Skip to main content

Advertisement

Log in

Minimal Residual Disease Monitoring in Adult ALL to Determine Therapy

  • Acute Lymphocytic Leukemias (F Ravandi, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Almost 90 % of children and 50 % of adults with acute lymphoblastic leukemia (ALL) are cured by modern treatment regimens, with significant variations due to several disease- and host-related characteristics. The attainment of an early remission and the avoidance of relapse and treatment-related mortality are the fundamental therapeutic steps. In remission patients, the assessment of the disease response to early intensive therapy through the detection and monitoring of minimal residual disease (MRD) can accurately refine the individual prognosis and is increasingly used to support a risk-oriented treatment strategy. In this way, only the patients with an unfavorable MRD response are preferably selected for allogeneic stem cell transplantation, irrespective of their clinical risk class. This choice spares transplant-related toxicities to MRD responsive cases. Further advancement is expected by integrating the MRD analysis with improved pediatric-type regimens and novel targeting agents for ALL subsets at higher risk of relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Skipper HE, Schabel Jr FM, Mellett LB, Montgomery JA, Wilkoff LJ, Lloyd HH, et al. Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationships in the design of optimal therapeutic schedules. Cancer Chemother Rep. 1970;54(6):431–50.

    CAS  PubMed  Google Scholar 

  2. Norton L, Simon R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep. 1977;61(7):1307–17.

    CAS  PubMed  Google Scholar 

  3. Freireich EJ. The history of leukemia therapy—a personal journey. Clin Lymphoma Myeloma Leuk. 2012;12(6):386–92.

    Article  PubMed  Google Scholar 

  4. Pui CH, Evans WE. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50(3):185–96. An excellent historical appraisal of major therapeutic steps in ALL.

  5. Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29(5):532–43.

    Article  PubMed  Google Scholar 

  6. Goldstone AH, Richards SM, Lazarus HM, Tallman MS, Buck G, Fielding AK, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood. 2008;111(4):1827–33.

    Article  CAS  PubMed  Google Scholar 

  7. Gupta V, Richards S, Rowe J. Allogeneic, but not autologous, hematopoietic cell transplantation improves survival only among younger adults with acute lymphoblastic leukemia in first remission: an individual patient data meta-analysis. Blood. 2013;121(2):339–50. Recent and extensive meta-analysis on role of ASCT in adult ALL in pre-MRD era.

  8. Ribera JM, Ribera J, Genesca E. Treatment of adolescent and young adults with acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis. 2014;6(1):e2014052. Accurate and recent review on therapeutic progress and pediatric-type therapy in AYA ALL.

  9. Rowe J. Prognostic factors in adult acute lymphoblastic leukemia. Br J Haematol. 2010;150(4):389–405.

    PubMed  Google Scholar 

  10. Bradstock KF, Janossy G, Tidman N, Papageorgiou ES, Prentice HG, Willoughby M, et al. Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk Res. 1981;5(4–5):301–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bregni M, Siena S, Neri A, Bassan R, Barbui T, Delia D, et al. Minimal residual disease in acute lymphoblastic leukemia detected by immune selection and gene rearrangement analysis. J Clin Oncol. 1989;7(3):338–43.

    CAS  PubMed  Google Scholar 

  12. Yamada M, Wasserman R, Lange B, Reichard BA, Womer RB, Rovera G. Minimal residual disease in childhood B-lineage lymphoblastic leukemia. Persistence of leukemic cells during the first 18 months of treatment. N Engl J Med. 1990;323(7):448–55.

  13. Brisco J, Hughes E, Neoh SH, Sykes PJ, Bradstock K, Enno A, et al. Relationship between minimal residual disease and outcome in adult acute lymphoblastic leukemia. Blood. 1996;87(12):5251–6.

    CAS  PubMed  Google Scholar 

  14. Roberts WM, Estrov Z, Ouspenskaia MV, Johnston DA, McClain KL, Zipf TF. Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med. 1997;336(5):317–23.

    Article  CAS  PubMed  Google Scholar 

  15. Cave H, Van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European organization for research and treatment of cancer—Childhood Leukemia Cooperative Group. N Engl J Med. 1998;339(9):591–8.

