Skip to main content

Advertisement

Log in

Germline CHEK2 and ATM Variants in Myeloid and Other Hematopoietic Malignancies

  • Germline Predisposition to Myeloid Neoplasms (R. Mesa, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

An intact DNA damage response is crucial to preventing cancer development, including in myeloid and lymphoid malignancies. Deficiencies in the homologous recombination (HR) pathway can lead to defective DNA damage responses, and this can occur through inherited germline mutations in HR pathway genes, such as CHEK2 and ATM. We now understand that germline mutations can be identified frequently (~ 5–10%) in patients with myeloid and lymphoid malignancies, and among the most common of these are CHEK2 and ATM. We review the role that deleterious germline CHEK2 and ATM variants play in the development of hematopoietic malignancies, and how this influences clinical practice, including cancer screening, hematopoietic stem cell transplantation, and therapy choice.

Recent Findings

In recent large cohorts of patients diagnosed with myeloid or lymphoid malignancies, deleterious germline loss of function variants in CHEK2 and ATM are among the most common identified. Germline CHEK2 variants predispose to a range of myeloid malignancies, most prominently myeloproliferative neoplasms and myelodysplastic syndromes (odds ratio range: 2.1–12.3), and chronic lymphocytic leukemia (odds ratio 14.83). Deleterious germline ATM variants have been shown to predispose to chronic lymphocytic leukemia (odds ratio range: 1.7–10.1), although additional studies are needed to demonstrate the risk they confer for myeloid malignancies. Early studies suggest there may also be associations between deleterious germline CHEK2 and ATM variants and development of clonal hematopoiesis.

Summary

Identifying CHEK2 and ATM variants is crucial for the optimal management of patients and families affected by hematopoietic malignancies.

Opening Clinical Case

“A 45 year-old woman presents to your clinic with a history of triple-negative breast cancer diagnosed five years ago, treated with surgery, radiation, and chemotherapy. About six months ago, she developed cervical lymphadenopathy, and a biopsy demonstrated small lymphocytic leukemia. Peripheral blood shows a small population of lymphocytes with a chronic lymphocytic leukemia immunophenotype, and FISH demonstrates a complex karyotype: gain of one to two copies of IGH and FGFR3; gain of two copies of CDKN2C at 1p32.3; gain of two copies of CKS1B at 1q21; tetrasomy for chromosome 3; trisomy and tetrasomy for chromosome 7; tetrasomy for chromosome 9; tetrasomy for chromosome 12; gain of one to two copies of ATM at 11q22.3; deletion of chromosome 13 deletion positive; gain of one to two copies of TP53 at 17p13.1). Given her history of two cancers, you arrange for germline genetic testing using DNA from cultured skin fibroblasts, which demonstrates pathogenic variants in ATM [c.1898 + 2 T > G] and CHEK2 [p.T367Metfs]. Her family history is significant for multiple cancers. ( Fig.  1 ).”

Representative pedigree from a patient with germline pathogenic ATM and CHEK2 variants who was affected by early onset breast cancer and chronic lymphocytic leukemia. Arrow indicates proband. Colors indicate cancer type/disease: purple, breast cancer; blue, lymphoma; brown, melanoma; yellow, colon cancer; and green, autoimmune disease

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moehrle BM, Geiger H. Aging of hematopoietic stem cells: DNA damage and mutations? Exp Hematol. 2016;44(10):895–901.

    Article  CAS  PubMed  Google Scholar 

  2. Vítor AC, Huertas P, Legube G, de Almeida SF. Studying DNA double-strand break repair: an ever-growing toolbox. Front Mol Biosci. 2020;7:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gelot C, Magdalou I, Lopez BS. Replication stress in mammalian cells and its consequences for mitosis. Genes (Basel). 2015;6(2):267–98.

    Article  CAS  Google Scholar 

  4. Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature. 2017;549(7673):548–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chow HM, Cheng A, Song X, Swerdel MR, Hart RP, Herrup K. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J Cell Biol. 2019;218(3):909–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khoronenkova SV. Mechanisms of non-canonical activation of ataxia telangiectasia mutated. Biochemistry (Mosc). 2016;81(13):1669–75.

    Article  CAS  Google Scholar 

  7. Khoronenkova SV, Dianov GL. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc Natl Acad Sci U S A. 2015;112(13):3997–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paull TT. Mechanisms of ATM Activation. Annu Rev Biochem. 2015;84:711–38.

