Skip to main content
Log in

Right-Sided Mechanical Circulatory Support – A Hemodynamic Perspective

  • Focus on the Right Heart (S. Rosenkranz, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Right ventricular (RV) failure is increasingly recognized as a major cause of morbidity and mortality. When RV failure is refractory to medical therapy, escalation to right-sided mechanical circulatory support (MCS) should be considered. In this review, we begin by recapitulating the hemodynamics of RV failure, then we delve into current and future right-sided MCS devices and describe their hemodynamic profiles.

Recent Findings

The field of temporary right-sided MCS continues to expand, with evolving strategies and new devices actively under development. All right-sided MCS devices bypass the RV, with each bypass configuration conferring a unique hemodynamic profile. Devices that aspirate blood directly from the RV, as opposed to the RA or the IVC, have more favorable hemodynamics and more effective RV unloading. There has been a growing interest in single-access MCS devices which do not restrict patient mobility. Additionally, a first-of-its-kind percutaneous, pulsatile, right-sided MCS device (PERKAT RV) is currently undergoing investigation in humans.

Summary

Prompt recognition of refractory RV failure and deployment of right-sided MCS can improve outcomes. The field of right-sided MCS is rapidly evolving, with ongoing efforts dedicated towards developing novel temporary devices that are single access, allow for patient mobility, and directly unload the RV, as well as more durable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Reddy S, Bernstein D. Molecular mechanisms of right ventricular failure. Circulation. 2015;132(18):1734–42. https://doi.org/10.1161/CIRCULATIONAHA.114.012975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31. https://doi.org/10.1161/CIRCULATIONAHA.107.653584.

    Article  PubMed  Google Scholar 

  3. Mehta SR, Eikelboom JW, Natarajan MK, Diaz R, Yi C, Gibbons RJ, Yusuf S. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J Am Coll Cardiol. 2001;37(1):37–43. https://doi.org/10.1016/s0735-1097(00)01089-5.

    Article  CAS  PubMed  Google Scholar 

  4. Zehender M, Kasper W, Kauder E, Schönthaler M, Geibel A, Olschewski M, Just H. Right ventricular infarction as an independent predictor of prognosis after acute inferior myocardial infarction. N Engl J Med. 1993;328(14):981–8. https://doi.org/10.1056/NEJM199304083281401.

    Article  CAS  PubMed  Google Scholar 

  5. Jacobs AK, Leopold JA, Bates E, Mendes LA, Sleeper LA, White H, Davidoff R, Boland J, Modur S, Forman R, Hochman JS. Cardiogenic shock caused by right ventricular infarction: a report from the SHOCK registry. J Am Coll Cardiol. 2003;41(8):1273–9. https://doi.org/10.1016/s0735-1097(03)00120-7.

    Article  PubMed  Google Scholar 

  6. Haddad F, Peterson T, Fuh E, Kudelko KT, de Jesus PV, Skhiri M, Vagelos R, Schnittger I, Denault AY, Rosenthal DN, Doyle RL, Zamanian RT. Characteristics and outcome after hospitalization for acute right heart failure in patients with pulmonary arterial hypertension. Circ Heart Fail. 2011;4(6):692–9. https://doi.org/10.1161/CIRCHEARTFAILURE.110.949933.

    Article  PubMed  Google Scholar 

  7. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, Arbustini E, Recusani F, Tavazzi L. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8. https://doi.org/10.1016/s0735-1097(00)01102-5.

    Article  CAS  PubMed  Google Scholar 

  8. Yeh DD, Schmidt ACS, Eisman AS, Serfas JD, Naqvi M, Youniss MA, Ryfa AD, Khan AA, Safi L, Tabtabai SR, Bhatt AB, Lewis GD. Impaired right ventricular reserve predicts adverse cardiac outcomes in adults with congenital right heart disease. Heart. 2018;104(24):2044–50. https://doi.org/10.1136/HEARTJNL-2017-312572.

    Article  CAS  Google Scholar 

  9. Dietz MF, Prihadi EA, van der Bijl P, Ajmone Marsan N, Delgado V, Bax JJ. Prognostic implications of staging right heart failure in patients with significant secondary tricuspid regurgitation. JACC Heart Fail. 2020;8(8):627–36. https://doi.org/10.1016/j.jchf.2020.02.008.

