Skip to main content
Log in

Clinical implications of c-Kit mutations in acute myelogenous leukemia

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

c-Kit is a receptor tyrosine kinase (RTK) with a pivotal role in melanogenesis, gametogenesis, and hematopoiesis. Aberrantly activated RTK and related downstream signaling partners were identified as key elements in the molecular pathogenesis of several malignancies. This finding culminated in a two-class model integrating constitutive activating and maturation arrest-inducing mutations as key elements for the pathogenesis of acute myelogenous leukemia (AML). c-Kit is expressed by myeloblasts in about 60% to 80% of patients, and the most frequently observed activating RTK mutations in AML (next to FLT3) are mutations or internal tandem duplications in c-Kit, with an overall incidence of 17%. The identification of small-molecule tyrosine kinase inhibitors capable of blocking key kinase switches introduced a paradigm change in the treatment of diseases like gastrointestinal stromal tumors and chronic myelogenous leukemia. Despite encouraging preclinical data, it appears that a complex clonal disease like AML will probably benefit from a synergistic approach of targeted drugs used (at least for now) in combination with conventional chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kinzler KW, Vogelstein B: Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997, 386:761,763.

    Article  PubMed  CAS  Google Scholar 

  2. Weinstein IB: Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 2002, 297:63–64.

    Article  PubMed  CAS  Google Scholar 

  3. Kelly LM, Gilliland DG: Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002, 3:179–198.

    Article  PubMed  CAS  Google Scholar 

  4. Gari M, Goodeve A, Wilson G, et al.: c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 1999, 105:894–900.

    Article  PubMed  CAS  Google Scholar 

  5. Beghini A, Peterlongo P, Ripamonti CB, et al.: C-kit mutations in core binding factor leukemias. Blood 2000, 95:726–727.

    PubMed  CAS  Google Scholar 

  6. Wang YY, Zhou GB, Yin T, et al.: AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci U S A 2005, 102:1104–1109.

    Article  PubMed  CAS  Google Scholar 

  7. Tyner JW, Walters DK, Willis SG, et al.: RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood 2008, 111:2238–2245.

    Article  PubMed  CAS  Google Scholar 

  8. Ikeda H, Kanakura Y, Tamaki T, et al.: Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood 1991, 78:2962–2968.

    PubMed  CAS  Google Scholar 

  9. Boissel N, Leroy H, Brethon B, et al.: Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006, 20:965–970.

    Article  PubMed  CAS  Google Scholar 

  10. Goemans BF, Zwaan C, Miller M, et al.: Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005, 19:1536–1542.

    Article  PubMed  CAS  Google Scholar 

  11. Corbacioglu S, Kilic M, Westhoff MA, et al.: Newly identified c-kit receptor tyrosine kinase ITD in childhood AML induces ligand independent growth and is responsive to a synergistic effect of imatinib and rapamycin. Blood 2006, 108:3504–3513.

    Article  PubMed  CAS  Google Scholar 

  12. Paschka P, Marcucci G, Ruppert AS, et al.: Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 2006, 24:3904–3911.

    Article  PubMed  CAS  Google Scholar 

  13. Li L, Piloto O, Nguyen HB, et al.: Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood 2008, 111:3849–3858.

    Article  PubMed  CAS  Google Scholar 

  14. Schnittger S, Kohl TM, Haferlach T, et al.: KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 2006, 107:1791–1799.

    Article  PubMed  CAS  Google Scholar 

  15. Shimada A, Taki T, Tabuchi K, et al.: KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 2006, 107:1806–1809.

    Article  PubMed  CAS  Google Scholar 

  16. Advani AS, Rodriguez C, Jin T, et al.: Increased C-kit intensity is a poor prognostic factor for progression-free and overall survival in patients with newly diagnosed AML. Leuk Res 2008, 32:913–918.