    Article  CAS  PubMed  Google Scholar 

  9. Yeo AJ, Chong KL, Gatei M, Zou D, Stewart R, Withey S, et al. Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. iScience. 2021;24(1):101972.

    Article  CAS  PubMed  Google Scholar 

  10. Tung N, Battelli C, Allen B, Kaldate R, Bhatnagar S, Bowles K, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  11. Messina C, Cattrini C, Soldato D, Vallome G, Caffo O, Castro E, et al. BRCA mutations in prostate cancer: prognostic and predictive implications. J Oncol. 2020;2020:4986365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goggins M, Overbeek KA, Brand R, Syngal S, Del Chiaro M, Bartsch DK, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  14. Stolarova L, Kleiblova P, Janatova M, Soukupova J, Zemankova P, Macurek L, et al. Germline variants in cancer predisposition: stalemate rather than checkmate. Cells. 2020;9:12.

    Article  CAS  Google Scholar 

  15. Cara L, Baitemirova M, Follis J, Larios-Sanz M, Ribes-Zamora A. The ATM- and ATR-related SCD domain is over-represented in proteins involved in nervous system development. Sci Rep. 2016;6:19050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leedom TP, LaDuca H, McFarland R, Li S, Dolinsky JS, Chao EC. Breast cancer risk is similar for CHEK2 founder and non-founder mutation carriers. Cancer Genet. 2016;209(9):403–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hofmann WK, Miller CW, Tsukasaki K, Tavor S, Ikezoe T, Hoelzer D, et al. Mutation analysis of the DNA-damage checkpoint gene CHK2 in myelodysplastic syndromes and acute myeloid leukemias. Leuk Res. 2001;25(4):333–8.

    Article  CAS  PubMed  Google Scholar 

  18. Malkin D. Li-fraumeni syndrome. Genes Cancer. 2011;2(4):475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fostira F, Kostantopoulou I, Apostolou P, Papamentzelopoulou MS, Papadimitriou C, Faliakou E, et al. One in three highly selected Greek patients with breast cancer carries a loss-of-function variant in a cancer susceptibility gene. J Med Genet. 2020;57(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  20. Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375(5):443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carlo MI, Mukherjee S, Mandelker D, Vijai J, Kemel Y, Zhang L, et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol. 2018;4(9):1228–35.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaczmarek-Ryś M, Ziemnicka K, Hryhorowicz ST, Górczak K, Hoppe-Gołębiewska J, Skrzypczak-Zielińska M, et al. The c.470 T > C CHEK2 missense variant increases the risk of differentiated thyroid carcinoma in the Great Poland population. Hered Cancer Clin Pract. 2015;13(1):8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Katona BW, Yang YX. Colorectal cancer risk associated with the CHEK2 1100delC variant. Eur J Cancer. 2017;83:103–5.

    Article  CAS  PubMed  Google Scholar 

  24. Laitman Y, Nielsen SM, Hatchell KE, Truty R, Bernstein-Molho R, Esplin ED, et al. Re-evaluating cancer risks associated with the CHEK2 p.Ser428Phe Ashkenazi Jewish founder pathogenic variant. Fam Cancer. 2021. https://doi.org/10.1007/s10689-021-00278-6.

    Article  PubMed  Google Scholar 

  25. Janiszewska H, Bak A, Pilarska M, Heise M, Junkiert-Czarnecka A, Kuliszkiewicz-Janus M, et al. A risk of essential thrombocythemia in carriers of constitutional CHEK2 gene mutations. Haematologica. 2012;97(3):366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janiszewska H, Bąk A, Hartwig M, Kuliszkiewicz-Janus M, Całbecka M, Jaźwiec B, et al. The germline mutations of the CHEK2 gene are associated with an increased risk of polycythaemia vera. Br J Haematol. 2016;173(1):150–2.

    Article  CAS  PubMed  Google Scholar 

  27. Bao EL, Nandakumar SK, Liao X, Bick AG, Karjalainen J, Tabaka M, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature. 2020;586(7831):769–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016;128(8):1121–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Janiszewska H, Bąk A, Skonieczka K, Jaśkowiec A, Kiełbiński M, Jachalska A, et al. Constitutional mutations of the CHEK2 gene are a risk factor for MDS, but not for de novo AML. Leuk Res. 2018;70:74–8.

    Article  CAS  PubMed  Google Scholar 

  30. Aktas D, Arno MJ, Rassool F, Mufti GJ. Analysis of CHK2 in patients with myelodysplastic syndromes. Leuk Res. 2002;26(11):985–7.