    Article  PubMed  Google Scholar 

  10. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, Massey T, Milano CA, Moazami N, Sundareswaran KS, Farrar DJ. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24. https://doi.org/10.1016/j.jtcvs.2009.11.020.

    Article  PubMed  Google Scholar 

  11. Sato R, Dugar S, Cheungpasitporn W, Schleicher M, Collier P, Vallabhajosyula S, Duggal A. The impact of right ventricular injury on the mortality in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care. 2021;25(1):172. https://doi.org/10.1186/s13054-021-03591-9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Konstam MA, Kiernan MS, Bernstein D, Bozkurt B, Jacob M, Kapur NK, Kociol RD, Lewis EF, Mehra MR, Pagani FD, Raval AN, Ward C. Evaluation and management of right-sided heart failure: a Scientific Statement From the American Heart Association. Circulation. 2018;137(20):e578–622. https://doi.org/10.1161/CIR.0000000000000560.

    Article  PubMed  Google Scholar 

  13. Anderson M, Morris DL, Tang D, Batsides G, Kirtane A, Hanson I, Meraj P, Kapur NK, O’Neill W. Outcomes of patients with right ventricular failure requiring short-term hemodynamic support with the Impella RP device. J Hear lung Transplant Off Publ Int Soc Hear Transplant. 2018;37(12):1448–58. https://doi.org/10.1016/j.healun.2018.08.001.

    Article  Google Scholar 

  14. Bhama JK, Bansal U, Winger DG, Teuteberg JJ, Bermudez C, Kormos RL, Bansal A. Clinical experience with temporary right ventricular mechanical circulatory support. J Thorac Cardiovasc Surg. 2018;156(5):1885–91. https://doi.org/10.1016/j.jtcvs.2018.04.094.

    Article  PubMed  Google Scholar 

  15. Elder M, Blank N, Kaki A, Alraies MC, Grines CL, Kajy M, Hasan R, Mohamad T, Schreiber T. Mechanical circulatory support for acute right ventricular failure in the setting of pulmonary embolism. J Interv Cardiol. 2018;31(4):518–24. https://doi.org/10.1111/joic.12503.

    Article  PubMed  Google Scholar 

  16. Machuca TN, de Perrot M. Mechanical support for the failing right ventricle in patients with precapillary pulmonary hypertension. Circulation. 2015;132(6):526–36. https://doi.org/10.1161/CIRCULATIONAHA.114.012593.

    Article  PubMed  Google Scholar 

  17. Sayer GT, Semigran MJ. Right ventricular performance in chronic congestive heart failure. Cardiol Clin. 2012;30(2):271–82. https://doi.org/10.1016/j.ccl.2012.03.011.

    Article  PubMed  Google Scholar 

  18. Tedford RJ. Determinants of right ventricular afterload (2013 Grover Conference series). Pulm Circ. 2014;4(2):211–9. https://doi.org/10.1086/676020.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Newman JH, Brittain EL, Robbins IM, Hemnes AR. Effect of acute arteriolar vasodilation on capacitance and resistance in pulmonary arterial hypertension. Chest. 2015;147(4):1080–5. https://doi.org/10.1378/chest.14-1461.

    Article  PubMed  Google Scholar 

  20. Brimioulle S, Wauthy P, Ewalenko P, Rondelet B, Vermeulen F, Kerbaul F, Naeije R. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Circ Physiol. 2003;284(5):H1625–30. https://doi.org/10.1152/ajpheart.01023.2002.

    Article  CAS  Google Scholar 

  21. Brener MI, Masoumi A, Ng VG, Tello K, Bastos MB, Cornwell WK 3rd, Hsu S, Tedford RJ, Lurz P, Rommel K-P, Kresoja K-P, Nagueh SF, Kanwar MK, Kapur NK, Hiremath G, Sarraf M, Van Den Enden AJM, Van Mieghem NM, Heerdt PM, Hahn RT, Kodali SK, Sayer GT, Uriel N, Burkhoff D. Invasive right ventricular pressure-volume analysis: basic principles, clinical applications, and practical recommendations. Circ Heart Fail. 2022;15(1):e009101. https://doi.org/10.1161/CIRCHEARTFAILURE.121.009101.

