Skip to main content

Advertisement

Log in

NPM1 Biology in Myeloid Neoplasia

  • Molecular Testing and Diagnostics (J Khoury, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Nucleophosmin (NPM1) mutations are encountered in myeloid neoplasia and are present in ~ 30% of de novo acute myeloid leukemia cases. This review summarizes features of mutant NPM1-related disease, with a particular emphasis on recent discoveries relevant to disease monitoring, prognostication, and therapeutic intervention.

Recent Findings

Recent studies have shown that HOX/MEIS gene overexpression is central to the survival of NPM1-mutated cells. Two distinct classes of small molecule drugs, BH3 mimetics and menin-MLL interaction inhibitors, have demonstrated exquisite leukemic cell toxicity in preclinical AML models associated with HOX/MEIS overexpression, and the former of these has shown efficacy in older treatment-naïve NPM1-mutated AML patients. The results of ongoing clinical trials further investigating these compounds will be of particular importance and may alter the clinical management of patients with NPM1-mutated myeloid neoplasms.

Summary

Significant scientific advancements over the last decade, including improved sequencing and disease monitoring techniques, have fostered a much deeper understanding of mutant NPM1 disease biology, prognostication, and opportunities for therapeutic intervention. These discoveries have led to the development of clinical assays that permit the detection and monitoring of mutant NPM1 and have paved the way for future investigation of targeted therapeutics using emerging cutting-edge techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Borer RA, Lehner CF, Eppenberger HM, Nigg EA. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989 Feb 10;56(3):379–90.

    CAS  PubMed  Google Scholar 

  2. Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine J-C, et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol. 2005 Oct;25(20):8874–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K, et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature. 2005 Sep 1;437(7055):147–53.

    CAS  PubMed  Google Scholar 

  4. Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, Thorat R, et al. 14–3-3γ Prevents Centrosome Amplification and Neoplastic Progression. Sci Rep. 2016;02(6):26580.

    Google Scholar 

  5. Kuo M-L, den Besten W, Thomas MC, Sherr CJ. Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle. 2008 Nov 1;7(21):3378–87.

    CAS  PubMed  Google Scholar 

  6. Kuo M-L, den Besten W, Bertwistle D, Roussel MF, Sherr CJ. N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev. 2004 Aug 1;18(15):1862–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol. 2001 Oct;2(10):731–7.

    CAS  PubMed  Google Scholar 

  8. Holmberg Olausson K, Elsir T, Moazemi Goudarzi K, Nistér M, Lindström MS. NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape. Sci Rep. 2015 Nov 12;5:16495.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Coutinho-Camillo CM, Lourenço SV, Nishimoto IN, Kowalski LP, Soares FA. Nucleophosmin, p53, and Ki-67 expression patterns on an oral squamous cell carcinoma tissue microarray. Hum Pathol. 2010 Aug;41(8):1079–86.

    CAS  PubMed  Google Scholar 

  10. Sekhar KR, Benamar M, Venkateswaran A, Sasi S, Penthala NR, Crooks PA, et al. Targeting nucleophosmin 1 represents a rational strategy for radiation sensitization. Int J Radiat Oncol Biol Phys. 2014 Aug 1;89(5):1106–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu X, Liu D, Qian D, Dai J, An Y, Jiang S, et al. Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells. J Biol Chem. 2012 Jun 1;287(23):19599–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu Y, Zhang F, Zhang X-F, Qi L-S, Yang L, Guo H, et al. Expression of nucleophosmin/NPM1 correlates with migration and invasiveness of colon cancer cells. J Biomed Sci. 2012 May 25;19:53.

    PubMed  PubMed Central  Google Scholar 

  13. Londero AP, Orsaria M, Tell G, Marzinotto S, Capodicasa V, Poletto M, et al. Expression and prognostic significance of APE1/Ref-1 and NPM1 proteins in high-grade ovarian serous cancer. Am J Clin Pathol. 2014 Mar;141(3):404–14.

    PubMed  Google Scholar 

  14. Zhou Y, Shen J, Xia L, Wang Y. Estrogen mediated expression of nucleophosmin 1 in human endometrial carcinoma clinical stages through estrogen receptor-α signaling. Cancer Cell Int. 2014;14(1):540.

