Skip to main content

Advertisement

Log in

Development and Significance of Mouse Models in Lymphoma Research

  • T-Cell and Other Lymphoproliferative Malignancies (J Zain, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Animal models have played an indispensable role in interpreting cancer gene functions, pathogenesis of disease, and in the development of innovative therapeutic approaches targeting aberrant biological pathways in human cancers.

Recent Findings

These models have guided the therapeutic targeting of cancer-causing mutations and paved the way for assessing anti-cancer drug responses and the preclinical development of immunotherapies. The mammalian models of cancer utilize genetically edited or transplanted mice that develop fairly accurate disease histopathology. The mouse model also allows us to study the effect of tumor microenvironment in the development of lymphoma. The emergence of patient-derived xenografts provides a better opportunity for recapitulating primary lymphoma characteristics and researching personalized drug therapy.

Summary

In conclusion, the refinement and advancement of available mouse models in lymphoma significantly minimize the therapeutic translational failures in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Marconato L, Gelain ME, Comazzi S. The dog as a possible animal model for human non-Hodgkin lymphoma: a review. Hematol Oncol. 2013;31(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  2. Larsdotter S, Nostell K, von Euler H. Serum thymidine kinase activity in clinically healthy and diseased horses: a potential marker for lymphoma. Vet J. 2015;205(2):313–6.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao S, Huang J, Ye J. A fresh look at zebrafish from the perspective of cancer research. J Exp Clin Cancer Res. 2015;34:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med Public Health. 2016;2016(1):170–6.

    PubMed  PubMed Central  Google Scholar 

  5. Kohnken R, Porcu P, Mishra A. Overview of the use of murine models in Leukemia and Lymphoma Research. Front Oncol. 2017;7:22.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sonoshita M, Cagan RL. Modeling human cancers in Drosophila. Curr Top Dev Biol. 2017;121:287–309.

    Article  CAS  PubMed  Google Scholar 

  7. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  8. Kuppers R. New insights in the biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2012;2012:328–34.

    PubMed  Google Scholar 

  9. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  10. Herman SEM, Montraveta A, Niemann CU, Mora-Jensen H, Gulrajani M, Krantz F, et al. The Bruton tyrosine kinase (BTK) inhibitor Acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin Cancer Res. 2017;23(11):2831–41.

    Article  CAS  PubMed  Google Scholar 

  11. Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roberts ZJ, Better M, Bot A, Roberts MR, Ribas A. Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk Lymphoma. 2018;59(8):1785–96.

    Article  CAS  PubMed  Google Scholar 

  13. Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood. 2010;116(19):3875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Patnaik A, Appleman LJ, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, et al. First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin's lymphomas. Ann Oncol. 2016;27(10):1928–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rava M, D'Andrea A, Nicoli P, Gritti I, Donati G, Doni M, et al. Therapeutic synergy between tigecycline and venetoclax in a preclinical model of MYC/BCL2 double-hit B cell lymphoma. Sci Transl Med. 2018;10(426):eaan8723.

    Article  CAS  PubMed  Google Scholar 

  17. O'Steen S, Green DJ, Gopal AK, Orozco JJ, Kenoyer AL, Lin Y, et al. Venetoclax synergizes with radiotherapy for treatment of B-cell lymphomas. Cancer Res. 2017;77(14):3885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pham LV, Huang S, Zhang H, Zhang J, Bell T, Zhou S, et al. Strategic therapeutic targeting to overcome Venetoclax resistance in aggressive B-cell lymphomas. Clin Cancer Res. 2018;24(16):3967–80.

    Article  CAS  PubMed  Google Scholar 

  19. Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, et al. Ibrutinib plus Venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med. 2018;378(13):1211–23.

    Article  CAS  PubMed  Google Scholar 

  20. Paoluzzi L, Scotto L, Marchi E, Zain J, Seshan VE, O'Connor OA. Romidepsin and belinostat synergize the antineoplastic effect of bortezomib in mantle cell lymphoma. Clin Cancer Res. 2010;16(2):554–65.

    Article  CAS  PubMed  Google Scholar 

  21. O'Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33(23):2492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhatt S, Ashlock BM, Natkunam Y, Sujoy V, Chapman JR, Ramos JC, et al. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood. 2013;122(7):1233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ju W, Zhang M, Wilson KM, Petrus MN, Bamford RN, Zhang X, et al. Augmented efficacy of brentuximab vedotin combined with ruxolitinib and/or Navitoclax in a murine model of human Hodgkin's lymphoma. Proc Natl Acad Sci U S A. 2016;113(6):1624–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, et al. Brentuximab Vedotin with chemotherapy for stage III or IV Hodgkin's lymphoma. N Engl J Med. 2018;378(4):331–44.