    Article  PubMed  Google Scholar 

  22. Redington AN, Gray HH, Hodson ME, Rigby ML, Oldershaw PJ. Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. Br Heart J. 1988;59(1):23–30. https://doi.org/10.1136/hrt.59.1.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cornwell WK, Tran T, Cerbin L, Coe G, Muralidhar A, Hunter K, Altman N, Ambardekar AV, Tompkins C, Zipse M, Schulte M, O’Gean K, Ostertag M, Hoffman J, Pal JD, Lawley JS, Levine BD, Wolfel E, Kohrt WM, Buttrick P. New insights into resting and exertional right ventricular performance in the healthy heart through real-time pressure-volume analysis. J Physiol. 2020;598(13):2575–87. https://doi.org/10.1113/JP279759.

    Article  CAS  PubMed  Google Scholar 

  24. Sanz J, Sánchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(12):1463–82. https://doi.org/10.1016/j.jacc.2018.12.076.

    Article  PubMed  Google Scholar 

  25. Borlaug BA, Reddy YNV. The role of the pericardium in heart failure: implications for pathophysiology and treatment. JACC Hear Fail. 2019;7(7):574–85. https://doi.org/10.1016/j.jchf.2019.03.021.

    Article  Google Scholar 

  26. Havlenova T, Skaroupkova P, Miklovic M, Behounek M, Chmel M, Jarkovska D, Sviglerova J, Stengl M, Kolar M, Novotny J, Benes J, Cervenka L, Petrak J, Melenovsky V. Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci Rep. 2021;11(1):17136. https://doi.org/10.1038/s41598-021-96618-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takaoka H, Takeuchi M, Odake M, Yokoyama M. Assessment of myocardial oxygen consumption (Vo2) and systolic pressure-volume area (PVA) in human hearts. Eur Heart J. 1992;13(Suppl E):85–90. https://doi.org/10.1093/eurheartj/13.suppl_e.85.

    Article  PubMed  Google Scholar 

  28. Naeije R, Badagliacca R. The overloaded right heart and ventricular interdependence. Cardiovasc Res. 2017;113(12):1474–85. https://doi.org/10.1093/cvr/cvx160.

    Article  CAS  PubMed  Google Scholar 

  29. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135(3):794–804. https://doi.org/10.1378/chest.08-0492.

    Article  CAS  PubMed  Google Scholar 

  30. Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(25, Supplement):D22–33. https://doi.org/10.1016/j.jacc.2013.10.027.

    Article  PubMed  Google Scholar 

  31. Ryan JJ, Tedford RJ. Diagnosing and treating the failing right heart. Curr Opin Cardiol. 2015;30(3):292–300. https://doi.org/10.1097/HCO.0000000000000164.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aslam MI, Jani V, Lin BL, Dunkerly-Eyring B, Livingston CE, Ramachandran A, Ranek MJ, Bedi KC, Margulies KB, Kass DA, Hsu S. Pulmonary artery pulsatility index predicts right ventricular myofilament dysfunction in advanced human heart failure. Eur J Heart Fail. 2021;23(2):339–41. https://doi.org/10.1002/ejhf.2084.

    Article  CAS  PubMed  Google Scholar 

  33. Saxena A, Garan AR, Kapur NK, O’Neill WW, Lindenfeld J, Pinney SP, Uriel N, Burkhoff D, Kern M. Value of hemodynamic monitoring in patients with cardiogenic shock undergoing mechanical circulatory support. Circulation. 2020;141(14):1184–97. https://doi.org/10.1161/CIRCULATIONAHA.119.043080.

    Article  PubMed  Google Scholar 

  34. Lala A, Guo Y, Xu J, Esposito M, Morine K, Karas R, Katz SD, Hochman JS, Burkhoff D, Kapur NK. Right ventricular dysfunction in acute myocardial infarction complicated by cardiogenic shock: a hemodynamic analysis of the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) Trial and Registry. J Card Fail. 2018;24(3):148–56. https://doi.org/10.1016/j.cardfail.2017.10.009.

    Article  PubMed  Google Scholar 

  35. Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, Lee S, Horvath DJ, Starling RC. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Hear lung Transplant Off Publ Int Soc Hear Transplant. 2013;32(1):1–11. https://doi.org/10.1016/j.healun.2012.10.001.