    Article  CAS  PubMed  Google Scholar 

  31. Sharifi MJ, Zaker F, Nasiri N, Yaghmaie M. Epigenetic changes in FOXO3 and CHEK2 genes and their correlation with clinicopathological findings in myelodysplastic syndromes. Hematol Oncol Stem Cell Ther. 2020;13(4):214–9.

    Article  CAS  PubMed  Google Scholar 

  32. Boehrer S, Adès L, Tajeddine N, Hofmann WK, Kriener S, Bug G, et al. Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome. Oncogene. 2009;28(22):2205–18.

    Article  CAS  PubMed  Google Scholar 

  33. Hopfer O, Komor M, Koehler IS, Schulze M, Hoelzer D, Thiel E, et al. DNA methylation profiling of myelodysplastic syndrome hematopoietic progenitor cells during in vitro lineage-specific differentiation. Exp Hematol. 2007;35(5):712–23.

    Article  CAS  PubMed  Google Scholar 

  34. Thépot S, Lainey E, Cluzeau T, Sébert M, Leroy C, Adès L, et al. Hypomethylating agents reactivate FOXO3A in acute myeloid leukemia. Cell Cycle. 2011;10(14):2323–30.

    Article  PubMed  CAS  Google Scholar 

  35. Singhal D, Hahn CN, Feurstein S, Wee LYA, Moma L, Kutyna MM, et al. Targeted gene panels identify a high frequency of pathogenic germline variants in patients diagnosed with a hematological malignancy and at least one other independent cancer. Leukemia. 2021. https://doi.org/10.1038/s41375-021-01246-w.

    Article  PubMed  Google Scholar 

  36. Churpek JE, Marquez R, Neistadt B, Claussen K, Lee MK, Churpek MM, et al. Inherited mutations in cancer susceptibility genes are common among survivors of breast cancer who develop therapy-related leukemia. Cancer. 2016;122(2):304–11.

    Article  CAS  PubMed  Google Scholar 

  37. Berger G, van den Berg E, Smetsers S, Leegte BK, Sijmons RH, Abbott KM, et al. Fanconi anaemia presenting as acute myeloid leukaemia and myelodysplastic syndrome in adulthood: a family report on co-occurring FANCC and CHEK2 mutations. Br J Haematol. 2019;184(6):1071–3.

    Article  PubMed  Google Scholar 

  38. Paperna T, Sharon-Shwartzman N, Kurolap A, Goldberg Y, Moustafa N, Carasso Y, et al. Homozygosity for CHEK2 p.Gly167Arg leads to a unique cancer syndrome with multiple complex chromosomal translocations in peripheral blood karyotype. J Med Genet. 2020;57(7):500–4.

    Article  CAS  PubMed  Google Scholar 

  39. Yang F, Long N, Anekpuritanang T, Bottomly D, Savage JC, Lee T, et al. Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult AML patients. Blood. 2022;139(8):1208–21.

    Article  CAS  PubMed  Google Scholar 

  40. di Masi A, Cilli D, Berardinelli F, Talarico A, Pallavicini I, Pennisi R, et al. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL. Cell Death Dis. 2016;7:e2308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Varadaraj A, Dovey CL, Laredj L, Ferguson B, Alexander CE, Lubben N, et al. Evidence for the receipt of DNA damage stimuli by PML nuclear domains. J Pathol. 2007;211(4):471–80.

    Article  CAS  PubMed  Google Scholar 

  42. Yang S, Jeong JH, Brown AL, Lee CH, Pandolfi PP, Chung JH, et al. Promyelocytic leukemia activates Chk2 by mediating Chk2 autophosphorylation. J Biol Chem. 2006;281(36):26645–54.

    Article  CAS  PubMed  Google Scholar 

  43. Yoda A, Toyoshima K, Watanabe Y, Onishi N, Hazaka Y, Tsukuda Y, et al. Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase. J Biol Chem. 2008;283(27):18969–79.

    Article  CAS  PubMed  Google Scholar 

  44. Amico D, Barbui AM, Erba E, Rambaldi A, Introna M, Golay J. Differential response of human acute myeloid leukemia cells to gemtuzumab ozogamicin in vitro: role of Chk1 and Chk2 phosphorylation and caspase 3. Blood. 2003;101(11):4589–97.

