Skip to main content

Advertisement

Log in

Primary eosinophilic disorders: A concise review

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Primary eosinophilic disorders include hypereosinophilic syndrome (HES); chronic eosinophilic leukemia, not otherwise categorized (CEL-NOC); platelet-derived growth factor receptor (PDGFR)-rearranged myeloid neoplasms; and other myeloid malignancies associated with prominent blood eosinophilia. According to the World Health Organization consensus criteria, the diagnosis of HES requires the absence of clonal cytogenetic or molecular markers of an underlying myeloid or lymphoid neoplasm. CEL-NOC constitutes an HES-like phenotype associated with an abnormal karyotype or excess blasts in blood (> 2%) or bone marrow (> 5%). HES and CEL-NOC are considered distinct from molecularly defined eosinophilic disorders, such as those associated with activating mutations of PDGFR (PDGFRA and PDGFRB) and fibroblast growth factor receptor-1. This is an important distinction because PDGFR-mutated but not other eosinophilic neoplasms are effectively treated with imatinib. Current management in HES includes observation only for asymptomatic patients with no evidence of organ damage, systemic corticosteroid therapy for acute control of symptoms, and interferon-alfa-2a or hydroxyurea as steroid-sparing agents. In patients with HES who are refractory to usual therapy and have life-threatening disease complications, the use of investigational drugs such as alemtuzumab or mepolizumab might be considered, but data on long-term efficacy and safety are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Denburg JA, Telizyn S, Messner H, et al.: Heterogeneity of human peripheral blood eosinophil-type colonies: evidence for a common basophil-eosinophil progenitor. Blood 1985, 66:312–318.

    PubMed  CAS  Google Scholar 

  2. Boyce JA, Friend D, Matsumoto R, et al.: Differentiation in vitro of hybrid eosinophil/basophil granulocytes: autocrine function of an eosinophil developmental intermediate. J Exp Med 1995, 182:49–57.

    Article  PubMed  CAS  Google Scholar 

  3. Iwasaki H, Mizuno S, Mayfield R, et al.: Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med 2005, 201:1891–1897.

    Article  PubMed  CAS  Google Scholar 

  4. McNagny K, Graf T: Making eosinophils through subtle shifts in transcription factor expression. J Exp Med 2002, 195:F43–F47.

    Article  PubMed  CAS  Google Scholar 

  5. Hirasawa R, Shimizu R, Takahashi S, et al.: Essential and instructive roles of GATA factors in eosinophil development. J Exp Med 2002, 195:1379–1386.

    Article  PubMed  CAS  Google Scholar 

  6. Yu C, Cantor AB, Yang H, et al.: Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 2002, 195:1387–1395.

    Article  PubMed  CAS  Google Scholar 

  7. Sanderson CJ: Interleukin-5, eosinophils, and disease. Blood 1992, 79:3101–3109.

    PubMed  CAS  Google Scholar 

  8. Clutterbuck EJ, Hirst EM, Sanderson CJ: Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood 1989, 73:1504–1512.

    PubMed  CAS  Google Scholar 

  9. Collins PD, Marleau S, Griffiths-Johnson DA, et al.: Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 1995, 182:1169–1174.

    Article  PubMed  CAS  Google Scholar 

  10. Dent LA, Strath M, Mellor AL, Sanderson CJ: Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 1990, 172:1425–1431.

    Article  PubMed  CAS  Google Scholar 

  11. Basten A, Beeson PB: Mechanism of eosinophilia. II. Role of the lymphocyte. J Exp Med 1970, 131:1288–1305.

    Article  PubMed  CAS  Google Scholar 

  12. Nielsen K, Fogh L, Andersen S: Eosinophil response to migrating Ascaris suum larvae in normal and congenitally thymus-less mice. Acta Pathol Microbiol Scand [B] Microbiol Immunol 1974, 82:919–920.

    CAS  Google Scholar 

  13. Hsu CK, Hsu SH, Whitney RA Jr, Hansen CT: Immunopathology of schistosomiasis in athymic mice. Nature 1976, 262:397–399.

    Article  PubMed  CAS  Google Scholar 

  14. Romagnani S: Th1 and Th2 in human diseases. Clin Immunol Immunopathol 1996, 80:225–235.

    Article  PubMed  CAS  Google Scholar 

  15. Brigden M, Graydon C: Eosinophilia detected by automated blood cell counting in ambulatory North American outpatients. Incidence and clinical significance. Arch Pathol Lab Med 1997, 121:963–967.