    Article  CAS  PubMed  Google Scholar 

  16. Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351(9102):550–4.

    Article  CAS  PubMed  Google Scholar 

  17. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(9142):1731–8.

    Article  PubMed  Google Scholar 

  18. Mortuza FY, Papaioannou M, Moreira IM, Coyle LA, Gameiro P, Gandini D, et al. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol. 2002;20(4):1094–104.

    Article  PubMed  Google Scholar 

  19. Bruggemann M, Raff T, Kneba M. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012;120(23):4470–81. Best available review on technical and clinical aspects of MRD analysis in adult ALL.

  20. Denys B, van der Sluijs-Gelling AJ, Homburg C, van der Schoot CE, de Haas V, Philippe J, et al. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2012;27(3):635–41.

    Article  PubMed  Google Scholar 

  21. Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Basso G, Veltroni M, Valsecchi MG, Dworzak MN, Ratei R, Silvestri D, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74.

    Article  PubMed  Google Scholar 

  23. Fronkova E, Muzikova K, Mejstrikova E, Kovac M, Formankova R, Sedlacek P, et al. B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant. 2008;42(3):187–96.

    Article  CAS  PubMed  Google Scholar 

  24. Dworzak MN, Gaipa G, Schumich A, Maglia O, Ratei R, Veltroni M, et al. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study group. Cytometry B Clin Cytom. 2010;78(3):147–53.

    PubMed  Google Scholar 

  25. Kalina T, Flores-Montero J, van der Velden VH, Martin-Ayuso M, Bottcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986–2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. van Dongen JJ, Orfao A. EuroFlow: resetting leukemia and lymphoma immunophenotyping. Basis for companion diagnostics and personalized medicine. Leukemia. 2012;26(9):1899–907.

    Article  PubMed Central  PubMed  Google Scholar 

  27. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901–28.

    Article  PubMed  Google Scholar 

  28. Gabert J, Beillard E, van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of /‘real-time/’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer Program. Leukemia. 2003;17(12):2318–57.

    Article  CAS  PubMed  Google Scholar 

  29. Pfeifer H, Cazzaniga G, Spinelli O, Cayuela J-M, Cave H, Vandenberghe P, et al. International standardization of minimal residual disease assessment for in Philadelphia chromosome positive acute lymphoblastic leukemia (Ph + ALL) expressing m-BCR-ABL transcripts: updated results of quality control procedures by the EWALL and ESG-MRD-ALL consortia. Blood. 2011;118(21):2535. ASH Annual Meeting Abstracts.

    Google Scholar 

  30. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604–11.

    PubMed  Google Scholar 

  31. Bruggemann M, Raff T, Flohr T, Gokbuget N, Nakao M, Droese J, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107(3):1116–23.

    Article  PubMed  Google Scholar 

  32. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22(4):771–82.

    Article  CAS  PubMed  Google Scholar 

  33. Bassan R, Spinelli O, Oldani E, Intermesoli T, Tosi M, Peruta B, et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009;113(18):4153–62.

    Article  CAS  PubMed  Google Scholar 

  34. Bruggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG, et al. Standardized MRD quantification in European ALL trials: proceedings of the second international symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia. 2010;24(3):521–35.

    Article  CAS  PubMed  Google Scholar 

  35. Szczepanski T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood. 2002;99(7):2315–23.

    Article  CAS  PubMed  Google Scholar 

  36. Faham M, Zheng J, Moorhead M, Carlton VE, Stow P, Coustan-Smith E, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120(26):5173–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ladetto M, Bruggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2013;28(6):1299–307.

    Article  PubMed  Google Scholar 

  38. Bassan R, Spinelli O, Oldani E, Intermesoli T, Tosi M, Peruta B, et al. Different molecular levels of post-induction minimal residual disease may predict hematopoietic stem cell transplantation outcome in adult Philadelphia-negative acute lymphoblastic leukemia. Blood Cancer J. 2014;4:e225. Updated long-term results of MRD-based prospective clinical trial in Ph- ALL.

  39. Gokbuget N, Kneba M, Raff T, Trautmann H, Bartram CR, Arnold R, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120(9):1868–76. Results of MRD-based prospective clinical trial in Ph- ALL.

