Skip to main content

Advertisement

Log in

The Use of Molecular Genetics to Refine Prognosis in Acute Myeloid Leukemia

  • Acute Leukemias (R Stone, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The discovery and application of advanced molecular techniques, such as gene and microRNA expression profiling, whole genome and exome sequencing, proteomic analysis and methylation assays, have allowed for the identification of recurrent molecular abnormalities in acute myeloid leukemia (AML) that have revolutionized our understanding of the genetic landscape of the disease. These modalities have emerged as valuable tools that permit a more comprehensive and detailed molecular characterization of AML. Many of these molecular abnormalities have been shown to predict prognosis, particularly within the context of cytogenetically normal AML. This review will discuss the major techniques and platforms that have been used to identify novel recurrent gene mutations in AML and briefly describe how these discoveries have impacted on outcome prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36. doi:10.1182/blood-2002-03-0772.

    CAS  PubMed  Google Scholar 

  2. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood. 1998;92(7):2322–33.

    CAS  PubMed  Google Scholar 

  3. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1909–18. doi:10.1056/NEJMoa074306.

    CAS  PubMed  Google Scholar 

  4. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51. doi:10.1182/blood-2009-03-209262.

    CAS  PubMed  Google Scholar 

  5. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350(16):1605–16. doi:10.1056/NEJMoa031046.

    CAS  PubMed  Google Scholar 

  6. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, van Waalwijk B, van Doorn-Khosrovani S, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617–28. doi:10.1056/NEJMoa040465.

    CAS  PubMed  Google Scholar 

  7. Bullinger L, Dohner K, Kranz R, Stirner C, Frohling S, Scholl C, et al. An FLT3 gene-expression signature predicts clinical outcome in normal karyotype AML. Blood. 2008;111(9):4490–5. doi:10.1182/blood-2007-09-115055.

    CAS  PubMed  Google Scholar 

  8. de Jonge HJ, Woolthuis CM, Vos AZ, Mulder A, van den Berg E, Kluin PM, et al. Gene expression profiling in the leukemic stem cell-enriched CD34+ fraction identifies target genes that predict prognosis in normal karyotype AML. Leukemia. 2011;25(12):1825–33. doi:10.1038/leu.2011.172.

    PubMed  Google Scholar 

  9. Lo MC, Peterson LF, Yan M, Cong X, Jin F, Shia WJ, et al. Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood. 2012;120(7):1473–84. doi:10.1182/blood-2011-12-395335.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S, et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica. 2009;94(1):131–4. doi:10.3324/haematol.13299.

    PubMed Central  PubMed  Google Scholar 

  11. Rapin N, Bagger FO, Jendholm J, Mora-Jensen H, Krogh A, Kohlmann A, et al. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients. Blood. 2014;123(6):894–904. doi:10.1182/blood-2013-02-485771.

    CAS  PubMed  Google Scholar 

  12. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC, et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008;112(10):4193–201. doi:10.1182/blood-2008-02-134411.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Rao AV, Valk PJ, Metzeler KH, Acharya CR, Tuchman SA, Stevenson MM, et al. Age-specific differences in oncogenic pathway dysregulation and anthracycline sensitivity in patients with acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(33):5580–6. doi:10.1200/JCO.2009.22.2547.

    CAS  Google Scholar 

  14. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(15):2529–37. doi:10.1200/JCO.2009.23.4732.

    CAS  Google Scholar 

  15. Marcucci G, Radmacher MD, Mrozek K, Bloomfield CD. MicroRNA expression in acute myeloid leukemia. Curr Hematol Malig Rep. 2009;4(2):83–8. doi:10.1007/s11899-009-0012-7.

    PubMed  Google Scholar 

  16. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111(6):3183–9. doi:10.1182/blood-2007-07-098749.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1919–28. doi:10.1056/NEJMoa074256.

    CAS  PubMed  Google Scholar 

  18. de Leeuw DC, Denkers F, Olthof M, Rutten A, Pouwels W, Schuurhuis GJ, et al. Attenuation of microRNA-126 expression that drives CD34 + 38- stem/progenitor cells in acute myeloid leukemia leads to tumor eradication. Cancer Res. 2014. doi:10.1158/0008-5472.CAN-13-1733.

    PubMed  Google Scholar 

  19. Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu YZ, Mrozek K, et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(17):2086–93. doi:10.1200/JCO.2012.45.6228.