    PubMed  CAS  Google Scholar 

  16. Brito-Babapulle F: The eosinophilias, including the idiopathic hypereosinophilic syndrome. Br J Haematol 2003, 121:203–223.

    Article  PubMed  Google Scholar 

  17. Tefferi A, Patnaik MM, Pardanani A: Eosinophilia: secondary, clonal and idiopathic. Br J Haematol 2006, 133:468–492.

    Article  PubMed  CAS  Google Scholar 

  18. Bain B, Pierre R, Imbert M, et al.: Chronic eosinophilic leukemia and the hypereosinophilic syndrome. In World Health Organization Classification Of Tumors: Tumors of the Hematopoietic and Lymphoid Tissues. Edited by Jaffe ES, Harris NL, Stein H, Vardiman JW. Lyon: International Agency for Research on Cancer Press; 2001:29–31.

    Google Scholar 

  19. Simon HU, Plotz SG, Dummer R, Blaser K: Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med 1999, 341:1112–1120.

    Article  PubMed  CAS  Google Scholar 

  20. Butterfield JH: Diverse clinical outcomes of eosinophilic patients with T-cell receptor gene rearrangements: the emerging diagnostic importance of molecular genetics testing. Am J Hematol 2001, 68:81–86.

    Article  PubMed  CAS  Google Scholar 

  21. Chang HW, Leong KH, Koh DR, Lee SH: Clonality of isolated eosinophils in the hypereosinophilic syndrome. Blood 1999, 93:1651–1657.

    PubMed  CAS  Google Scholar 

  22. Bain BJ: Relationship between idiopathic hypereosinophilic syndrome, eosinophilic leukemia, and systemic mastocytosis. Am J Hematol 2004, 77:82–85.

    Article  PubMed  Google Scholar 

  23. Tefferi A, Vardiman JW: Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2007, In press.

  24. Malcovati L, La Starza R, Merante S, et al.: Hypereosinophilic syndrome and cyclic oscillations in blood cell counts. A clonal disorder of hematopoiesis originating in a pluripotent stem cell. Haematologica 2004, 89:497–499.

    PubMed  Google Scholar 

  25. Brown NJ, Stein RS: Idiopathic hypereosinophilic syndrome progressing to acute myelomonocytic leukemia with chloromas. South Med J 1989, 82:1303–1305.

    PubMed  CAS  Google Scholar 

  26. Owen J, Scott JG: Transition of the hypereosinophilic syndrome to myelomonocytic leukemia. Can Med Assoc J 1979, 121:1489–1491.

    PubMed  CAS  Google Scholar 

  27. Yoo TJ, Orman SV, Patil SR, et al.: Evolution to eosinophilic leukemia with a t(5:11) translocation in a patient with idiopathic hypereosinophilic syndrome. Cancer Genet Cytogenet 1984, 11:389–384.

    Article  PubMed  CAS  Google Scholar 

  28. Needleman SW, Mane SM, Gutheil JC, et al.: Hypereosinophilic syndrome with evolution to myeloproliferative disorder: temporal relationship to loss of Y chromosome and c-N-ras activation. Hematol Pathol 1990, 4:149–155.

    PubMed  CAS  Google Scholar 

  29. Klion AD, Bochner BS, Gleich GJ, et al.: Approaches to the treatment of hypereosinophilic syndromes: a workshop summary report. J Allergy Clin Immunol 2006, 117:1292–1302.

    Article  PubMed  Google Scholar 

  30. Sato Y, Taniguchi R, Yamada T, et al.: Measurement of serum concentrations of cardiac troponin T in patients with hypereosinophilic syndrome: a sensitive non-invasive marker of cardiac disorder. Intern Med 2000, 39:350.

    Article  PubMed  CAS  Google Scholar 

  31. Pitini V, Arrigo C, Azzarello D, et al.: Serum concentration of cardiac troponin T in patients with hypereosinophilic syndrome treated with imatinib is predictive of adverse outcomes. Blood 2003, 102:3456–3457; author reply 3457.

    Article  PubMed  CAS  Google Scholar 

  32. Butterfield JH, Gleich GJ: Interferon-alpha treatment of six patients with the idiopathic hypereosinophilic syndrome. Ann Intern Med 1994, 121:648–653.

    PubMed  CAS  Google Scholar 

  33. Baratta L, Afeltra A, Delfino M, et al.: Favorable response to high-dose interferon-alpha in idiopathic hypereosinophilic syndrome with restrictive cardiomyopathy—case report and literature review. Angiology 2002, 53:465–470.