    Article  Google Scholar 

  36. Meyns B, Ector J, Rega F, Droogne W, Vanhaecke J, Vanhemelrijck J, Griffith B, Dowling R, Zucker M, Burkhoff D. First human use of partial left ventricular heart support with the Circulite synergy micro-pump as a bridge to cardiac transplantation. Eur Heart J. 2008;29(20):2582. https://doi.org/10.1093/eurheartj/ehn202.

    Article  PubMed  Google Scholar 

  37. Shehab S, Macdonald PS, Keogh AM, Kotlyar E, Jabbour A, Robson D, Newton PJ, Rao S, Wang L, Allida S, Connellan M, Granger E, Dhital K, Spratt P, Jansz PC, Hayward CS. Long-term biventricular HeartWare ventricular assist device support—case series of right atrial and right ventricular implantation outcomes. J Hear lung Transplant Off Publ Int Soc Hear Transplant. 2016;35(4):466–73. https://doi.org/10.1016/j.healun.2015.12.001.

    Article  Google Scholar 

  38. Bernhardt AM, De By TMMH, Reichenspurner H, Deuse T. Isolated permanent right ventricular assist device implantation with the HeartWare continuous-flow ventricular assist device: first results from the European Registry for Patients with Mechanical Circulatory Support. Eur J cardio-thoracic Surg Off J Eur Assoc Cardio-thoracic Surg. 2015;48(1):158–62. https://doi.org/10.1093/ejcts/ezu406.

    Article  Google Scholar 

  39. Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, Kapur NK, Bansal A, Garcia J, Baker JN, Silvestry S, Holman WL, Douglas PS, O’Neill W. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Hear lung Transplant Off Publ Int Soc Hear Transplant. 2015;34(12):1549–60. https://doi.org/10.1016/j.healun.2015.08.018.

    Article  Google Scholar 

  40. Cheung AW, White CW, Davis MK, Freed DH. Short-term mechanical circulatory support for recovery from acute right ventricular failure: clinical outcomes. J Hear Lung Transplant. 2014;33(8):794–9. https://doi.org/10.1016/j.healun.2014.02.028.

    Article  Google Scholar 

  41. Randhawa VK, Hoffman K, Bock A, Bhat P, Young L, Rossi J, Campbell J, Bott-Silverman C, Soltesz EG, Tong MZY, Unai S, Nair R, Estep JD, Perez AL. Impella RP as a bridge to cardiac transplant for refractory late right ventricular failure in setting of left ventricular assist device. ESC Hear Fail. 2020;7(4):1972–5. https://doi.org/10.1002/ehf2.12685.

    Article  Google Scholar 

  42. Taha A, Mohammedzein A, Kimbugwe J, Carthel K, Brabham D. Impella RP: a promising intervention in acute right ventricular failure caused by massive pulmonary embolism. JACC Case reports. 2019;1(4):622–5. https://doi.org/10.1016/j.jaccas.2019.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jagadeesan VS, Davidson LJ, Churyla A, Benzuly KH. Catheter-based embolectomy prior to right ventricular mechanical circulatory support placement after heart transplantation. ESC Hear Fail. 2020;7(5):3215–8. https://doi.org/10.1002/ehf2.12948.

    Article  Google Scholar 

  44. Kiernan MS, Krishnamurthy B, Kapur NK. Percutaneous right ventricular assist via the internal jugular vein in cardiogenic shock complicating an acute inferior myocardial infarction. J Invasive Cardiol. 2010;22(2):E23–6.

    PubMed  Google Scholar 

  45. Aggarwal V, Einhorn BN, Cohen HA. Current status of percutaneous right ventricular assist devices: first-in-man use of a novel dual lumen cannula. Catheter Cardiovasc Interv Off J Soc Card Angiogr Interv. 2016;88(3):390–6. https://doi.org/10.1002/ccd.26348.

    Article  Google Scholar 

  46. Bermudez CA, Lagazzi L, Crespo MM. Prolonged support using a percutaneous OxyRVAD in a patient with end-stage lung disease, pulmonary hypertension, and right cardiac failure. ASAIO J. 2016;62(4):e37-40. https://doi.org/10.1097/MAT.0000000000000343.