    Article  PubMed  CAS  Google Scholar 

  17. Mahadevan D, Cooke L, Riley C, et al.: A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 2007, 26:3909–3919.

    Article  PubMed  CAS  Google Scholar 

  18. Kindler T, Breitenbuecher F, Marx A, et al.: Efficacy and safety of imatinib in adult patients with c-kit-positive acute myeloid leukemia. Blood 2004, 103:3644–3654.

    Article  PubMed  CAS  Google Scholar 

  19. Cortes J, Giles F, O’Brien S, et al.: Results of imatinib mesylate therapy in patients with refractory or recurrent acute myeloid leukemia, high-risk myelodysplastic syndrome, and myeloproliferative disorders. Cancer 2003, 97:2760–2766.

    Article  PubMed  CAS  Google Scholar 

  20. Schittenhelm M, Aichele O, Krober SM, et al.: Complete remission of third recurrence of acute myeloid leukemia after treatment with imatinib (STI-571). Leuk Lymphoma 2003, 44:1251–1253.

    Article  PubMed  CAS  Google Scholar 

  21. Cairoli R, Beghini A, Morello E, et al.: Imatinib mesylate in the treatment of Core Binding Factor leukemias with KIT mutations. A report of three cases. Leuk Res 2005, 29:397–400.

    Article  PubMed  CAS  Google Scholar 

  22. O’Farrell AM, Yuen HA, Smolich B, et al.: Effects of SU5416, a small molecule tyrosine kinase receptor inhibitor, on FLT3 expression and phosphorylation in patients with refractory acute myeloid leukemia. Leuk Res 2004, 28:679–689.

    Article  PubMed  CAS  Google Scholar 

  23. Giles FJ, Stopeck AT, Silverman LR, et al.: SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003, 102:795–801.

    Article  PubMed  CAS  Google Scholar 

  24. Schittenhelm MM, Shiraga S, Schroeder A, et al.: Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 2006, 66:473–481.

    Article  PubMed  CAS  Google Scholar 

  25. Kolb EA, Gorlick R, Houghton PJ, et al.: Initial testing of dasatinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008, 50:1198–1206.

    Article  PubMed  Google Scholar 

  26. Hu S, Niu H, Minkin P, et al.: Comparison of antitumor effects of multitargeted tyrosine kinase inhibitors in acute myelogenous leukemia. Mol Cancer Ther 2008, 7:1110–1120.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang W, Konopleva M, Shi YX, et al.: Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 2008, 100:184–198.

    Article  PubMed  CAS  Google Scholar 

  28. Safaian NN, Czibere A, Bruns I, et al.: Sorafenib (Nexavar®) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD(+) acute myeloid leukemia. Leuk Res 2009, 33:349–350.

    Article  Google Scholar 

  29. Fiedler W, Serve H, Dohner H, et al.: A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005, 105:986–993.

    Article  PubMed  CAS  Google Scholar 

  30. Dulucq S, Bouchet S, Turcq B, et al.: Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2008, 112:2024–2027.

    Article  PubMed  CAS  Google Scholar 

  31. Burger H, van Tol H, Boersma AW, et al.: Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004, 104:2940–2942.

    Article  PubMed  CAS  Google Scholar 

  32. Steinbach D, Legrand O: ABC transporters and drug resistance in leukemia: Was P-gp nothing but the first head of the Hydra? Leukemia 2007, 21:1172–1176.

    Article  PubMed  CAS  Google Scholar 

  33. Steinbach D, Lengemann J, Voigt A, et al.: Response to chemotherapy and expression of the genes encoding the multidrug resistance-associated proteins MRP2, MRP3, MRP4, MRP5, and SMRP in childhood acute myeloid leukemia. Clin Cancer Res 2003, 9:1083–1086.

    PubMed  CAS  Google Scholar 

  34. Chapuy B, Koch R, Radunski U, et al.: Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia 2008, 22:1576–1586.

    Article  PubMed  CAS  Google Scholar 

  35. Heidel F, Cortes J, Rucker FG, et al.: Results of a multicenter phase II trial for older patients with c-Kit-positive acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (HR-MDS) using low-dose Ara-C and imatinib. Cancer 2007, 109:907–914.