    Article  PubMed  Google Scholar 

  34. Yoon TY, Ahn GB, Chang SH: Complete remission of hypereosinophilic syndrome after interferon-alpha therapy: report of a case and literature review. J Dermatol 2000, 27:110–115.

    PubMed  CAS  Google Scholar 

  35. Ceretelli S, Capochiani E, Petrini M: Interferon-alpha in the idiopathic hypereosinophilic syndrome: consideration of five cases. Ann Hematol 1998, 77:161–164.

    Article  PubMed  CAS  Google Scholar 

  36. Parrillo JE, Fauci AS, Wolff SM: Therapy of the hypereosinophilic syndrome. Ann Intern Med 1978, 89:167–172.

    PubMed  CAS  Google Scholar 

  37. Pardanani A, Brockman SR, Paternoster SF, et al.: FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood 2004, 104:3038–3045.

    Article  PubMed  CAS  Google Scholar 

  38. Sefcick A, Sowter D, DasGupta E, et al.: Alemtuzumab therapy for refractory idiopathic hypereosinophilic syndrome. Br J Haematol 2004, 124:558–559.

    Article  PubMed  CAS  Google Scholar 

  39. Pitini V, Teti D, Arrigo C, Righi M: Alemtuzumab therapy for refractory idiopathic hypereosinophilic syndrome with abnormal T cells: a case report. Br J Haematol 2004, 127:477.

    Article  PubMed  Google Scholar 

  40. Alinari L, Lapalombella R, Andritsos L, et al.: Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene 2007, 26:3644–3653.

    Article  PubMed  CAS  Google Scholar 

  41. Elsner J, Hochstetter R, Spiekermann K, Kapp A: Surface and mRNA expression of the CD52 antigen by human eosinophils but not by neutrophils. Blood 1996, 88:4684–4693.

    PubMed  CAS  Google Scholar 

  42. Au WY, Leung AY, Tse EW, et al.: High incidence of tuberculosis after alemtuzumab treatment in Hong Kong Chinese patients. Leuk Res 2007, In press.

  43. Peleg AY, Husain S, Kwak EJ, et al.: Opportunistic infections in 547 organ transplant recipients receiving alemtuzumab, a humanized monoclonal CD-52 antibody. Clin Infect Dis 2007, 44:204–212.

    Article  PubMed  CAS  Google Scholar 

  44. Koury MJ, Newman JH, Murray JJ: Reversal of hypereosinophilic syndrome and lymphomatoid papulosis with mepolizumab and imatinib. Am J Med 2003, 115:587–589.

    Article  PubMed  Google Scholar 

  45. Plotz SG, Simon HU, Darsow U, et al.: Use of an antiinterleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N Engl J Med 2003, 349:2334–2339.

    Article  PubMed  Google Scholar 

  46. Klion AD, Law MA, Noel P, et al.: Safety and efficacy of the monoclonal anti-interleukin-5 antibody SCH55700 in the treatment of patients with hypereosinophilic syndrome. Blood 2004, 103:2939–2941.

    Article  PubMed  CAS  Google Scholar 

  47. Kim YJ, Prussin C, Martin B, et al.: Rebound eosinophilia after treatment of hypereosinophilic syndrome and eosinophilic gastroenteritis with monoclonal anti-IL-5 antibody SCH55700. J Allergy Clin Immunol 2004, 114:1449–1455.

    Article  PubMed  CAS  Google Scholar 

  48. Jabbour E, Verstovsek S, Giles F, et al.: 2-Chlorodeoxyadenosine and cytarabine combination therapy for idiopathic hypereosinophilic syndrome. Cancer 2005, 104:541–546.

    Article  PubMed  CAS  Google Scholar 

  49. Cools J, DeAngelo DJ, Gotlib J, et al.: A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003, 348:1201–1214.

    Article  PubMed  CAS  Google Scholar 

  50. Tefferi A, Gilliland DG: Oncogenes in myeloproliferative disorders. Cell Cycle 2007, 6:550–566.

    PubMed  CAS  Google Scholar 

  51. Pardanani A, Ketterling RP, Li CY, et al.: FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res 2006, 30:965–970.

    Article  PubMed  CAS  Google Scholar 

  52. Jovanovic JV, Score J, Waghorn K, et al.: Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 2007, 109:4635–4640.

    Article  PubMed  CAS  Google Scholar 

  53. von Bubnoff N, Sandherr M, Schlimok G, et al.: Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 2005, 19:286–287.