    Article  PubMed  Google Scholar 

  47. Kretzschmar D, Schulze PC, Ferrari MW. Concept, evaluation, and future perspectives of PERKAT® RV—a novel right ventricular assist device. J Cardiovasc Transl Res. 2019;12(2):150–4. https://doi.org/10.1007/s12265-018-9834-9.

    Article  PubMed  Google Scholar 

  48. • Ferrari MW, Schulze PC, Kretzschmar D. Acute right heart failure: future perspective with the PERKAT RV pulsatile right ventricular support device. Ther Adv Cardiovasc Dis. 2020;14:1753944719895902. https://doi.org/10.1177/1753944719895902. (This work highlights a first-of-its-kind percutaneous, pulsatile, right-sided MCS device.)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Saito T, Miyagawa S, Toda K, Yoshikawa Y, Fukushima S, Saito S, Yoshioka D, Sakata Y, Daimon T, Sawa Y. Effect of continuous-flow mechanical circulatory support on microvasculature—remodeling in the failing heart. Artif Organs. 2019;43(4):350–62. https://doi.org/10.1111/aor.13348.

    Article  CAS  PubMed  Google Scholar 

  50. John R, Long JW, Massey HT, Griffith BP, Sun BC, Tector AJ, Frazier OH, Joyce LD. Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support. J Thorac Cardiovasc Surg. 2011;141(4):932–9. https://doi.org/10.1016/j.jtcvs.2010.03.046.

    Article  PubMed  Google Scholar 

  51. Bhama JK, Kormos RL, Toyoda Y, Teuteberg JJ, McCurry KR, Siegenthaler MP. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Hear lung Transplant Off Publ Int Soc Hear Transplant. 2009;28(9):971–6. https://doi.org/10.1016/j.healun.2009.04.015.

    Article  Google Scholar 

  52. Karimov JH, Sunagawa G, Horvath D, Fukamachi K, Starling RC, Moazami N. Limitations to chronic right ventricular assist device support. Ann Thorac Surg. 2016;102(2):651–8. https://doi.org/10.1016/j.athoracsur.2016.02.006.

    Article  PubMed  Google Scholar 

  53. Marasco SF, Stornebrink RK, Murphy DA, Bergin PJ, Lo C, McGiffin DC. Long-term right ventricular support with a centrifugal ventricular assist device placed in the right atrium. J Card Surg. 2014;29(6):839–42. https://doi.org/10.1111/jocs.12440.

    Article  PubMed  Google Scholar 

  54. • Singh-Kucukarslan G, Raad M, Al-Darzi W, Cowger J, Brice L, Basir MB, O’Neill WW, Alaswaad K, Eng MH. Hemodynamic effects of left-atrial venous arterial extra-corporeal membrane oxygenation (LAVA-ECMO). ASAIO J. Published online December 2021. https://doi.org/10.1097/MAT.0000000000001628. (This work highlights left atrial VA-ECMO (LAVA-ECMO), a unique ECMO configuration which can unload both the right and left heart without need for a second point of arterial access.)

  55. Kotani Y, Chetan D, Rodrigues W, Sivarajan VB, Gruenwald C, Guerguerian A-M, Van Arsdell GS, Honjo O. Left atrial decompression during venoarterial extracorporeal membrane oxygenation for left ventricular failure in children: current strategy and clinical outcomes. Artif Organs. 2013;37(1):29–36. https://doi.org/10.1111/j.1525-1594.2012.01534.x.

    Article  PubMed  Google Scholar 

  56. Prihadi EA, Delgado V, Leon MB, Enriquez-Sarano M, Topilsky Y, Bax JJ. Morphologic types of tricuspid regurgitation: characteristics and prognostic implications. JACC Cardiovasc Imaging. 2019;12(3):491–9. https://doi.org/10.1016/j.jcmg.2018.09.027.

    Article  PubMed  Google Scholar 

  57. Salna M, Garan AR, Kirtane AJ, Karmpaliotis D, Green P, Takayama H, Sanchez J, Kurlansky P, Yuzefpolskaya M, Colombo PC, Naka Y, Takeda K. Novel percutaneous dual-lumen cannula-based right ventricular assist device provides effective support for refractory right ventricular failure after left ventricular assist device implantation. Interact Cardiovasc Thorac Surg. 2020;30(4):499–506. https://doi.org/10.1093/icvts/ivz322.