    Article  CAS  PubMed  Google Scholar 

  25. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  26. Honeychurch J, Melis MH, Dovedi SJ, Mu L, Illidge TM. Immunogenic potential of irradiated lymphoma cells is enhanced by adjuvant immunotherapy and modulation of local macrophage populations. Leuk Lymphoma. 2013;54(9):2008–15.

    Article  CAS  PubMed  Google Scholar 

  27. Assaf N, Hasson T, Hoch-Marchaim H, Pe'er J, Gnessin H, Deckert-Schluter M, et al. An experimental model for infiltration of malignant lymphoma to the eye and brain. Virchows Arch. 1997;431(6):459–67.

    Article  CAS  PubMed  Google Scholar 

  28. Yan ZX, Wu LL, Xue K, Zhang QL, Guo Y, Romero M, et al. MicroRNA187 overexpression is related to tumor progression and determines sensitivity to bortezomib in peripheral T-cell lymphoma. Leukemia. 2014;28(4):880–7.

    Article  CAS  PubMed  Google Scholar 

  29. Turaj AH, Cox KL, Penfold CA, French RR, Mockridge CI, Willoughby JE, et al. Augmentation of CD134 (OX40)-dependent NK anti-tumour activity is dependent on antibody cross-linking. Sci Rep. 2018;8(1):2278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. • Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163(1):39–53. This article cites several pre-clinical mouse models and highlights experimental concerns.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sagiv-Barfi I, Kohrt HE, Burckhardt L, Czerwinski DK, Levy R. Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma. Blood. 2015;125(13):2079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Di Rosso ME, Sterle HA, Cremaschi GA, Genaro AM. Beneficial effect of fluoxetine and sertraline on chronic stress-induced tumor growth and cell dissemination in a mouse model of lymphoma: crucial role of antitumor immunity. Front Immunol. 2018;9:1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rafferty P, Egenolf D, Brosnan K, Makropoulos D, Jordan J, Meshaw K, et al. Immunotoxicologic effects of cyclosporine on tumor progression in models of squamous cell carcinoma and B-cell lymphoma in C3H mice. J Immunotoxicol. 2012;9(1):43–55.

    Article  CAS  PubMed  Google Scholar 

  34. Cheadle EJ, Sheard V, Rothwell DG, Bridgeman JS, Ashton G, Hanson V, et al. Differential role of Th1 and Th2 cytokines in autotoxicity driven by CD19-specific second-generation chimeric antigen receptor T cells in a mouse model. J Immunol. 2014;192(8):3654–65.

    Article  CAS  PubMed  Google Scholar 

  35. Dayde D, Ternant D, Ohresser M, Lerondel S, Pesnel S, Watier H, et al. Tumor burden influences exposure and response to rituximab: pharmacokinetic-pharmacodynamic modeling using a syngeneic bioluminescent murine model expressing human CD20. Blood. 2009;113(16):3765–72.

    Article  CAS  PubMed  Google Scholar 

  36. Cheadle EJ, Lipowska-Bhalla G, Dovedi SJ, Fagnano E, Klein C, Honeychurch J, et al. A TLR7 agonist enhances the antitumor efficacy of obinutuzumab in murine lymphoma models via NK cells and CD4 T cells. Leukemia. 2017;31(7):1611–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berge G, Eliassen LT, Camilio KA, Bartnes K, Sveinbjornsson B, Rekdal O. Therapeutic vaccination against a murine lymphoma by intratumoral injection of a cationic anticancer peptide. Cancer Immunol Immunother. 2010;59(8):1285–94.

    Article  CAS  PubMed  Google Scholar 

  38. Matsumoto T, Suetsugu A, Shibata Y, Nakamura N, Aoki H, Kunisada T, et al. A color-coded Imageable syngeneic mouse model of stromal-cell recruitment by metastatic lymphoma. Anticancer Res. 2015;35(9):4647–54.

