Skip to main content
Log in

Impact of Sex and Diabetes in Patients with Heart Failure

  • Review
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Heart failure (HF) is a complex clinical syndrome with a growing global health burden. This review explores the intersection of HF, diabetes mellitus, and sex, highlighting epidemiological patterns, pathophysiological mechanisms, and treatment implications.

Recent findings

Despite similar HF prevalence in men and women, diabetes mellitus (DM) appears to exert a more pronounced impact on HF outcomes in women. Pathophysiological differences involve cardiovascular risk factors, severe left ventricular dysfunction, and coronary artery disease, as well as hormonal influences and inflammatory markers. Diabetic cardiomyopathy introduces a sex-specific challenge, with women experiencing common adverse outcomes related to increased fibrosis and myocardial remodeling. Treatment strategies, particularly sodium-glucose cotransporter 2 inhibitors, exhibit cardiovascular benefits, but their response may differ in women.

Summary

The link between HF and DM is bidirectional, with diabetes significantly increasing the risk of HF, and vice versa. Additionally, the impact of diabetes on mortality appears more pronounced in women than in men, leading to a modification of the traditional gender gap observed in HF outcomes. A personalized approach is crucial, and further research to improve outcomes in the complex interplay of HF, diabetes, and sex is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data analyzed during the writing of this review article are derived from publicly available articles, all of which are freely accessible in their respective journals or repositories. No additional data were generated or used in this review. The references for each article are provided within the text for further inquiry.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021;42:3599–726.

    Article  CAS  PubMed  Google Scholar 

  2. Martínez-Sellés M, Doughty RN, Poppe K, Whalley GA, Earle N, Tribouilloy C, et al. Gender and survival in patients with heart failure: interactions with diabetes and aetiology. Results from the MAGGIC individual patient meta-analysis†. European Journal of Heart Failure. 2012;14:473–9.

  3. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2023;44:3627–39.

    Article  CAS  PubMed  Google Scholar 

  4. Masarone D, Pacileo R, Pacileo G. Use of disease-modifying drugs in diabetic patients with heart failure with reduced ejection fraction. Heart Fail Rev. 2023;28:657–65.

    Article  CAS  PubMed  Google Scholar 

  5. Thrainsdottir IS, Aspelund T, Thorgeirsson G, Gudnason V, Hardarson T, Malmberg K, et al. The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care. 2005;28:612–6.

    Article  PubMed  Google Scholar 

  6. Thrainsdottir IS, Aspelund T, Hardarson T, Malmberg K, Sigurdsson G, Thorgeirsson G, et al. Glucose abnormalities and heart failure predict poor prognosis in the population-based Reykjavík Study. Eur J Cardiovasc Prev Rehabil. 2005;12:465–71.

    Article  PubMed  Google Scholar 

  7. Bahrami H, Bluemke DA, Kronmal R, Bertoni AG, Lloyd-Jones DM, Shahar E, et al. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;51:1775–83.

    Article  CAS  PubMed  Google Scholar 

  8. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27:1879–84.

    Article  PubMed  Google Scholar 

  9. van Melle JP, Bot M, de Jonge P, de Boer RA, van Veldhuisen DJ, Whooley MA. Diabetes, glycemic control, and new-onset heart failure in patients with stable coronary artery disease: data from the heart and soul study. Diabetes Care. 2010;33:2084–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Echouffo-Tcheugui JB, Guan J, Retnakaran R, Shah BR. Gestational Diabetes and Incident Heart Failure: A Cohort Study. Diabetes Care. 2021;44:2346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Matsue Y, Suzuki M, Nakamura R, Abe M, Ono M, Yoshida S, et al. Prevalence and prognostic implications of pre-diabetic state in patients with heart failure. Circ J. 2011;75:2833–9.

    Article  PubMed  Google Scholar 

  12. Pavlović A, Polovina M, Ristić A, Seferović JP, Veljić I, Simeunović D, et al. Long-term mortality is increased in patients with undetected prediabetes and type-2 diabetes hospitalized for worsening heart failure and reduced ejection fraction. Eur J Prev Cardiol. 2019;26:72–82.

    Article  PubMed  Google Scholar 

  13. Lehrke M, Marx N. Diabetes Mellitus and Heart Failure. Am J Med. 2017;130:S40-50.

    Article  CAS  PubMed  Google Scholar 

  14. Dauriz M, Mantovani A, Bonapace S, Verlato G, Zoppini G, Bonora E, et al. Prognostic Impact of Diabetes on Long-term Survival Outcomes in Patients With Heart Failure: A Meta-analysis. Diabetes Care. 2017;40:1597–605.