    Article  CAS  Google Scholar 

  54. Ohnishi H, Kandabashi K, Maeda Y, et al.: Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T674I mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol 2006, 134:547–549.

    Article  PubMed  CAS  Google Scholar 

  55. Cools J, Stover EH, Boulton CL, et al.: PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 2003, 3:459–469.

    Article  PubMed  CAS  Google Scholar 

  56. Lierman E, Folens C, Stover EH, et al.: Sorafenib is a potent inhibitor of FIP1L1-PDGFRalpha and the imatinib-resistant FIP1L1-PDGFRalpha T674I mutant. Blood 2006, 108:1374–1376.

    Article  PubMed  CAS  Google Scholar 

  57. Golub TR, Barker GF, Lovett M, Gilliland DG: Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994, 77:307–316.

    Article  PubMed  CAS  Google Scholar 

  58. Levine RL, Wadleigh M, Sternberg DW, et al.: KIAA1509 is a novel PDGFRB fusion partner in imatinib-responsive myeloproliferative disease associated with a t(5;14)(q33;q32). Leukemia 2005, 19:27–30.

    PubMed  CAS  Google Scholar 

  59. Vizmanos JL, Novo FJ, Roman JP, et al.: NIN, a gene encoding a CEP110-like centrosomal protein, is fused to PDGFRB in a patient with a t(5;14)(q33;q24) and an imatinib-responsive myeloproliferative disorder. Cancer Res 2004, 64:2673–2676.

    Article  PubMed  CAS  Google Scholar 

  60. Wilkinson K, Velloso ER, Lopes LF, et al.: Cloning of the t(1;5)(q23;q33) in a myeloproliferative disorder associated with eosinophilia: involvement of PDGFRB and response to imatinib. Blood 2003, 102:4187–4190.

    Article  PubMed  CAS  Google Scholar 

  61. Apperley JF, Gardembas M, Melo JV, et al.: Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 2002, 347:481–487.

    Article  PubMed  CAS  Google Scholar 

  62. Grand FH, Burgstaller S, Kuhr T, et al.: p53-Binding protein 1 is fused to the platelet-derived growth factor receptor beta in a patient with a t(5;15)(q33;q22) and an imatinib-responsive eosinophilic myeloproliferative disorder. Cancer Res 2004, 64:7216–7219.

    Article  PubMed  CAS  Google Scholar 

  63. Walz C, Metzgeroth G, Haferlach C, et al.: Characterization of three new imatinib-responsive fusion genes in chronic myeloproliferative disorders generated by disruption of the platelet-derived growth factor receptor beta gene. Haematologica 2007, 92:163–169.

    Article  PubMed  CAS  Google Scholar 

  64. Macdonald D, Reiter A, Cross NC: The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol 2002, 107:101–107.

    Article  PubMed  CAS  Google Scholar 

  65. Raghavachar A, Fleischer S, Frickhofen N, et al.: T lymphocyte control of human eosinophilic granulopoiesis. Clonal analysis in an idiopathic hypereosinophilic syndrome. J Immunol 1987, 139:3753–3758.

    PubMed  CAS  Google Scholar 

  66. Cogan E, Schandene L, Crusiaux A, et al.: Brief report: clonal proliferation of type 2 helper T cells in a man with the hypereosinophilic syndrome. N Engl J Med 1994, 330:535–538.

    Article  PubMed  CAS  Google Scholar 

  67. Roche-Lestienne C, Lepers S, Soenen-Cornu V, et al.: Molecular characterization of the idiopathic hypereosinophilic syndrome (HES) in 35 French patients with normal conventional cytogenetics. Leukemia 2005, 19:792–798.

    Article  PubMed  CAS  Google Scholar 

  68. Vaklavas C, Tefferi A, Butterfield J, et al.: “Idiopathic” eosinophilia with an occult T-cell clone: prevalence and clinical course. Leuk Res 2007, 31:691–694.

    Article  PubMed  CAS  Google Scholar 

  69. Roufosse F, Cogan E, Goldman M: Recent advances in pathogenesis and management of hypereosinophilic syndromes. Allergy 2004, 59:673–689.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayalew Tefferi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardanani, A., Tefferi, A. Primary eosinophilic disorders: A concise review. Curr Hematol Malig Rep 3, 37–43 (2008). https://doi.org/10.1007/s11899-008-0007-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-008-0007-9

Keywords

Navigation