    PubMed  PubMed Central  Google Scholar 

  15. Léotoing L, Meunier L, Manin M, Mauduit C, Decaussin M, Verrijdt G, et al. Influence of nucleophosmin/B23 on DNA binding and transcriptional activity of the androgen receptor in prostate cancer cell. Oncogene. 2008 May 1;27(20):2858–67.

    PubMed  Google Scholar 

  16. Tsui K-H, Cheng A-J, Chang P, Ei-Lang, Pan T-L, Yung BY-M. Association of nucleophosmin/B23 mRNA expression with clinical outcome in patients with bladder carcinoma. Urology. 2004 Oct;64(4):839–44.

    PubMed  Google Scholar 

  17. Pianta A, Puppin C, Franzoni A, Fabbro D, Di Loreto C, Bulotta S, et al. Nucleophosmin is overexpressed in thyroid tumors. Biochem Biophys Res Commun. 2010 Jul 2;397(3):499–504.

    CAS  PubMed  Google Scholar 

  18. Berger R, Busson M, Baranger L, Hélias C, Lessard M, Dastugue N, et al. Loss of the NPM1 gene in myeloid disorders with chromosome 5 rearrangements. Leukemia. 2006 Feb;20(2):319–21.

    CAS  PubMed  Google Scholar 

  19. Ammatuna E, Panetta P, Agirre X, Ottone T, Lavorgna S, Calasanz MJ, et al. NPM1 gene deletions in myelodysplastic syndromes with 5q- and complex karyotype. Haematologica. 2011 May;96(5):784–5.

    PubMed  PubMed Central  Google Scholar 

  20. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood. 1996 Feb 1;87(3):882–6.

    CAS  PubMed  Google Scholar 

  21. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994 Mar 4;263(5151):1281–4.

    CAS  PubMed  Google Scholar 

  22. Raimondi SC, Dubé ID, Valentine MB, Mirro J, Watt HJ, Larson RA, et al. Clinicopathologic manifestations and breakpoints of the t(3;5) in patients with acute nonlymphocytic leukemia. Leukemia. 1989 Jan;3(1):42–7.

    CAS  PubMed  Google Scholar 

  23. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ, et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene. 1996 Jan 18;12(2):265–75.

    CAS  PubMed  Google Scholar 

  24. Falini B, Mason DY. Proteins encoded by genes involved in chromosomal alterations in lymphoma and leukemia: clinical value of their detection by immunocytochemistry. Blood. 2002 Jan 15;99(2):409–26.

    CAS  PubMed  Google Scholar 

  25. Falini B, Nicoletti I, Bolli N, Martelli MP, Liso A, Gorello P, et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica. 2007 Apr;92(4):519–32.

    CAS  PubMed  Google Scholar 

  26. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005 Jan 20;352(3):254–66.

    CAS  PubMed  Google Scholar 

  27. Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood. 2007 Feb 1;109(3):874–85.

    CAS  PubMed  Google Scholar 

  28. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016 Jun 9;374(23):2209–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. • Patel SS, Ho C, Ptashkin RN, Sadigh S, Bagg A, Geyer JT, et al. Clinicopathologic and genetic characterization of nonacute NPM1-mutated myeloid neoplasms. Blood Adv. 2019;14;3(9):1540–5. This study reported on the largest known cohort of nonacuteNPM1-mutated myeloid neoplasms.

  30. Montalban-Bravo G, Pierola AA, Takahashi K, Jabbour EJ, Kadia TM, Ravandi F, et al. Myelodysplastic syndromes with NPM1 mutations may constitute a unique entity associated with improved outcomes when treated with AML-like chemotherapy. Blood. 2016Dec 2;128(22):3171.

    Google Scholar 

  31. Montalban-Bravo G, Kanagal-Shamanna R, Sasaki K, Patel K, Ganan-Gomez I, Jabbour E, et al. NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv. 2019;26;3(6):922–33.

    Google Scholar 

  32. Gu X, Ebrahem Q, Mahfouz RZ, Hasipek M, Enane F, Radivoyevitch T, et al. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J Clin Invest. 2018;01;128(10):4260–79.