    Article  PubMed  CAS  Google Scholar 

  36. Gleixner KV, Mayerhofer M, Aichberger KJ, et al.: PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood 2006, 107:752–759.

    Article  PubMed  CAS  Google Scholar 

  37. Walker AR, Komrokji RS, Ifthikharuddin J, et al.: Phase I study of cladribine, cytarabine (Ara-C), granulocyte colony stimulating factor (G-CSF) (CLAG Regimen) and simultaneous escalating doses of imatinib mesylate (Gleevec) in relapsed/refractory AML. Leuk Res 2008, 32:1830–1836.

    Article  PubMed  CAS  Google Scholar 

  38. Bradeen HA, Eide CA, O’Hare T, et al.: Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 2006, 108:2332–2338.

    Article  PubMed  CAS  Google Scholar 

  39. Harousseau JL, Lancet JE, Reiffers J, et al.: A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 2007, 109:5151–5156.

    Article  PubMed  CAS  Google Scholar 

  40. Widemann BC, Salzer WL, Arceci RJ, et al.: Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol 2006, 24:507–516.

    Article  PubMed  CAS  Google Scholar 

  41. Nishioka C, Ikezoe T, Yang J, et al.: Inhibition of MEK/ERK signaling synergistically potentiates histone deacetylase inhibitor-induced growth arrest, apoptosis and acetylation of histone H3 on p21waf1 promoter in acute myelogenous leukemia cell. Leukemia 2008, 22:1449–1452.

    Article  PubMed  CAS  Google Scholar 

  42. Grandage VL, Gale RE, Linch DC, Khwaja A: PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 2005, 19:586–594.

    PubMed  CAS  Google Scholar 

  43. Min YH, Eom JI, Cheong JW, et al.: Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 2003, 17:995–997.

    Article  PubMed  CAS  Google Scholar 

  44. Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell 2006, 124:471–484.

    Article  PubMed  CAS  Google Scholar 

  45. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005, 307:1098–1101.

    Article  PubMed  CAS  Google Scholar 

  46. Guertin DA, Sabatini DM: Defining the role of mTOR in cancer. Cancer Cell 2007, 12:9–22.

    Article  PubMed  CAS  Google Scholar 

  47. Sarbassov DD, Ali SM, Kim DH, et al.: Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004, 14:1296–1302.

    Article  PubMed  CAS  Google Scholar 

  48. Sarbassov DD, Ali SM, Sengupta S, et al.: Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006, 22:159–168.

    Article  PubMed  CAS  Google Scholar 

  49. Zeng Z, Sarbassov dos D, Samudio IJ, et al.: Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007, 109:3509–3512.

    Article  PubMed  CAS  Google Scholar 

  50. Huang S, Bjornsti MA, Houghton PJ: Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2003, 2:222–232.

    PubMed  CAS  Google Scholar 

  51. Sillaber C, Mayerhofer M, Bohm A, et al.: Evaluation of antileukaemic effects of rapamycin in patients with imatinib-resistant chronic myeloid leukaemia. Eur J Clin Invest 2008, 38:43–52.

    PubMed  CAS  Google Scholar 

  52. Calabro A, Tai J, Allen SL, Budman DR: In-vitro synergism of m-TOR inhibitors, statins, and classical chemotherapy: potential implications in acute leukemia. Anticancer Drugs 2008, 19:705–712.

    Article  PubMed  CAS  Google Scholar 

  53. Mohi MG, Boulton C, Gu TL, et al.: Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci U S A 2004, 101:3130–3135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Corbacioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malaise, M., Steinbach, D. & Corbacioglu, S. Clinical implications of c-Kit mutations in acute myelogenous leukemia. Curr Hematol Malig Rep 4, 77–82 (2009). https://doi.org/10.1007/s11899-009-0011-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-009-0011-8

Keywords

Navigation