    CAS  Google Scholar 

  20. Diaz-Beya M, Brunet S, Nomdedeu J, Tejero R, Diaz T, Pratcorona M, et al. MicroRNA expression at diagnosis adds relevant prognostic information to molecular categorization in patients with intermediate-risk cytogenetic acute myeloid leukemia. Leukemia. 2013. doi:10.1038/leu.2013.281.

    Google Scholar 

  21. LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res. 2009;37(13):4181–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Tiu RV, Gondek LP, O'Keefe CL, Huh J, Sekeres MA, Elson P, et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(31):5219–26. doi:10.1200/JCO.2009.21.9840.

    Google Scholar 

  23. Yi JH, Huh J, Kim HJ, Kim SH, Kim HJ, Kim YK, et al. Adverse prognostic impact of abnormal lesions detected by genome-wide single nucleotide polymorphism array-based karyotyping analysis in acute myeloid leukemia with normal karyotype. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(35):4702–8. doi:10.1200/JCO.2011.35.5719.

    Google Scholar 

  24. Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M, et al. Functional proteomic profiling of AML predicts response and survival. Blood. 2009;113(1):154–64. doi:10.1182/blood-2007-10-119438.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Hofmann A, Gerrits B, Schmidt A, Bock T, Bausch-Fluck D, Aebersold R, et al. Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells. Blood. 2010;116(13):e26–34. doi:10.1182/blood-2010-02-271270.

    CAS  PubMed  Google Scholar 

  26. Lopez-Pedrera C, Villalba JM, Siendones E, Barbarroja N, Gomez-Diaz C, Rodriguez-Ariza A, et al. Proteomic analysis of acute myeloid leukemia: Identification of potential early biomarkers and therapeutic targets. Proteomics. 2006;6 Suppl 1:S293–9. doi:10.1002/pmic.200500384.

    PubMed  Google Scholar 

  27. Ng PC, Kirkness EF. Whole genome sequencing. Methods Mol Biol. 2010;628:215–26. doi:10.1007/978-1-60327-367-1_12.

    CAS  PubMed  Google Scholar 

  28. Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet. 2014;59(1):5–15. doi:10.1038/jhg.2013.114.

    CAS  PubMed  Google Scholar 

  29. Yang Q, Hua J, Wang L, Xu B, Zhang H, Ye N, et al. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One. 2013;8(6):e66809. doi:10.1371/journal.pone.0066809.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2008;10(1):57–63. doi:10.1038/nrg2484.

    CAS  Google Scholar 

  31. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.

    CAS  PubMed  Google Scholar 

  32. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66–72. doi:10.1038/nature07485. This was the landmark paper that was the first to describe whole genome sequencing of the AML genome.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66. doi:10.1056/NEJMoa0903840. These two papers described for the first time whole genome sequencing of AML genome.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78. doi:10.1016/j.cell.2012.06.023.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. doi:10.1056/NEJMoa1301689. This is a very comprehensive analysis of genomic alterations in AML.

    Google Scholar 

  36. Schoofs T, Muller-Tidow C. DNA methylation as a pathogenic event and as a therapeutic target in AML. Cancer Treat Rev. 2011;37 Suppl 1:S13–8. doi:10.1016/j.ctrv.2011.04.013.

    CAS  PubMed  Google Scholar 

  37. Bullinger L, Ehrich M, Dohner K, Schlenk RF, Dohner H, Nelson MR, et al. Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood. 2010;115(3):636–42. doi:10.1182/blood-2009-03-211003.

    CAS  PubMed  Google Scholar 

  38. Treppendahl MB, Qiu X, Sogaard A, Yang X, Nandrup-Bus C, Hother C, et al. Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood. 2012;119(1):206–16. doi:10.1182/blood-2011-06-362541.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17(1):13–27. doi:10.1016/j.ccr.2009.11.020.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Lugthart S, Figueroa ME, Bindels E, Skrabanek L, Valk PJ, Li Y, et al. Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1. Blood. 2011;117(1):234–41. doi:10.1182/blood-2010-04-281337.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Whitman SP, Hackanson B, Liyanarachchi S, Liu S, Rush LJ, Maharry K, et al. DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood. 2008;112(5):2013–6. doi:10.1182/blood-2008-01-128595.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Lu Y, Chen W, Chen W, Stein A, Weiss LM, Huang Q. C/EBPA gene mutation and C/EBPA promoter hypermethylation in acute myeloid leukemia with normal cytogenetics. Am J Hematol. 2010;85(6):426–30. doi:10.1002/ajh.21706.