    Article  CAS  PubMed  Google Scholar 

  45. Havranek O, Kleiblova P, Hojny J, Lhota F, Soucek P, Trneny M, et al. Association of germline CHEK2 gene variants with risk and prognosis of non-Hodgkin lymphoma. PLoS One. 2015;10(10):e0140819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rudd MF, Sellick GS, Webb EL, Catovsky D, Houlston RS. Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia. Blood. 2006;108(2):638–44.

    Article  CAS  PubMed  Google Scholar 

  47. Scott AJ, Tokaz MC, Jacobs MF, Chinnaiyan AM, Phillips TJ, Wilcox RA. Germline variants discovered in lymphoma patients undergoing tumor profiling: a case series. Fam Cancer. 2021;20(1):61–5.

    Article  PubMed  Google Scholar 

  48. Sellick GS, Sullivan K, Catovsky D, Houlston RS. CHEK2*1100delC and risk of chronic lymphocytic leukemia. Leuk Lymphoma. 2006;47(12):2659–60.

    Article  CAS  PubMed  Google Scholar 

  49. Bahassi EM, Robbins SB, Yin M, Boivin GP, Kuiper R, van Steeg H, et al. Mice with the CHEK2*1100delC SNP are predisposed to cancer with a strong gender bias. Proc Natl Acad Sci. 2009;106(40):17111–6.

  50. Dai B, Zhao XF, Mazan-Mamczarz K, Hagner P, Corl S, Bahassi EM, et al. Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma. Nat Commun. 2011;2:402.

    Article  PubMed  CAS  Google Scholar 

  51. Tort F, Hernàndez S, Beà S, Martínez A, Esteller M, Herman JG, et al. CHK2-decreased protein expression and infrequent genetic alterations mainly occur in aggressive types of non-Hodgkin lymphomas. Blood. 2002;100(13):4602–8.

    Article  CAS  PubMed  Google Scholar 

  52. Havranek O, Spacek M, Hubacek P, Mocikova H, Markova J, Trneny M, et al. Alterations of CHEK2 forkhead-associated domain increase the risk of Hodgkin lymphoma. Neoplasma. 2011;58(5):392–5.

    Article  CAS  PubMed  Google Scholar 

  53. Kato N, Fujimoto H, Yoda A, Oishi I, Matsumura N, Kondo T, et al. Regulation of Chk2 gene expression in lymphoid malignancies: involvement of epigenetic mechanisms in Hodgkin’s lymphoma cell lines. Cell Death Differ. 2004;11(Suppl 2):S153–61.

    Article  CAS  PubMed  Google Scholar 

  54. Ye Q, Chen H, Wen Z, Guo W, Huang Y, Mo X. Abnormal expression of p-ATM/CHK2 in nasal extranodal NK/T cell lymphoma, nasal type, is correlated with poor prognosis. J Clin Pathol. 2021;74(4):223–7.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou J, Zhang C, Sui X, Cao S, Tang F, Sun S, et al. Histone deacetylase inhibitor chidamide induces growth inhibition and apoptosis in NK/T lymphoma cells through ATM-Chk2-p53-p21 signalling pathway. Invest New Drugs. 2018;36(4):571–80.

    Article  CAS  PubMed  Google Scholar 

  56. Ueno S, Sudo T, Hirasawa A. ATM: Functions of ATM kinase and its relevance to hereditary tumors. Int J Mol Sci. 2022;23(1):523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakajima H. Genetic abnormalities in AML. Rinsho Ketsueki. 2019;60(6):584–93.

    PubMed  Google Scholar 

  58. Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, et al. Pathogenic germline variants in 10,389 adult cancers. Cell. 2018;173(2):355-70.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(1):159.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Olsen JH, Hahnemann JM, Børresen-Dale AL, Brøndum-Nielsen K, Hammarström L, Kleinerman R, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Cancer Inst. 2001;93(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  61. Bielorai B, Fisher T, Waldman D, Lerenthal Y, Nissenkorn A, Tohami T, et al. Acute lymphoblastic leukemia in early childhood as the presenting sign of ataxia-telangiectasia variant. Pediatr Hematol Oncol. 2013;30(6):574–82.

    Article  CAS  PubMed  Google Scholar 

  62. Swift M, Chase CL, Morrell D. Cancer predisposition of ataxia-telangiectasia heterozygotes. Cancer Genet Cytogenet. 1990;46(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  63. Lu C, Xie M, Wendl MC, Wang J, McLellan MD, Leiserson MD, et al. Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun. 2015;6:10086.