    PubMed  Google Scholar 

  39. Ye B, Stary CM, Li X, Gao Q, Kang C, Xiong X. Engineering chimeric antigen receptor-T cells for cancer treatment. Mol Cancer. 2018;17(1):32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Passineau MJ, Siegal GP, Everts M, Pereboev A, Jhala D, Wang M, et al. The natural history of a novel, systemic, disseminated model of syngeneic mouse B-cell lymphoma. Leuk Lymphoma. 2005;46(11):1627–38.

    Article  PubMed  Google Scholar 

  41. Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007;170(3):793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cho SY, Kang W, Han JY, Min S, Kang J, Lee A, et al. An integrative approach to precision Cancer medicine using patient-derived xenografts. Mol Cell. 2016;39(2):77–86.

    Article  CAS  Google Scholar 

  43. Chapuy B, Cheng H, Watahiki A, Ducar MD, Tan Y, Chen L, et al. Diffuse large B-cell lymphoma patient-derived xenograft models capture the molecular and biological heterogeneity of the disease. Blood. 2016;127(18):2203–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ravi D, Bhalla S, Gartenhaus RB, Crombie J, Kandela I, Sharma J, et al. The novel organic arsenical darinaparsin induces MAPK-mediated and SHP1-dependent cell death in T-cell lymphoma and Hodgkin lymphoma cells and human xenograft models. Clin Cancer Res. 2014;20(23):6023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DiFranco KM, Johnson-Farley N, Bertino JR, Elson D, Vega BA, Belinka BA Jr, et al. LFA-1-targeting Leukotoxin (LtxA; Leukothera(R)) causes lymphoma tumor regression in a humanized mouse model and requires caspase-8 and Fas to kill malignant lymphocytes. Leuk Res. 2015;39(6):649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol. 2015;11(6):432–7.

    Article  CAS  PubMed  Google Scholar 

  47. Tsukahara T, Ohmine K, Yamamoto C, Uchibori R, Ido H, Teruya T, et al. CD19 target-engineered T-cells accumulate at tumor lesions in human B-cell lymphoma xenograft mouse models. Biochem Biophys Res Commun. 2013;438(1):84–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hao Y, Chapuy B, Monti S, Sun HH, Rodig SJ, Shipp MA. Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo. Clin Cancer Res. 2014;20(10):2674–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. George SK, Vishwamitra D, Manshouri R, Shi P, Amin HM. The ALK inhibitor ASP3026 eradicates NPM-ALK(+) T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model. Oncotarget. 2014;5(14):5750–63.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Goto H, Kudo E, Kariya R, Taura M, Katano H, Okada S. Targeting VEGF and interleukin-6 for controlling malignant effusion of primary effusion lymphoma. J Cancer Res Clin Oncol. 2015;141(3):465–74.

    Article  CAS  PubMed  Google Scholar 

  51. Gasperini P, Tosato G. Targeting the mammalian target of rapamycin to inhibit VEGF and cytokines for the treatment of primary effusion lymphoma. Leukemia. 2009;23(10):1867–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kopetz S, Lemos R, Powis G. The promise of patient-derived xenografts: the best laid plans of mice and men. Clin Cancer Res. 2012;18(19):5160–2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shimada K, Shimada S, Sugimoto K, Nakatochi M, Suguro M, Hirakawa A, et al. Development and analysis of patient-derived xenograft mouse models in intravascular large B-cell lymphoma. Leukemia. 2016;30(7):1568–79.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang L, Nomie K, Zhang H, Bell T, Pham L, Kadri S, et al. B-cell lymphoma patient-derived xenograft models enable drug discovery and are a platform for personalized therapy. Clin Cancer Res. 2017;23(15):4212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong NC, Bhadri VA, Maksimovic J, Parkinson-Bates M, Ng J, Craig JM, et al. Stability of gene expression and epigenetic profiles highlights the utility of patient-derived paediatric acute lymphoblastic leukaemia xenografts for investigating molecular mechanisms of drug resistance. BMC Genomics. 2014;15:416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nahimana A, Aubry D, Breton CS, Majjigapu SR, Sordat B, Vogel P, et al. The anti-lymphoma activity of APO866, an inhibitor of nicotinamide adenine dinucleotide biosynthesis, is potentialized when used in combination with anti-CD20 antibody. Leuk Lymphoma. 2014;55(9):2141–50.

    Article  CAS  PubMed  Google Scholar 

  57. •• Zitvogel L, Pitt JM, Daillere R, Smyth MJ, Kroemer G. Mouse models in oncoimmunology. Nat Rev Cancer. 2016;16(12):759–73. This article provides comprehensive insight of mouse models in oncoimmunology as well as a more in-depth analysis of humanized mouse models.