    Article  PubMed  Google Scholar 

  15. •• Méndez-Bailón M, Lorenzo-Villalba N, Jiménez-García R, Hernández-Barrera V, de Miguel-Yanes JM, de Miguel-Diez J, et al. Clinical Characteristics, Management, and In-Hospital Mortality in Patients with Heart Failure with Reduced Ejection Fraction According to Sex and the Presence of Type 2 Diabetes Mellitus. J Clin Med. 2022;11:1030. (This work assesses outcomes among patients with HF with reduced ejection fraction according to the presence of DM and sex. Diabetic women had a 14% higher in-hospital mortality than men with DM.)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghio S, Klersy C, Carluccio E, Scardovi AB, Scelsi L, Falletta C, et al. Pre-existing type 2 diabetes is associated with increased all-cause death independently of echocardiographic predictors of poor prognosis only in ischemic heart disease. Nutr Metab Cardiovasc Dis. 2020;30:2036–40.

    Article  PubMed  Google Scholar 

  17. • Lopez-de-Andres A, Jimenez-Garcia R, Hernández-Barrera V, de Miguel-Yanes JM, Albaladejo-Vicente R, Villanueva-Orbaiz R, et al. Are there sex differences in the effect of type 2 diabetes in the incidence and outcomes of myocardial infarction? A matched-pair analysis using hospital discharge data. Cardiovasc Diabetol. 2021;20:81. (In this study, men and women with DM and myocardial infarction (MI) are compared with non-diabetics. DM increases the risk of MI in both sexes, however, diabetic women have higher mortality risk than men with DM.)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim HL, Kim MA, Park KT, Choi DJ, Han S, Jeon ES, et al. Gender difference in the impact of coexisting diabetes mellitus on long-term clinical outcome in people with heart failure: a report from the Korean Heart Failure Registry. Diabet Med. 2019;36:1312–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ohkuma T, Komorita Y, Peters SAE, Woodward M. Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetologia. 2019;62:1550–60.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Johansson I, Dahlström U, Edner M, Näsman P, Rydén L, Norhammar A. Risk factors, treatment and prognosis in men and women with heart failure with and without diabetes. Heart. 2015;101:1139–48.

    Article  CAS  PubMed  Google Scholar 

  21. Gustafsson I, Brendorp B, Seibaek M, Burchardt H, Hildebrandt P, Køber L, et al. Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure. J Am Coll Cardiol. 2004;43:771–7.

    Article  PubMed  Google Scholar 

  22. Natali A, Vichi S, Landi P, Severi S, L’Abbate A, Ferrannini E. Coronary atherosclerosis in Type II diabetes: angiographic findings and clinical outcome. Diabetologia. 2000;43:632–41.

    Article  CAS  PubMed  Google Scholar 

  23. Stone PH, Muller JE, Hartwell T, York BJ, Rutherford JD, Parker CB, et al. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: Contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. J Am Coll Cardiol. 1989;14:49–57.

    Article  CAS  PubMed  Google Scholar 

  24. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.

    Article  PubMed  Google Scholar 

  25. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012;126:65–75.

    Article  PubMed  Google Scholar 

  26. Mendes LA, Davidoff R, Cupples LA, Ryan TJ, Jacobs AK. Congestive heart failure in patients with coronary artery disease: the gender paradox. Am Heart J. 1997;134:207–12.

    Article  CAS  PubMed  Google Scholar 

  27. Lund LH, Mancini D. Heart failure in women. Med Clin North Am. 2004;88:1321–45.

    Article  PubMed  Google Scholar 

  28. Lam CSP, Arnott C, Beale AL, Chandramouli C, Hilfiker-Kleiner D, Kaye DM, et al. Sex differences in heart failure. Eur Heart J. 2019;40:3859–3868c.

    Article  PubMed  Google Scholar 

  29. Crespo Leiro MG, Paniagua Martín MJ. Heart Failure. Are Women Different? Rev Esp Cardiol. 2006;59:725–35.

  30. Jessup M, Piña IL. Is it important to examine gender differences in the epidemiology and outcome of severe heart failure? J Thorac Cardiovasc Surg. 2004;127:1247–52.

    Article  PubMed  Google Scholar 

  31. Nikolajević Starčević J, Janić M, Šabovič M. Molecular Mechanisms Responsible for Diastolic Dysfunction in Diabetes Mellitus Patients. Int J Mol Sci. 2019;20:1197.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Haas AV, Rosner BA, Kwong RY, Rao AD, Garg R, Di Carli MF, et al. Sex Differences in Coronary Microvascular Function in Individuals With Type 2 Diabetes. Diabetes. 2019;68:631–6.