    Google Scholar 

  33. •• Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang Y-H, Ramabadran R, et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell. 2018;10;34(3):499–512.e9. This study provided critical evidence that dislocalized mutant NPM1 protein is directly responsible for the HOX gene overexpression characteristic ofNPM1-mutated cells.

  34. Ren Z, Shrestha M, Sakamoto T, Melkman T, Meng L, Cairns RA, et al. Opposing effects of NPM1wt and NPM1c mutants on AKT signaling in AML. Leukemia. 2020 Apr;34(4):1172–6.

    PubMed  Google Scholar 

  35. Wang AJ, Han Y, Jia N, Chen P, Minden MD. NPM1c impedes CTCF functions through cytoplasmic mislocalization in acute myeloid leukemia. Leukemia. 2019 Dec;12.

  36. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016 Feb 4;374(5):422–33.

    CAS  PubMed  Google Scholar 

  37. van der Lee DI, Reijmers RM, Honders MW, Hagedoorn RS, de Jong RC, Kester MG, et al. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J Clin Invest. 2019;01;129(2):774–85.

    Google Scholar 

  38. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC.

  39. Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia. 2017;31(4):798–807.

    CAS  PubMed  Google Scholar 

  40. Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S, et al. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia. 2009 Oct;23(10):1731–43.

    CAS  PubMed  Google Scholar 

  41. Falini B, Bolli N, Shan J, Martelli MP, Liso A, Pucciarini A, et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood. 2006 Jun 1;107(11):4514–23.

    CAS  PubMed  Google Scholar 

  42. Herudkova Z, Culen M, Folta A, Jeziskova I, Cerna J, Loja T, et al. Clonal hierarchy of main molecular lesions in acute myeloid leukaemia. Br J Haematol. 2019 Dec;10.

  43. Cheng K, Sportoletti P, Ito K, Clohessy JG, Teruya-Feldstein J, Kutok JL, et al. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood. 2010 Apr 22;115(16):3341–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cocciardi S, Dolnik A, Kapp-Schwoerer S, Rücker FG, Lux S, Blätte TJ, et al. Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation. Nat Commun, 2019. 02;10(1):2031.

  45. Pasqualucci L, Liso A, Martelli MP, Bolli N, Pacini R, Tabarrini A, et al. Mutated nucleophosmin detects clonal multilineage involvement in acute myeloid leukemia: impact on WHO classification. Blood. 2006 Dec 15;108(13):4146–55.

    CAS  PubMed  Google Scholar 

  46. Martelli MP, Pettirossi V, Thiede C, Bonifacio E, Mezzasoma F, Cecchini D, et al. CD34+ cells from AML with mutated NPM1 harbor cytoplasmic mutated nucleophosmin and generate leukemia in immunocompromised mice. Blood. 2010 Nov 11;116(19):3907–22.

    CAS  PubMed  Google Scholar 

  47. Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood. 2010 Mar 11;115(10):1976–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Patel SS, Lipschitz M, Pinkus GS, Weirather JL, Pozdnyakova O, Mason EF, et al. Multiparametric in situ imaging of NPM1-mutated acute myeloid leukemia reveals prognostically-relevant features of the marrow microenvironment. Mod Pathol. 2020 Feb;12.

  49. Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP, et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood. 2005 Aug 1;106(3):899–902.

    CAS  PubMed  Google Scholar 

  50. Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, O’Laughlin M, et al. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia. 2015 Jun;29(6):1279–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. van Galen P, Hovestadt V, Wadsworth Ii MH, Hughes TK, Griffin GK, Battaglia S, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell. 2019;07;176(6):1265–1281.e24.

    Google Scholar 

  52. Narayan R, Olsson N, Wagar LE, Medeiros BC, Meyer E, Czerwinski D, et al. Acute myeloid leukemia immunopeptidome reveals HLA presentation of mutated nucleophosmin. PLoS One. 2019;14(7):e0219547.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Forghieri F, Riva G, Lagreca I, Barozzi P, Vallerini D, Morselli M, et al. Characterization and dynamics of specific T cells against nucleophosmin-1 (NPM1)-mutated peptides in patients with NPM1-mutated acute myeloid leukemia. Oncotarget. 2019 Jan 25;10(8):869–82.

    PubMed  PubMed Central  Google Scholar 

  54. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010 Aug 1;28(22):3636–43.