    Article  CAS  PubMed  Google Scholar 

  58. Bernardi R, Grisendi S, Pandolfi PP. Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene. 2002;21(21):3445–58.

    Article  CAS  PubMed  Google Scholar 

  59. Macchiarini F, Manz MG, Palucka AK, Shultz LD. Humanized mice: are we there yet? J Exp Med. 2005;202(10):1307–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Holzapfel BM, Wagner F, Thibaudeau L, Levesque JP, Hutmacher DW. Concise review: humanized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering. Stem Cells. 2015;33(6):1696–704.

    Article  CAS  PubMed  Google Scholar 

  61. Haji Y, Suzuki M, Moriya K, So T, Hozumi K, Mizuma M, et al. Activation of Notch1 promotes development of human CD8(+) single positive T cells in humanized mice. Biochem Biophys Res Commun. 2014;447(2):346–51.

    Article  CAS  PubMed  Google Scholar 

  62. Romero-Masters JC, Ohashi M, Djavadian R, Eichelberg MR, Hayes M, Bristol JA, et al. An EBNA3C-deleted Epstein-Barr virus (EBV) mutant causes B-cell lymphomas with delayed onset in a cord blood-humanized mouse model. PLoS Pathog. 2018;14(8):e1007221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma SD, Xu X, Jones R, Delecluse HJ, Zumwalde NA, Sharma A, et al. PD-1/CTLA-4 blockade inhibits Epstein-Barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog. 2016;12(5):e1005642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma SD, Tsai MH, Romero-Masters JC, Ranheim EA, Huebner SM, Bristol JA, et al. Latent Membrane Protein 1 (LMP1) and LMP2A Collaborate To Promote Epstein-Barr Virus-Induced B Cell Lymphomas in a Cord Blood-Humanized Mouse Model but Are Not Essential. J Virol. 2017;91(7).

  65. Cho A, Haruyama N, Kulkarni AB. Generation of transgenic mice. Curr Protoc Cell Biol. 2009;Chapter 19:Unit 19 1.

  66. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM. The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med. 1988;167(2):353–71.

    Article  CAS  PubMed  Google Scholar 

  67. Walton MI, Eve PD, Hayes A, Henley AT, Valenti MR, De Haven Brandon AK, et al. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Emicro-MYC driven B-cell lymphoma. Oncotarget. 2016;7(3):2329–42.

    Article  PubMed  Google Scholar 

  68. Berkova Z, Wang S, Sehgal L, Patel KP, Prakash O, Samaniego F. Lymphoid hyperplasia and lymphoma in KSHV K1 transgenic mice. Histol Histopathol. 2015;30(5):559–68.

    CAS  PubMed  Google Scholar 

  69. Katz SG, Labelle JL, Meng H, Valeriano RP, Fisher JK, Sun H, et al. Mantle cell lymphoma in cyclin D1 transgenic mice with Bim-deficient B cells. Blood. 2014;123(6):884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mishra A, La Perle K, Kwiatkowski S, Sullivan LA, Sams GH, Johns J, et al. Mechanism, consequences, and therapeutic targeting of abnormal IL15 signaling in cutaneous T-cell lymphoma. Cancer Discov. 2016;6(9):986–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Willerslev-Olsen A, Litvinov IV, Fredholm SM, Petersen DL, Sibbesen NA, Gniadecki R, et al. IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle. 2014;13(8):1306–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bhadury J, Nilsson LM, Muralidharan SV, Green LC, Li Z, Gesner EM, et al. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc Natl Acad Sci U S A. 2014;111(26):E2721–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kohrt HE, Thielens A, Marabelle A, Sagiv-Barfi I, Sola C, Chanuc F, et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood. 2014;123(5):678–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Natarajan A, Hackel BJ, Gambhir SS. A novel engineered anti-CD20 tracer enables early time PET imaging in a humanized transgenic mouse model of B-cell non-Hodgkins lymphoma. Clin Cancer Res. 2013;19(24):6820–9.

    Article  CAS  PubMed  Google Scholar 

  75. Pechloff K, Holch J, Ferch U, Schweneker M, Brunner K, Kremer M, et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med. 2010;207(5):1031–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guan C, Ye C, Yang X, Gao J. A review of current large-scale mouse knockout efforts. Genesis. 2010;48(2):73–85.