    CAS  PubMed  Google Scholar 

  43. Yan P, Frankhouser D, Murphy M, Tam HH, Rodriguez B, Curfman J, et al. Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood. 2012;120(12):2466–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306. doi:10.1016/j.cell.2005.02.013.

    CAS  PubMed  Google Scholar 

  45. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–35.

    CAS  PubMed  Google Scholar 

  46. Reindl C, Bagrintseva K, Vempati S, Schnittger S, Ellwart JW, Wenig K, et al. Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. Blood. 2006;107(9):3700–7. doi:10.1182/blood-2005-06-2596.

    CAS  PubMed  Google Scholar 

  47. Green CL, Koo KK, Hills RK, Burnett AK, Linch DC, Gale RE. Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(16):2739–47. doi:10.1200/jco.2009.26.2501.

    CAS  Google Scholar 

  48. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54–60. doi:10.1182/blood-2004-03-0891.

    CAS  PubMed  Google Scholar 

  49. Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(28):4339–45. doi:10.1200/JCO.2010.28.9678.

    CAS  Google Scholar 

  50. Quintas-Cardama A, Kantarjian H, Andreef M, Faderl S, Wright J, Zhang W, et al. Phase I trial of intermittent administration of sorafenib (BAY 43-9006) for patients (pts) with refractory/relapsed acute myelogenous leukemia (AML). ASCO Meeting Abstracts 2007;25(18_suppl):7018.

    Google Scholar 

  51. Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood. 2004;104(4):1145–50. doi:10.1182/blood-2004-01-0388.

    CAS  PubMed  Google Scholar 

  52. Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood. 2011;117(12):3294–301. doi:10.1182/blood-2010-08-301796.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY, et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(11):1856–62. doi:10.1200/JCO.2009.25.4888.

    CAS  Google Scholar 

  54. Serve H, Krug U, Wagner R, Sauerland MC, Heinecke A, Brunnberg U, et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(25):3110–8. doi:10.1200/JCO.2012.46.4990.

    CAS  Google Scholar 

  55. Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nat Rev Cancer. 2006;6(7):493–505. doi:10.1038/nrc1885.

    CAS  PubMed  Google Scholar 

  56. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254–66. doi:10.1056/NEJMoa041974.

    CAS  PubMed  Google Scholar 

  57. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106(12):3733–9. doi:10.1182/blood-2005-06-2248.

    CAS  PubMed  Google Scholar 

  58. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111(5):2776–84. doi:10.1182/blood-2007-08-109090.

    CAS  PubMed  Google Scholar 

  59. Ranganathan P, Yu X, Na C, Santhanam R, Shacham S, Kauffman M, et al. Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia. Blood. 2012;120(9):1765–73. doi:10.1182/blood-2012-04-423160.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Frohling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(4):624–33. doi:10.1200/JCO.2004.06.060.

    Google Scholar 

  61. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100(8):2717–23. doi:10.1182/blood-2002-03-0990.

    CAS  PubMed  Google Scholar 

  62. Pabst T, Eyholzer M, Fos J, Mueller BU. Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favourable prognosis. Br J Cancer. 2009;100(8):1343–6. doi:10.1038/sj.bjc.6604977.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Dufour A, Schneider F, Metzeler KH, Hoster E, Schneider S, Zellmeier E, et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(4):570–7. doi:10.1200/jco.2008.21.6010.

    CAS  Google Scholar 

  64. Fasan A, Haferlach C, Alpermann T, Jeromin S, Grossmann V, Eder C, et al. The role of different genetic subtypes of CEBPA mutated AML. Leukemia. 2013. doi:10.1038/leu.2013.273.

    Google Scholar 

  65. Fasan A, Eder C, Haferlach C, Grossmann V, Kohlmann A, Dicker F, et al. GATA2 mutations are frequent in intermediate-risk karyotype AML with biallelic CEBPA mutations and are associated with favorable prognosis. Leukemia. 2013;27(2):482–5. doi:10.1038/leu.2012.174.