    CAS  PubMed  Google Scholar 

  55. Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012 Mar 22;366(12):1079–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013 30;368(22):2059–74.

    Google Scholar 

  57. Ostronoff F, Othus M, Lazenby M, Estey E, Appelbaum FR, Evans A, et al. Prognostic significance of NPM1 mutations in the absence of FLT3-internal tandem duplication in older patients with acute myeloid leukemia: a SWOG and UK National Cancer Research Institute/Medical Research Council report. J Clin Oncol. 2015 Apr 1;33(10):1157–64.

    PubMed  PubMed Central  Google Scholar 

  58. Röllig C, Bornhäuser M, Kramer M, Thiede C, Ho AD, Krämer A, et al. Allogeneic stem-cell transplantation in patients with NPM1-mutated acute myeloid leukemia: results from a prospective donor versus no-donor analysis of patients after upfront HLA typing within the SAL-AML 2003 trial. J Clin Oncol. 2015 Feb 10;33(5):403–10.

    PubMed  Google Scholar 

  59. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014 Feb 20;506(7488):328–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer. 2015 Mar;15(3):152–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Döhner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, Corbacioglu A, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005 Dec 1;106(12):3740–6.

    PubMed  Google Scholar 

  62. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005 Dec 1;106(12):3733–9.

    CAS  PubMed  Google Scholar 

  63. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006 May 15;107(10):4011–20.

    CAS  PubMed  Google Scholar 

  64. Verhaak RGW, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005 Dec 1;106(12):3747–54.

    CAS  PubMed  Google Scholar 

  65. Falini B, Macijewski K, Weiss T, Bacher U, Schnittger S, Kern W, et al. Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1). Blood. 2010 May 6;115(18):3776–86.

    CAS  PubMed  Google Scholar 

  66. Haferlach C, Mecucci C, Schnittger S, Kohlmann A, Mancini M, Cuneo A, et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood. 2009 Oct 1;114(14):3024–32.

    CAS  PubMed  Google Scholar 

  67. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;26;129(4):424–47.

    Google Scholar 

  68. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006 May 15;107(10):3847–53.

    CAS  PubMed  Google Scholar 

  69. Mason EF, Hasserjian RP, Aggarwal N, Seegmiller AC, Pozdnyakova O. Blast phenotype and comutations in acute myeloid leukemia with mutated NPM1 influence disease biology and outcome. Blood Adv. 2019 Nov 12;3(21):3322–32.

    PubMed  PubMed Central  Google Scholar 

  70. • Patel SS, Kuo FC, Gibson CJ, Steensma DP, Soiffer RJ, Alyea EP, et al. High NPM1-mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML. Blood. 2018 Jun 21;131(25):2816–25. This study provided the first evidence that the clinical impact ofNPM1mutation may be modified by the mutant allele burden.

  71. Abbas HA, Ravandi F, Loghavi S, Patel KP, Borthakur G, Kadia TM, et al. NPM1 mutant variant allele frequency correlates with leukemia burden but does not provide prognostic information in NPM1-mutated acute myeloid leukemia. Am J Hematol. 2019;94(6):E158–60.

    PubMed  PubMed Central  Google Scholar 

  72. Linch DC, Hills RK, Burnett AK, Russell N, Gale RE. Analysis of the clinical impact of NPM1 mutant allele burden in a large cohort of younger adult patients with acute myeloid leukaemia. Br J Haematol. 2019 Oct;8.

  73. Sasaki K, Kanagal-Shamanna R, Montalban-Bravo G, Assi R, Jabbour E, Ravandi F, et al. Impact of the variant allele frequency of ASXL1, DNMT3A, JAK2, TET2, TP53, and NPM1 on the outcomes of patients with newly diagnosed acute myeloid leukemia. Cancer. 2020 Feb 15;126(4):765–74.

    CAS  PubMed  Google Scholar 

  74. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015 Feb 26;125(9):1367–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bains A, Luthra R, Medeiros LJ, Zuo Z. FLT3 and NPM1 mutations in myelodysplastic syndromes: frequency and potential value for predicting progression to acute myeloid leukemia. Am J Clin Pathol. 2011 Jan;135(1):62–9.