  40. Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland ML, Leguay T, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123(24):3739–49. Analysis of prognostic interaction between MRD response and oncogene expression in B- and T-ALL subsets.

  41. Raff T, Gokbuget N, Luschen S, Reutzel R, Ritgen M, Irmer S, et al. Molecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: data from the GMALL 06/99 and 07/03 trials. Blood. 2007;109(3):910–5.

    Article  CAS  PubMed  Google Scholar 

  42. Stock W, Luger SM, Advani AS, Geyer S, Harvey RC, Mullighan CG, et al. Favorable outcomes for older adolescents and young adults (AYA) with acute lymphoblastic leukemia (ALL): early results of U.S. Intergroup trial C10403. Blood. 2014;124(21):796. ASH Annual Meeting Abstracts.

    Google Scholar 

  43. Bassan R, Masciulli A, Spinelli O, Intermesoli T, Audisio E, Rossi G, et al. Enhanced survival in adult philadelphia-negative acute lymphoblastic leukemia (Ph-ALL) with an updated pediatric-derived minimal residual disease (MRD)/risk-specific treatment strategy: NILG STUDY 10. Haematologica. 2014;99(s1):259–60. EHA Annual Meeting Abstracts.

    Google Scholar 

  44. Spinelli O, Tosi M, Peruta B, Montalvo ML, Maino E, Scattolin AM, et al. Prognostic significance and treatment implications of minimal residual disease studies in Philadelphia-negative adult acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis. 2014;6(1):e2014062.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Gökbuget N, Beck J, Brandt K, Brüggemann M, Burmeister T, Diedrich H, et al. Significant improvement of outcome in adolescents and young adults (AYAs) aged 15–35 years with acute lymphoblastic leukemia (ALL) with a pediatric derived adult ALL protocol; results of 1529 AYAs in 2 consecutive trials of the German multicenter study group for adult ALL (GMALL). Blood. 2013;122(21):2. ASH Annual Meeting Abstracts.

  46. DeAngelo DJ, Stevenson KE, Dahlberg SE, Silverman LB, Couban S, Supko JG, Amrein PC, Ballen KK, Seftel MD, Turner AR, Leber B, Howson-Jan K, Kelly K, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18–50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2014; Advance online publication.

  47. Gokbuget N, Stanze D, Beck J, Diedrich H, Horst H-A, Huttmann A, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012;120(10):2032–41.

    Article  PubMed  Google Scholar 

  48. Ribera JM, Oriol A, Morgades M, Montesinos P, Sarra J, Gonzalez-Campos J, et al. Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: final results of the PETHEMA ALL-AR-03 trial. J Clin Oncol. 2014;32(15):1595–604. Results of prospective MRD-based (MFC) prospective clinical trial in HR Ph- ALL.

  49. Gokbuget N. How I, treat older patients with ALL. Blood. 2013;122(8):1366–75.

    Article  PubMed  Google Scholar 

  50. Buckley SA, Appelbaum FR, Walter RB. Prognostic and therapeutic implications of minimal residual disease at the time of transplantation in acute leukemia. Bone Marrow Transplant. 2013;48(5):630–41.

    Article  CAS  PubMed  Google Scholar 

  51. Campana D, Leung W. Clinical significance of minimal residual disease in patients with acute leukaemia undergoing haematopoietic stem cell transplantation. Br J Haematol. 2013;162(2):147–61.

    Article  PubMed  Google Scholar 

  52. Bar M, Wood BL, Radich JP, Doney KC, Woolfrey AE, Delaney C, Appelbaum FR, and Gooley TA. Impact of minimal residual disease, detected by flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute lymphoblastic leukemia. Leuk Res Treat. 2014; Advance online publication.

  53. Zhou Y, Slack R, Jorgensen JL, Wang SA, Rondon G, de Lima M, et al. The effect of peritransplant minimal residual disease in adults with acute lymphoblastic leukemia undergoing allogeneic hematopoietic stem cell transplantation. Clin Lymphoma Myeloma Leuk. 2014;14(4):319–26.