    Article  CAS  PubMed  Google Scholar 

  33. Mahmoodzadeh S, Leber J, Zhang X, Jaisser F, Messaoudi S, Morano I, et al. Cardiomyocyte-specific Estrogen Receptor Alpha Increases Angiogenesis, Lymphangiogenesis and Reduces Fibrosis in the Female Mouse Heart Post-Myocardial Infarction. J Cell Sci Ther. 2014;5:153.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malkin CJ, Pugh PJ, West JN, van Beek EJR, Jones TH, Channer KS. Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J. 2006;27:57–64.

    Article  CAS  PubMed  Google Scholar 

  35. Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37:1199–208.

    Article  CAS  PubMed  Google Scholar 

  36. Cavasin MA, Sankey SS, Yu AL, Menon S, Yang XP. Estrogen and testosterone have opposing effects on chronic cardiac remodeling and function in mice with myocardial infarction. Am J Physiol Heart Circ Physiol. 2003;284:1560–9.

    Article  Google Scholar 

  37. Oelkers WK. Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure. Steroids. 1996;61:166–71.

    Article  CAS  PubMed  Google Scholar 

  38. Stamataki KE, Spina J, Rangou DB, Chlouverakis CS, Piaditis GP. Ovarian function in women with non-insulin dependent diabetes mellitus. Clin Endocrinol (Oxf). 1996;45:615–21.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida Y, Chen Z, Baudier RL, Krousel-Wood M, Anderson AH, Fonseca VA, et al. Early Menopause and Cardiovascular Disease Risk in Women With or Without Type 2 Diabetes: A Pooled Analysis of 9,374 Postmenopausal Women. Diabetes Care. 2021;44:2564–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meyer S, van der Meer P, van Deursen VM, Jaarsma T, van Veldhuisen DJ, van der Wal MHL, et al. Neurohormonal and clinical sex differences in heart failure. Eur Heart J. 2013;34:2538–47.

    Article  CAS  PubMed  Google Scholar 

  41. Saltevo J, Kautiainen H, Vanhala M. Gender differences in adiponectin and low-grade inflammation among individuals with normal glucose tolerance, prediabetes, and type 2 diabetes. Gend Med. 2009;6:463–70.

    Article  PubMed  Google Scholar 

  42. Dewan P, Rørth R, Jhund PS, Shen L, Raparelli V, Petrie MC, et al. Differential Impact of Heart Failure With Reduced Ejection Fraction on Men and Women. J Am Coll Cardiol. 2019;73:29–40.

    Article  PubMed  Google Scholar 

  43. Chandra A, Vaduganathan M, Lewis EF, Claggett BL, Rizkala AR, Wang W, et al. Health-Related Quality of Life in Heart Failure With Preserved Ejection Fraction: The PARAGON-HF Trial. JACC Heart Fail. 2019;7:862–74.

    Article  PubMed  Google Scholar 

  44. Passino C, Aimo A, Emdin M, Vergaro G. Quality of life and outcome in heart failure with preserved ejection fraction: When sex matters. Int J Cardiol. 2018;267:141–2.

    Article  PubMed  Google Scholar 

  45. Lam CSP, Piña IL, Zheng Y, Bonderman D, Pouleur AC, Saldarriaga C, et al. Age, Sex, and Outcomes in Heart Failure With Reduced EF: Insights From the VICTORIA Trial. JACC: Heart Failure. 2023;11:1246–57.

  46. Pabon M, Cunningham J, Claggett B, Felker GM, McMurray JJV, Metra M, et al. Sex Differences in Heart Failure With Reduced Ejection Fraction in the GALACTIC-HF Trial. JACC: Heart Failure. 2023;11:1729–38.

  47. Dale AC, Nilsen TI, Vatten L, Midthjell K, Wiseth R. Diabetes mellitus and risk of fatal ischaemic heart disease by gender: 18 years follow-up of 74 914 individuals in the HUNT 1 Study. Eur Heart J. 2007;28:2924–9.

    Article  PubMed  Google Scholar 

  48. Lundbaek K. Is there a diabetic cardiopathy? Schettler G (ed) Pathogenetische faktoren des myokardinfarkts”. 1969;Schattauer, Stuttgart:63–71.

  49. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30:595–602.

    Article  CAS  PubMed  Google Scholar 

  50. • Lorenzo-Almorós A, Cepeda-Rodrigo JM, Lorenzo Ó. Diabetic cardiomyopathy. Revista Clínica Española (English Edition). 2022;222:100–11. (This comprehensive review consolidates current evidence on diabetic cardiomyopathy, with a specific emphasis on delineating the various phenotypes associated with this condition.)

    Article  Google Scholar 

  51. Bertoni AG, Tsai A, Kasper EK, Brancati FL. Diabetes and idiopathic cardiomyopathy: a nationwide case-control study. Diabetes Care. 2003;26:2791–5.