    PubMed  Google Scholar 

  76. Caudill JSC, Sternberg AJ, Li C-Y, Tefferi A, Lasho TL, Steensma DP. C-terminal nucleophosmin mutations are uncommon in chronic myeloid disorders. Br J Haematol. 2006 Jun;133(6):638–41.

    CAS  PubMed  Google Scholar 

  77. Kim T, Tyndel MS, Kim HJ, Ahn J-S, Choi SH, Park HJ, et al. The clonal origins of leukemic progression of myelodysplasia. Leukemia. 2017;31(9):1928–35.

    CAS  PubMed  Google Scholar 

  78. Dicker F, Haferlach C, Sundermann J, Wendland N, Weiss T, Kern W, et al. Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia. 2010 Aug;24(8):1528–32.

    CAS  PubMed  Google Scholar 

  79. Forghieri F, Paolini A, Morselli M, Bigliardi S, Bonacorsi G, Leonardi G, et al. NPM1 mutations may reveal acute myeloid leukemia in cases otherwise morphologically diagnosed as myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Leuk Lymphoma. 2015;56(11):3222–6.

    PubMed  Google Scholar 

  80. Ernst T, Chase A, Zoi K, Waghorn K, Hidalgo-Curtis C, Score J, et al. Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms. Haematologica. 2010 Sep;95(9):1473–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011 Jun 30;364(26):2496–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Peng J, Zuo Z, Fu B, Oki Y, Tang G, Goswami M, et al. Chronic myelomonocytic leukemia with nucleophosmin (NPM1) mutation. Eur J Haematol. 2016 Jan;96(1):65–71.

    CAS  PubMed  Google Scholar 

  83. Schnittger S, Bacher U, Haferlach C, Alpermann T, Dicker F, Sundermann J, et al. Characterization of NPM1-mutated AML with a history of myelodysplastic syndromes or myeloproliferative neoplasms. Leukemia. 2011 Apr;25(4):615–21.

    CAS  PubMed  Google Scholar 

  84. Krönke J, Schlenk RF, Jensen K-O, Tschürtz F, Corbacioglu A, Gaidzik VI, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011 Jul 1;29(19):2709–16.

    PubMed  Google Scholar 

  85. Shayegi N, Kramer M, Bornhäuser M, Schaich M, Schetelig J, Platzbecker U, et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood. 2013 Jul 4;122(1):83–92.

    CAS  PubMed  Google Scholar 

  86. Schnittger S, Kern W, Tschulik C, Weiss T, Dicker F, Falini B, et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood. 2009 Sep 10;114(11):2220–31.

    CAS  PubMed  Google Scholar 

  87. Kayser S, Benner A, Thiede C, Martens U, Huber J, Stadtherr P, et al. Pretransplant NPM1 MRD levels predict outcome after allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia. Blood Cancer J. 2016;29;6(7):e449.

    Google Scholar 

  88. Gorello P, Cazzaniga G, Alberti F, Dell’Oro MG, Gottardi E, Specchia G, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006 Jun;20(6):1103–8.

    CAS  PubMed  Google Scholar 

  89. Forghieri F, Comoli P, Marasca R, Potenza L, Luppi M. Minimal/measurable residual disease monitoring in NPM1-mutated acute myeloid leukemia: a clinical viewpoint and perspectives. Int J Mol Sci. 2018 Nov;6:19(11).

    Google Scholar 

  90. Mosna F, Capelli D, Gottardi M. Minimal residual disease in acute myeloid leukemia: still a work in progress? J Clin Med. 2017 Jun;3:6(6).

    Google Scholar 

  91. Schuurhuis GJ, Heuser M, Freeman S, Béné M-C, Buccisano F, Cloos J, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD working party. Blood. 2018 Mar 22;131(12):1275–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Patel SS, Pinkus GS, Ritterhouse LL, Segal JP, Dal Cin P, Restrepo T, et al. High NPM1 mutant allele burden at diagnosis correlates with minimal residual disease at first remission in de novo acute myeloid leukemia. Am J Hematol. 2019 Aug;94(8):921–8.

    CAS  PubMed  Google Scholar 

  93. Zhou Y, Moon A, Hoyle E, Fromm JR, Chen X, Soma L, et al. Pattern associated leukemia immunophenotypes and measurable disease detection in acute myeloid leukemia or myelodysplastic syndrome with mutated NPM1. Cytometry B Clin Cytom. 2019;96(1):67–72.