    Article  PubMed  Google Scholar 

  54. Dhédin N, Huynh A, Maury S, Tabrizi R, Thomas X, Chevallier P, et al. Allogeneic hematopoietic stem cell transplantation (HSCT) in adults with Philadelphia chromosome (Ph)-negative acute lymphoblastic leukemia (ALL): results from the group for research on adult ALL (GRAALL). Blood. 2013;122(21):552. ASH Annual Meeting Abstracts.

    Google Scholar 

  55. Maino E, Sancetta R, Viero P, Imbergamo S, Scattolin AM, Vespignani M, et al. Current and future management of Ph/BCR-ABL positive ALL. Expert Rev Anticancer Ther. 2014;14(6):723–40. Recent and updated review on Ph + ALL.

    Article  CAS  PubMed  Google Scholar 

  56. Ribera JM. Optimal approach to treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: how to best use all the available tools. Leuk Lymphoma. 2013;54(1):21–7.

    Article  PubMed  Google Scholar 

  57. Ravandi F, Jorgensen JL, Thomas DA, O’Brien S, Garris R, Faderl S, et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122(7):1214–21. Prospective evaluation of MRD-related prognostic effects in non-ASCT patients with Ph + ALL.

  58. Pfeifer H, Wassmann B, Bethge W, Dengler J, Bornhauser M, Stadler M, et al. Randomized comparison of prophylactic and minimal residual disease-triggered imatinib after allogeneic stem cell transplantation for BCR-ABL1-positive acute lymphoblastic leukemia. Leukemia. 2013;27:1254–62. Prospective and MRD-oriented randomized trial of post-ASCT TKI in Ph + ALL.

  59. Vora A, Goulden N, Wade R, Mitchell C, Hancock J, Hough R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2013;14(3):199–209. Prospective MRD-oriented chemotherapy trial in MRD(−) patients.

  60. Vora A, Goulden N, Mitchell C, Hancock J, Hough R, Rowntree C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014;15(8):809–18. Prospective MRD-oriented chemotherapy trial in MRD(+) patients.

  61. Kantarjian H, Thomas D, Wayne AS, O’Brien S. Monoclonal antibody-based therapies: a new dawn in the treatment of acute lymphoblastic leukemia. J Clin Oncol. 2012;30(31):3876–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kenderian SS, Ruella M, Gill S, Kalos M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies. Cancer Res. 2014;74(22):6383–9. Recent review on CAR T cells.

  63. Maino E, Scattolin AM, Viero P, Sancetta R, Pascarella A, Vespignani M, et al. Modern immunotherapy of adult B-lineage acute lymphoblastic leukemia with monoclonal antibodies and chimeric antigen receptor modified T cells. Mediterr J Hematol Infect Dis. 2014;7(1):e2015001. Recent comprehensive review on new monoclonal antibodies and CAR T cells.

  64. Topp MS, Gokbuget N, Zugmaier G, Degenhard E, Goebeler ME, Klinger M, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7. Updated results of blinatumomab trial in MRD(+) patients.

    Article  CAS  PubMed  Google Scholar 

  65. Goekbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Havelange V, Buss EC, Faul, Bruggemann M, Ganser A, Stieglmaier J, Wessels H, Haddad V, et al. BLAST: A Confirmatory, Single-Arm, Phase 2 Study of Blinatumomab, a Bispecific T-Cell Engager (BiTE®) Antibody Construct, in Patients with Minimal Residual Disease B-Precursor Acute Lymphoblastic Leukemia (ALL). Blood, ASH Annual Meeting Abstracts. 2014;14(21):379.

  66. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra138.

    Article  Google Scholar 

  67. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. Results of prospective CAR T cells trial including MRD(+) patients.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2014;385(9967):517–28. Results of prospective CAR T cells trial including MRD(+) patients.

    Article  PubMed  Google Scholar 

  69. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367(22):2075–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Renato Bassan reports personal fees from Amgen.

Dr. Orietta Spinelli declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Bassan.

Additional information

This article is part of the Topical Collection on Acute Lymphocytic Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassan, R., Spinelli, O. Minimal Residual Disease Monitoring in Adult ALL to Determine Therapy. Curr Hematol Malig Rep 10, 86–95 (2015). https://doi.org/10.1007/s11899-015-0252-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0252-7

Keywords

Navigation