    Article  PubMed  Google Scholar 

  58. Nagy CD, Jumean MF, Pham DT, Kiernan MS, Denofrio D, Kapur NK. Percutaneous circulatory support for biventricular failure. Circ Cardiovasc Interv. 2013;6(2):e12–4. https://doi.org/10.1161/CIRCINTERVENTIONS.112.000018.

    Article  PubMed  Google Scholar 

  59. Aghili N, Bader Y, Vest AR, Kiernan MS, Kimmelstiel C, DeNofrio D, Kapur NK. Biventricular circulatory support using 2 axial flow catheters for cardiogenic shock without the need for surgical vascular access. Circ Cardiovasc Interv. 2016;9(6).https://doi.org/10.1161/CIRCINTERVENTIONS.116.003636.

  60. Kapur NK, Jumean M, Ghuloom A, Aghili N, Vassallo C, Kiernan MS, DeNofrio D, Pham DT. First successful use of 2 axial flow catheters for percutaneous biventricular circulatory support as a bridge to a durable left ventricular assist device. Circ Heart Fail. 2015;8(5):1006–8. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002374.

    Article  PubMed  Google Scholar 

  61. Rajagopal V, Steahr G, Wilmer CI, Raval NY. A novel percutaneous mechanical biventricular bridge to recovery in severe cardiac allograft rejection. J Hear lung Transplant Off Publ Int Soc Hear Transplant. 2010;29(1):93–5. https://doi.org/10.1016/j.healun.2009.09.015.

    Article  Google Scholar 

  62. Atwater BD, Nee LM, Gimelli G. Long-term survival using intra-aortic balloon pump and percutaneous right ventricular assist device for biventricular mechanical support of cardiogenic shock. J Invasive Cardiol. 2008;20(7):E205–7.

    PubMed  Google Scholar 

  63. Randhawa VK, Al-Fares A, Tong MZY, Soltesz EG, Hernandez-Montfort J, Taimeh Z, Weiss AJ, Menon V, Campbell J, Cremer P, Estep JD. A pragmatic approach to weaning temporary mechanical circulatory support: a state-of-the-art review. JACC Hear Fail. 2021;9(9):664–73. https://doi.org/10.1016/j.jchf.2021.05.011.

    Article  Google Scholar 

  64. Huang K-C, Lin L-Y, Chen Y-S, Lai C-H, Hwang J-J, Lin L-C. Three-dimensional echocardiography–derived right ventricular ejection fraction correlates with success of decannulation and prognosis in patients stabilized by venoarterial extracorporeal life support. J Am Soc Echocardiogr. 2018;31(2):169–79. https://doi.org/10.1016/j.echo.2017.09.004.

    Article  PubMed  Google Scholar 

  65. Kim D, Jang WJ, Park TK, Cho YH, Choi J-O, Jeon E-S, Yang JH. Echocardiographic predictors of successful extracorporeal membrane oxygenation weaning after refractory cardiogenic shock. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2021;34(4):414-422.e4. https://doi.org/10.1016/j.echo.2020.12.002.

    Article  Google Scholar 

  66. Roscoe A, Zochios V. Echocardiography in Weaning Right Ventricular Mechanical Circulatory Support: Are We Measuring The Right Stuff? J Cardiothorac Vasc Anesth. 2022;36(2):362–6. https://doi.org/10.1053/j.jvca.2021.09.045.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Brener.

Ethics declarations

Human and Animal Rights and Informed Consent.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Dr. Alkhunaizi declares no conflicts of interest. Dr. Burkhoff has received institutional educational grant support from Abiomed as well as consulting fees from CardioDyme Inc and from Abbott Laboratories. Dr. Brener is supported by an ACC/Merck Research Fellowship and has received consulting fees from Artract Medical and Osprey Medical.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Focus on the Right Heart.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhunaizi, F.A., Burkhoff, D. & Brener, M.I. Right-Sided Mechanical Circulatory Support – A Hemodynamic Perspective. Curr Heart Fail Rep 19, 334–345 (2022). https://doi.org/10.1007/s11897-022-00562-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-022-00562-1

Keywords

Navigation