    CAS  PubMed  Google Scholar 

  66. Grossmann V, Haferlach C, Nadarajah N, Fasan A, Weissmann S, Roller A, et al. CEBPA double-mutated acute myeloid leukaemia harbours concomitant molecular mutations in 76.8% of cases with TET2 and GATA2 alterations impacting prognosis. Br J Haematol. 2013;161(5):649–58. doi:10.1111/bjh.12297.

    CAS  PubMed  Google Scholar 

  67. Taskesen E, Bullinger L, Corbacioglu A, Sanders MA, Erpelinck CA, Wouters BJ, et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood. 2011;117(8):2469–75. doi:10.1182/blood-2010-09-307280.

    CAS  PubMed  Google Scholar 

  68. Schlenk RF, Dohner K, Mack S, Stoppel M, Kiraly F, Gotze K, et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German-Austrian trial AMLHD98A. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(30):4642–8. doi:10.1200/jco.2010.28.6856.

    Google Scholar 

  69. Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(24):3904–11. doi:10.1200/JCO.2006.06.9500.

    CAS  Google Scholar 

  70. Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006;20(6):965–70. doi:10.1038/sj.leu.2404188.

    CAS  PubMed  Google Scholar 

  71. Kim HJ, Ahn HK, Jung CW, Moon JH, Park CH, Lee KO, et al. KIT D816 mutation associates with adverse outcomes in core binding factor acute myeloid leukemia, especially in the subgroup with RUNX1/RUNX1T1 rearrangement. Ann Hematol. 2013;92(2):163–71. doi:10.1007/s00277-012-1580-5.

    CAS  PubMed  Google Scholar 

  72. Schnittger S, Kohl TM, Haferlach T, Kern W, Hiddemann W, Spiekermann K, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood. 2006;107(5):1791–9. doi:10.1182/blood-2005-04-1466.

    CAS  PubMed  Google Scholar 

  73. Advani AS, Tiu R, Saunthararajah Y, Maciejewski J, Copelan EA, Sobecks R, et al. A Phase 1 study of imatinib mesylate in combination with cytarabine and daunorubicin for c-kit positive relapsed acute myeloid leukemia. Leuk Res. 2010;34(12):1622–6. doi:10.1016/j.leukres.2010.03.021.

    CAS  PubMed  Google Scholar 

  74. Brandwein JM, Hedley DW, Chow S, Schimmer AD, Yee KW, Schuh AC, et al. A phase I/II study of imatinib plus reinduction therapy for c-kit-positive relapsed/refractory acute myeloid leukemia: inhibition of Akt activation correlates with complete response. Leukemia. 2011;25(6):945–52. doi:10.1038/leu.2011.34.

    CAS  PubMed  Google Scholar 

  75. Kindler T, Breitenbuecher F, Marx A, Beck J, Hess G, Weinkauf B, et al. Efficacy and safety of imatinib in adult patients with c-kit-positive acute myeloid leukemia. Blood. 2004;103(10):3644–54. doi:10.1182/blood-2003-06-2071.

    CAS  PubMed  Google Scholar 

  76. Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Rock J, Paschka P, et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(10):1364–72. doi:10.1200/JCO.2010.30.7926.

    Google Scholar 

  77. Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T, et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood. 2011;117(8):2348–57. doi:10.1182/blood-2009-11-255976.

    CAS  PubMed  Google Scholar 

  78. Mendler JH, Maharry K, Radmacher MD, Mrozek K, Becker H, Metzeler KH, et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(25):3109–18. doi:10.1200/jco.2011.40.6652.

    Google Scholar 

  79. Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S, et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia. 2005;19(9):1536–42. doi:10.1038/sj.leu.2403870.

    CAS  PubMed  Google Scholar 

  80. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006;107(10):3847–53. doi:10.1182/blood-2005-08-3522.

    CAS  PubMed  Google Scholar 

  81. Kim WI, Matise I, Diers MD, Largaespada DA. RAS oncogene suppression induces apoptosis followed by more differentiated and less myelosuppressive disease upon relapse of acute myeloid leukemia. Blood. 2009;113(5):1086–96. doi:10.1182/blood-2008-01-132316.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Neubauer A, Maharry K, Mrozek K, Thiede C, Marcucci G, Paschka P, et al. Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: a Cancer and Leukemia Group B study. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(28):4603–9. doi:10.1200/JCO.2007.14.0418.

    CAS  Google Scholar 

  83. Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V, et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013;27(1):82–91. doi:10.1038/leu.2012.262.