    CAS  PubMed  Google Scholar 

  94. Salipante SJ, Fromm JR, Shendure J, Wood BL, Wu D. Detection of minimal residual disease in NPM1-mutated acute myeloid leukemia by next-generation sequencing. Mod Pathol. 2014 Nov;27(11):1438–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Thol F, Gabdoulline R, Liebich A, Klement P, Schiller J, Kandziora C, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018 Oct 18;132(16):1703–13.

    CAS  PubMed  Google Scholar 

  96. Thol F, Kölking B, Damm F, Reinhardt K, Klusmann J-H, Reinhardt D, et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosom Cancer. 2012 Jul;51(7):689–95.

    CAS  PubMed  Google Scholar 

  97. Patkar N, Kodgule R, Kakirde C, Raval G, Bhanshe P, Joshi S, et al. Clinical impact of measurable residual disease monitoring by ultradeep next generation sequencing in NPM1 mutated acute myeloid leukemia. Oncotarget. 2018 Nov 27;9(93):36613–24.

    PubMed  PubMed Central  Google Scholar 

  98. Ritterhouse LL, Parilla M, Zhen CJ, Wurst MN, Puranik R, Henderson CM, et al. Clinical validation and implementation of a measurable residual disease assay for NPM1 in acute myeloid leukemia by error-corrected next-generation sequencing. Mol Diagn Ther. 2019;23(6):791–802.

    CAS  PubMed  Google Scholar 

  99. Falini B, Martelli MP, Bolli N, Bonasso R, Ghia E, Pallotta MT, et al. Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood. 2006 Sep 15;108(6):1999–2005.

    CAS  PubMed  Google Scholar 

  100. Bhola PD, Letai A. Mitochondria-judges and executioners of cell death sentences. Mol Cell. 2016 Mar 3;61(5):695–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006 Nov;10(5):375–88.

    CAS  PubMed  Google Scholar 

  102. Konopleva M, Letai A. BCL-2 inhibition in AML: an unexpected bonus? Blood. 2018;06;132(10):1007–12.

    Google Scholar 

  103. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;03;133(1):7–17.

    Google Scholar 

  104. DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, Brown FC, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020 Mar 12;135(11):791–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kontro M, Kumar A, Majumder MM, Eldfors S, Parsons A, Pemovska T, et al. HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia. Leukemia. 2017;31(2):301–9.

    CAS  PubMed  Google Scholar 

  106. •• Lachowiez CA, Loghavi S, Kadia TM, Daver N, Borthakur G, Pemmaraju N, et al. Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Adv. 2020 Apr 14;4(7):1311–20. This is the largest of a few key studies documenting the efficacy of venetoclax inNPM1-mutated AML patients.

  107. Kühn MWM, Song E, Feng Z, Sinha A, Chen C-W, Deshpande AJ, et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 2016;6(10):1166–81.

    PubMed  PubMed Central  Google Scholar 

  108. Borkin D, He S, Miao H, Kempinska K, Pollock J, Chase J, et al. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell. 2015 Apr 13;27(4):589–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C, Uckelmann HJ, et al. A menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell. 2019 Dec;9;36(6):660–673.e11.

    Google Scholar 

  110. •• Uckelmann HJ, Kim SM, Wong EM, Hatton C, Giovinazzo H, Gadrey JY, et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science. 2020;31;367(6477):586–90. This very recent study has provided some of the earliest and most compelling evidence thatNPM1-mutated cells are sensitive to menin-MLL inhibition using an orally bioavailable small molecule.

  111. Klossowski S, Miao H, Kempinska K, Wu T, Purohit T, Kim E, et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J Clin Invest. 2020 Feb 3;130(2):981–97.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga K. Weinberg.

Ethics declarations

Conflict of Interest

SP, MK, and OW declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Molecular Testing and Diagnostics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.S., Kluk, M.J. & Weinberg, O.K. NPM1 Biology in Myeloid Neoplasia. Curr Hematol Malig Rep 15, 350–359 (2020). https://doi.org/10.1007/s11899-020-00592-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-020-00592-3

Keywords

Navigation