    Article  CAS  PubMed  Google Scholar 

  64. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.

    Article  CAS  PubMed  Google Scholar 

  65. Martin ES, Ferrer A, Mangaonkar AA, Khan SP, Kohorst MA, Joshi AY, et al. Spectrum of hematological malignancies, clonal evolution and outcomes in 144 Mayo Clinic patients with germline predisposition syndromes. Am J Hematol. 2021;96(11):1450–60.

    Article  CAS  PubMed  Google Scholar 

  66. Onoda T, Kanno M, Meguro T, Sato H, Takahashi N, Kawakami T, et al. Successful treatment of acute myeloid leukaemia in a patient with ataxia telangiectasia. Eur J Haematol. 2013;91(6):557–60.

    Article  CAS  PubMed  Google Scholar 

  67. Brioli A, Parisi S, Iacobucci I, Cavo M, Papayannidis C, Anna Zannetti B, et al. Patient with ataxia telangiectasia who developed acute myeloid leukemia. Leuk Lymphoma. 2011;52(9):1818–20.

    Article  PubMed  Google Scholar 

  68. Lin CH, Lin WC, Wang CH, Ho YJ, Chiang IP, Peng CT, et al. Child with ataxia telangiectasia developing acute myeloid leukemia. J Clin Oncol. 2010;28(14):e213–4.

    Article  PubMed  Google Scholar 

  69. Gorre M, Mohandas PE, Kagita S, Cingeetham A, Vuree S, Jarjapu S, et al. Significance of ATM gene polymorphisms in chronic myeloid leukemia—a case control study from India. Asian Pac J Cancer Prev. 2016;17(2):815–21.

    Article  PubMed  Google Scholar 

  70. Ribeiro HL, Oliveira RT, Maia AR, Sousa JC, Heredia FF, Magalhães SM, et al. ATM polymorphism is associated with low risk myelodysplastic syndrome. DNA Repair (Amst). 2013;12(2):87–9.

    Article  CAS  Google Scholar 

  71. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431(7011):997–1002.

    Article  CAS  PubMed  Google Scholar 

  72. Stetka J, Gursky J, Liñan Velasquez J, Mojzikova R, Vyhlidalova P, Vrablova L et al. Role of DNA damage response in suppressing malignant progression of chronic myeloid leukemia and polycythemia vera: impact of different oncogenes. Cancers (Basel) 2020;12(4):903.

  73. Gregory MA, D’Alessandro A, Alvarez-Calderon F, Kim J, Nemkov T, Adane B, et al. ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia. Proc Natl Acad Sci U S A. 2016;113(43):E6669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu X, Liao W, Peng H, Luo X, Luo Z, Jiang H, et al. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol. 2016;142(1):77–87.

    Article  CAS  PubMed  Google Scholar 

  75. Grosjean-Raillard J, Tailler M, Adès L, Perfettini JL, Fabre C, Braun T, et al. ATM mediates constitutive NF-kappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene. 2009;28(8):1099–109.

    Article  CAS  PubMed  Google Scholar 

  76. Suarez F, Mahlaoui N, Canioni D, Andriamanga C, Dubois d’Enghien C, Brousse N, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol. 2015;33(2):202–8.

    Article  PubMed  Google Scholar 

  77. Reiman A, Srinivasan V, Barone G, Last JI, Wootton LL, Davies EG, et al. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours. Br J Cancer. 2011;105(4):586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tiao G, Improgo MR, Kasar S, Poh W, Kamburov A, Landau DA, et al. Rare germline variants in ATM are associated with chronic lymphocytic leukemia. Leukemia. 2017;31(10):2244–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lampson BL, Tyekucheva S, Shaughnessy CJ, Kim AS, Brown JR. Incidence of germline ATM variants in a consecutive clinical cohort of CLL patients. Blood. 2019;134:1731. https://doi.org/10.1182/blood-2019-127180.

    Article  Google Scholar 

  80. Stilgenbauer S, Schaffner C, Litterst A, Liebisch P, Gilad S, Bar-Shira A, et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med. 1997;3(10):1155–9.

    Article  CAS  PubMed  Google Scholar 

  81. Vorechovský I, Luo L, Dyer MJ, Catovsky D, Amlot PL, Yaxley JC, et al. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet. 1997;17(1):96–9.