    CAS  PubMed  Google Scholar 

  84. Chou WC, Huang HH, Hou HA, Chen CY, Tang JL, Yao M, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood. 2010;116(20):4086–94. doi:10.1182/blood-2010-05-283291.

    CAS  PubMed  Google Scholar 

  85. Metzeler KH, Becker H, Maharry K, Radmacher MD, Kohlschmidt J, Mrozek K, et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011;118(26):6920–9. doi:10.1182/blood-2011-08-368225.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Pratcorona M, Abbas S, Sanders MA, Koenders JE, Kavelaars FG, Erpelinck-Verschueren CA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica. 2012;97(3):388–92. doi:10.3324/haematol.2011.051532.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margeson D, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(14):2348–55. doi:10.1200/JCO.2009.27.3730.

    CAS  Google Scholar 

  88. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(22):3636–43. doi:10.1200/JCO.2010.28.3762.

    CAS  Google Scholar 

  89. Green CL, Evans CM, Hills RK, Burnett AK, Linch DC, Gale RE. The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood. 2010;116(15):2779–82. doi:10.1182/blood-2010-02-270926.

    CAS  PubMed  Google Scholar 

  90. Janin M, Mylonas E, Saada V, Micol JB, Renneville A, Quivoron C, et al. Serum 2-hydroxyglutarate production in IDH1- and IDH2-mutated de novo acute myeloid leukemia: a study by the Acute Leukemia French Association Group. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(4):297–305. doi:10.1200/JCO.2013.50.2047.

    CAS  Google Scholar 

  91. Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012;26(5):934–42. doi:10.1038/leu.2011.326.

    CAS  PubMed  Google Scholar 

  92. Gaidzik VI, Paschka P, Spath D, Habdank M, Kohne CH, Germing U, et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(12):1350–7. doi:10.1200/JCO.2011.39.2886.

    CAS  Google Scholar 

  93. Metzeler KH, Maharry K, Radmacher MD, Mrozek K, Margeson D, Becker H, et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(10):1373–81. doi:10.1200/JCO.2010.32.7742.

    Google Scholar 

  94. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi:10.1056/NEJMoa1005143. In this paper the authors describe for the first time DNMT3A mutations in AML.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Gaidzik VI, Schlenk RF, Paschka P, Stolzle A, Spath D, Kuendgen A, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood. 2013;121(23):4769–77. doi:10.1182/blood-2012-10-461624.

    CAS  PubMed  Google Scholar 

  96. Hou HA, Kuo YY, Liu CY, Chou WC, Lee MC, Chen CY, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012;119(2):559–68. doi:10.1182/blood-2011-07-369934.

    CAS  PubMed  Google Scholar 

  97. Haferlach C, Kern W, Schindela S, Kohlmann A, Alpermann T, Schnittger S, et al. Gene expression of BAALC, CDKN1B, ERG, and MN1 adds independent prognostic information to cytogenetics and molecular mutations in adult acute myeloid leukemia. Gene Chromosome Cancer. 2012;51(3):257–65. doi:10.1002/gcc.20950.

    CAS  Google Scholar 

  98. Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia. 2008;22(8):1539–41. doi:10.1038/leu.2008.143.

    CAS  PubMed  Google Scholar 

  99. Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T, et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia. 2000;14(5):796–804.

    CAS  PubMed  Google Scholar 

  100. Groschel S, Lugthart S, Schlenk RF, Valk PJ, Eiwen K, Goudswaard C, et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(12):2101–7. doi:10.1200/jco.2009.26.0646.

    Google Scholar 

  101. Grossmann V, Schnittger S, Kohlmann A, Eder C, Roller A, Dicker F, et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood. 2012;120(15):2963–72. doi:10.1182/blood-2012-03-419622.

    CAS  PubMed  Google Scholar 

  102. Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol Off J Am Soc Clin Oncol. 2013. doi:10.1200/JCO.2013.50.6337. This is a well designed study that integrate epigenetics and genetic information to derive a prognosis signature.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Bhavana Bhatnagar and Dr. Ramiro Garzon each declare no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Garzon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatnagar, B., Garzon, R. The Use of Molecular Genetics to Refine Prognosis in Acute Myeloid Leukemia. Curr Hematol Malig Rep 9, 148–157 (2014). https://doi.org/10.1007/s11899-014-0208-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-014-0208-3

Keywords

Navigation