    CAS  PubMed  Google Scholar 

  77. Hursting SD, Perkins SN, Phang JM. Calorie restriction delays spontaneous tumorigenesis in p53-knockout transgenic mice. Proc Natl Acad Sci U S A. 1994;91(15):7036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Han S, Jeong AL, Lee S, Park JS, Kim KD, Choi I, et al. Adiponectin deficiency suppresses lymphoma growth in mice by modulating NK cells, CD8 T cells, and myeloid-derived suppressor cells. J Immunol. 2013;190(9):4877–86.

    Article  CAS  PubMed  Google Scholar 

  79. Whitehurst CB, Li G, Montgomery SA, Montgomery ND, Su L, Pagano JS. Knockout of Epstein-Barr virus BPLF1 retards B-cell transformation and lymphoma formation in humanized mice. MBio. 2015;6(5):e01574–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Friedel RH, Wurst W, Wefers B, Kuhn R. Generating conditional knockout mice. Methods Mol Biol. 2011;693:205–31.

    Article  CAS  PubMed  Google Scholar 

  81. Healy JA, Nugent A, Rempel RE, Moffitt AB, Davis NS, Jiang X, et al. GNA13 loss in germinal center B cells leads to impaired apoptosis and promotes lymphoma in vivo. Blood. 2016;127(22):2723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liljevald M, Rehnberg M, Soderberg M, Ramnegard M, Borjesson J, Luciani D, et al. Retinoid-related orphan receptor gamma (RORgamma) adult induced knockout mice develop lymphoblastic lymphoma. Autoimmun Rev. 2016;15(11):1062–70.

    Article  CAS  PubMed  Google Scholar 

  83. Gilani U, Shaukat M, Rasheed A, Shahid M, Tasneem F, Arshad M, et al. The implication of CRISPR/Cas9 genome editing technology in combating human oncoviruses. J Med Virol. 2019;91(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  84. Katigbak A, Cencic R, Robert F, Senecha P, Scuoppo C, Pelletier J. A CRISPR/Cas9 functional screen identifies rare tumor suppressors. Sci Rep. 2016;6:38968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen Z, Teo AE, McCarty N. ROS-induced CXCR4 signaling regulates mantle cell lymphoma (MCL) cell survival and drug resistance in the bone marrow microenvironment via autophagy. Clin Cancer Res. 2016;22(1):187–99.

    Article  CAS  PubMed  Google Scholar 

  86. Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O'Connor L, Milla L, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 2015;10(8):1422–32.

    Article  CAS  PubMed  Google Scholar 

  87. Patwardhan RS, Pal D, Checker R, Sharma D, Sandur SK. Baicalein induces cell death in murine T cell lymphoma via inhibition of thioredoxin system. Int J Biochem Cell Biol. 2017;91(Pt A):45–52.

    Article  CAS  PubMed  Google Scholar 

  88. Luanpitpong S, Chanthra N, Janan M, Poohadsuan J, Samart P. Y UP, et al. inhibition of O-GlcNAcase sensitizes apoptosis and reverses Bortezomib resistance in mantle cell lymphoma through modification of truncated bid. Mol Cancer Ther. 2018;17(2):484–96.

    Article  CAS  PubMed  Google Scholar 

  89. Chen KH, Wada M, Pinz KG, Liu H, Lin KW, Jares A, et al. Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia. 2017;31(10):2151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pinz K, Liu H, Golightly M, Jares A, Lan F, Zieve GW, et al. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells. Leukemia. 2016;30(3):701–7.

    Article  CAS  PubMed  Google Scholar 

  91. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48.

    Article  CAS  PubMed  Google Scholar 

  93. Frey N. Cytokine release syndrome: who is at risk and how to treat. Best Pract Res Clin Haematol. 2017;30(4):336–40.

    Article  PubMed  Google Scholar 

  94. Liu D, Zhao J. Cytokine release syndrome: grading, modeling, and new therapy. J Hematol Oncol. 2018;11(1):121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Mishra.

Ethics declarations

Conflict of Interest

Anjali Mishra reports grants from Galderma, grants from Kura Oncology, outside the submitted work. Jordan N Noble declares that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on T-Cell and Other Lymphoproliferative Malignancies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noble, J.N., Mishra, A. Development and Significance of Mouse Models in Lymphoma Research. Curr Hematol Malig Rep 14, 119–126 (2019). https://doi.org/10.1007/s11899-019-00504-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-019-00504-0

Keywords

Navigation