    Article  PubMed  Google Scholar 

  82. Schrader A, Crispatzu G, Oberbeck S, Mayer P, Pützer S, von Jan J, et al. Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun. 2018;9(1):697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang X, Song Y, Chen W, Ding N, Liu W, Xie Y, et al. Germline variants of DNA repair genes in early onset mantle cell lymphoma. Oncogene. 2021;40(3):551–63.

    Article  CAS  PubMed  Google Scholar 

  84. Briani C, Schlotter M, Lichter P, Kalla C. Development of a mantle cell lymphoma in an ATM heterozygous woman after occupational exposure to ionising radiation and somatic mutation of the second allele. Leuk Res. 2006;30(9):1193–6.

    Article  PubMed  Google Scholar 

  85. Leeksma OC, de Miranda NF, Veelken H. Germline mutations predisposing to diffuse large B-cell lymphoma. Blood Cancer J. 2017;7(2):e532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liberzon E, Avigad S, Stark B, Zilberstein J, Freedman L, Gorfine M, et al. Germ-line ATM gene alterations are associated with susceptibility to sporadic T-cell acute lymphoblastic leukemia in children. Genes Chromosomes Cancer. 2004;39(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  87. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Saiki R, Momozawa Y, Nannya Y, Nakagawa MM, Ochi Y, Yoshizato T, et al. Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat Med. 2021;27(7):1239–49.

    Article  CAS  PubMed  Google Scholar 

  89. Silver AJ, Bick AG, Savona MR. Germline risk of clonal haematopoiesis. Nat Rev Genet. 2021;22(9):603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020;586(7831):763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wright DJ, Day FR, Kerrison ND, Zink F, Cardona A, Sulem P, et al. Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nat Genet. 2017;49(5):674–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Slavin TP, Tsang KWK, Longmate J, Castillo D, Herzog J, Qin H et al. Effect of germline ATM mutations on clonal hematopoiesis. J Clin Oncol. 2019;15_suppl:1509. https://doi.org/10.1200/JCO.2019.37.15_suppl.1509.

  93. DeRoin L, Cavalcante de Andrade Silva M, Petras K, Arndt K, Phillips N, Wanjari P, et al. Feasibility and limitations of cultured skin fibroblasts for germline genetic testing in hematologic disorders. Hum Mutat. 2022. https://doi.org/10.1002/humu.24374.

    Article  PubMed  Google Scholar 

  94. Padron E, Ball MC, Teer JK, Painter JS, Yoder SJ, Zhang C, et al. Germ line tissues for optimal detection of somatic variants in myelodysplastic syndromes. Blood. 2018;131(21):2402–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Whitaker KD, Obeid E, Daly MB, Hall MJ. Cascade genetic testing for hereditary cancer risk: an underutilized tool for cancer prevention. JCO Precis Oncol. 2021;5:1387–96.

    Article  PubMed  Google Scholar 

  96. NCCN. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology. Genetic/familial high-risk assessment: Breast, ovarian, and pancreatic. https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf. Accessed 15 Apr 2022

  97. NCCN. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology. Genetic/familial high-risk assessment: Colorectal. https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf. Accessed 15 Apr 2022

  98. Modlin LA, Flynn J, Zhang Z, Cahlon O, Mueller B, Khan AJ et al. Tolerability of Breast Radiotherapy Among Carriers of ATM Germline Variants. 2021;5:227–34.

  99. Auletta JJ, Kou J, Chen M, Shaw BE. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR US summary slides. 2021. https://www.cibmtr.org/ReferenceCenter/SlidesReports/SummarySlides/pages/index.aspx.

  100. Csizmar CM, Saliba AN, Swisher EM, Kaufmann SH. PARP inhibitors and myeloid neoplasms: a double-edged sword. Cancers (Basel). 2021;13(24):6385.

Download references

Funding

RJS received funding from the Leukemia Lymphoma Society of Canada, Canadian Institutes of Health Research, and the Clinician Investigator Program of the University of British Columbia (202002LFC-439884). SK is supported by the Beckman Scholar Program at The University of Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy A. Godley.

Ethics declarations

Conflicts of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Germline Predisposition to Myeloid Neoplasms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stubbins, R.J., Korotev, S. & Godley, L.A. Germline CHEK2 and ATM Variants in Myeloid and Other Hematopoietic Malignancies. Curr Hematol Malig Rep 17, 94–104 (2022). https://doi.org/10.1007/s11899-022-00663-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-022-00663-7

Keywords

Navigation