Hematol. 2021;100(5):1181–94. This phase 2 trial demonstrated that a combination of glasdegib and low-dose cytarabine is superior to low-dose cytarabine alone in newly diagnosed AML in older adults.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cortes JE, et al. Survival outcomes and clinical benefit in patients with acute myeloid leukemia treated with glasdegib and low-dose cytarabine according to response to therapy. J Hematol Oncol. 2020;13(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  47. •• Lancet JE, et al. CPX-351 versus 7+3 cytarabine and daunorubicin chemotherapy in older adults with newly diagnosed high-risk or secondary acute myeloid leukaemia: 5-year results of a randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2021;8(7):e481–91. This phase 3 trial demonstrated that CPX351 is superior to 7+3 in newly diagnosed high risk or secondary AML in older adults.

    Article  PubMed  Google Scholar 

  48. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19(2):176–82.

    Article  CAS  PubMed  Google Scholar 

  49. Burnett AK, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29(4):369–77.

    Article  CAS  PubMed  Google Scholar 

  50. Schuurhuis GJ, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heuser M, et al. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2021;138(26):2753–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Short NJ, et al. Association of measurable residual disease with survival outcomes in patients with acute myeloid leukemia: a systematic review and meta-analysis. JAMA Oncol. 2020;6(12):1890–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hourigan CS, et al. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482–90.

    Article  CAS  PubMed  Google Scholar 

  54. •• Roboz GJ, et al. Oral azacitidine prolongs survival of patients with AML in remission independently of measurable residual disease status. Blood. 2022;139(14):2145–55. This phase 3 trial demonstrated that oral azacitidine maintenance results in survival benefit.

    Article  CAS  PubMed  Google Scholar 

  55. Venditti A, et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood. 2019;134(12):935–45.

    Article  CAS  PubMed  Google Scholar 

  56. Lee P, et al. Molecular targeted therapy and immunotherapy for myelodysplastic syndrome. Int J Mol Sci. 2021;22(19):10232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Radakovich N, et al. A geno-clinical decision model for the diagnosis of myelodysplastic syndromes. Blood Adv. 2021;5(21):4361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383(14):1358–74.

    Article  CAS  PubMed  Google Scholar 

  59. Nagata Y, et al. Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes. Blood. 2020;136(20):2249–62.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sebert M, et al. Ivosidenib monotherapy is effective in patients with IDH1 mutated myelodysplastic syndrome (MDS): the Idiome phase 2 study by the GFM group. Blood. 2021;138:62.

    Article  Google Scholar 

  61. Cortes JE, et al. Olutasidenib (FT-2102) induces rapid remissions in patients with IDH1-mutant myelodysplastic syndrome: results of phase 1/2 single agent treatment and combination with azacitidine. Blood. 2019;134:674.

    Article  Google Scholar 

  62. Venugopal S, et al. MDS-090: phase II study of the IDH2 inhibitor enasidenib in patients with high-risk IDH2-mutated myelodysplastic syndromes (MDS). Clinical Lymphoma Myeloma and Leukemia. 2021;21:S339.

    Article  Google Scholar 

  63. Cumbo C, et al. TP53 in myelodysplastic syndromes: recent biological and clinical findings. Int J Mol Sci. 2020;21(10):3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sallman DA, et al. Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes. J Clin Oncol. 2021;39(14):1584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Daver N, et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. Am J Hematol. 2013;88(1):56–9.

    Article  CAS  PubMed  Google Scholar 

  66. Strati P, et al. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90(4):276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Macdonald DA, et al. A phase I/II study of sorafenib in combination with low dose cytarabine in elderly patients with acute myeloid leukemia or high-risk myelodysplastic syndrome from the National Cancer Institute of Canada Clinical Trials Group trial IND186. Leukemia & Lymphoma. 2013;54(4):760–6.

    Article  CAS  Google Scholar 

  68. • Garcia-Manero G, et al. Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. Blood. 2020;136(6):674–83. This trial supported the approval of oral decitabine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pagliuca S, Gurnari C, Visconte V. Molecular targeted therapy in myelodysplastic syndromes: new options for tailored treatments. Cancers. 2021;13(4):784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zeidan AM, et al. A phase 1b study evaluating the safety and efficacy of venetoclax as monotherapy or in combination with azacitidine for the treatment of relapsed/refractory myelodysplastic syndrome. Blood. 2019;134:565.

    Article  Google Scholar 

  71. Garcia JS, et al. Molecular responses are observed across mutational spectrum in treatment-naïve higher-risk myelodysplastic syndrome patients treated with venetoclax plus azacitidine. Blood. 2021;138:241.

    Article  Google Scholar 

  72. Sasaki K, et al. De novo acute myeloid leukemia: a population-based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer. 2021;127(12):2049–61.

    Article  PubMed  Google Scholar 

  73. Döhner H, Wei AH, Löwenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol. 2021;18(9):577–90.

    Article  PubMed  Google Scholar 

  74. Terwijn M, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol. 2013;31(31):3889–97.

    Article  PubMed  Google Scholar 

  75. Ngai LL, et al, MRD tailored therapy in AML: what we have learned so far. Front Oncol. 2021:10.

  76. Roloff GW, Griffiths EA. When to obtain genomic data in acute myeloid leukemia (AML) and which mutations matter. Blood Adv. 2018;2(21):3070–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burd A, et al. Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial. Nat Med. 2020;26(12):1852–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Duncavage EJ, et al. Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. New Eng J Med. 2021;384(10):924–35.

    Article  CAS  PubMed  Google Scholar 

  79. Bhatt VR. Advances and unanswered questions in management of acute myeloid leukemia in older adults: a glimpse into the future. J Geriatr Oncol. 2021;12(6):980–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya Raj Bhatt.

Ethics declarations

Conflict of Interest

VRB reports participating in Safety Monitoring Committee for Protagonist, and receiving consulting fees from Genentech, Incyte, Servier Pharmaceuticals LLC, and AbbVie; research funding (institutional) from AbbVie, Pfizer, Incyte, Jazz, and National Marrow Donor Program; and drug support (institutional) from Oncoceutics for a trial. All other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This is not an original research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Health Economics.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay Banskota, S., Khanal, N., Marar, R.I. et al. Precision Medicine in Myeloid Malignancies: Hype or Hope?. Curr Hematol Malig Rep 17, 217–227 (2022). https://doi.org/10.1007/s11899-022-00674-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-022-00674-4

Keywords

Navigation