    Article  PubMed  Google Scholar 

  52. Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J. 2015;36:1718–27.

    Article  PubMed  Google Scholar 

  53. Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy–fact or fiction? Herz. 2011;36:102–15.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao X, Liu S, Wang X, Chen Y, Pang P, Yang Q, et al. Diabetic cardiomyopathy: Clinical phenotype and practice. Front Endocrinol (Lausanne). 2022;13:1032268.

    Article  PubMed  Google Scholar 

  55. Naidoo Datshana P. First in a series on diabetes and the heart: The impact of diabetes on the heart, a broad perspective. 2016. https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-14/First-in-a-series-on-diabetes-and-the-heart-the-impact-of-diabetes-on-the-heart-a-broad-perspective. Accessed 6 Jan 2024.

  56. Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ Res. 2018;122:624–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kiencke S, Handschin R, von Dahlen R, Muser J, Brunner-LaRocca HP, Schumann J, et al. Pre-clinical diabetic cardiomyopathy: prevalence, screening, and outcome. Eur J Heart Fail. 2010;12:951–7.

    Article  PubMed  Google Scholar 

  58. Toedebusch R, Belenchia A, Pulakat L. Diabetic Cardiomyopathy: Impact of Biological Sex on Disease Development and Molecular Signatures. Front Physiol. 2018;9:453.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fourny N, Beauloye C, Bernard M, Horman S, Desrois M, Bertrand L. Sex Differences of the Diabetic Heart. Front Physiol. 2021;12:661297.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pan KL, Hsu YC, Chang ST, Chung CM, Lin CL. The Role of Cardiac Fibrosis in Diabetic Cardiomyopathy: From Pathophysiology to Clinical Diagnostic Tools. Int J Mol Sci. 2023;24:8604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Z, Wang Z, Yin Z, Zhang Y, Xue X, Han J, et al. Gender differences in fibrosis remodeling in patients with long-standing persistent atrial fibrillation. Oncotarget. 2017;8:53714–29.

    Article  PubMed  PubMed Central  Google Scholar 

  62. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381:1995–2008.

    Article  CAS  PubMed  Google Scholar 

  63. Packer M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ, et al. Empagliflozin in Patients With Heart Failure, Reduced Ejection Fraction, and Volume Overload: EMPEROR-Reduced Trial. J Am Coll Cardiol. 2021;77:1381–92.

    Article  CAS  PubMed  Google Scholar 

  64. Singh AK, Singh R. Gender difference in cardiovascular outcomes with SGLT-2 inhibitors and GLP-1 receptor agonist in type 2 diabetes: A systematic review and meta-analysis of cardio-vascular outcome trials. Diabetes Metab Syndr. 2020;14:181–7.

    Article  PubMed  Google Scholar 

  65. •• Rivera FB, Tang VAS, De Luna DV, Lerma EV, Vijayaraghavan K, Kazory A, et al. Sex differences in cardiovascular outcomes of SGLT-2 inhibitors in heart failure randomized controlled trials: A systematic review and meta-analysis. Am Heart J Plus. 2023;26:100261. (This metanalysis of 5 randomized controlled trials showed primary composite outcomes of ISGLT-2 to be significantly lower in women than men with DM and HF.)

    PubMed  PubMed Central  Google Scholar 

  66. Alonso C, Díaz Molina B, Tamargo J, Sambola A. Aspectos diferenciales en la insuficiencia cardiaca en la mujer. REC: CardioClinics. 2019;54:253–61.

  67. Blumer V, Greene SJ, Wu A, Butler J, Ezekowitz JA, Lindenfeld J, et al. Sex Differences in Clinical Course and Patient-Reported Outcomes Among Patients Hospitalized for Heart Failure. JACC Heart Fail. 2021;9:336–45.

    Article  PubMed  Google Scholar 

  68. Sotomi Y, Hikoso S, Nakatani D, Mizuno H, Okada K, Dohi T, et al. Sex Differences in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc. 2021;10:e018574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parissis JT, Mantziari L, Kaldoglou N, Ikonomidis I, Nikolaou M, Mebazaa A, et al. Gender-related differences in patients with acute heart failure: management and predictors of in-hospital mortality. Int J Cardiol. 2013;168:185–9.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MMS had the idea for the article. SAZ performed the literature research and data analysis. SAZ wrote the first draft. All authors performed the revision of the article.

Corresponding author

Correspondence to Manuel Martínez-Sellés.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Zaballos, S., Martínez-Sellés, M. Impact of Sex and Diabetes in Patients with Heart Failure. Curr Heart Fail Rep (2024). https://doi.org/10.1007/s11897-024-00666-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11897-024-00666-w

Keywords

Navigation