Skip to main content

Advertisement

Log in

Targeting the Metabolic-Inflammatory Circuit in Heart Failure With Preserved Ejection Fraction

  • Translational Research in Heart Failure (M. Hoes, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Heart failure with preserved ejection fraction (HFpEF) is a leading cause of morbidity and mortality. The current mechanistic paradigm supports a comorbidity-driven systemic proinflammatory state that evokes microvascular and myocardial dysfunction. Crucially, diabetes and obesity are frequently prevalent in HFpEF patients; as such, we review the involvement of a metabolic-inflammatory circuit in disease pathogenesis.

Recent Findings

Experimental models of diastolic dysfunction and genuine models of HFpEF have facilitated discovery of underlying drivers of HFpEF, where metabolic derangement and systemic inflammation appear to be central components of disease pathophysiology. Despite a shared phenotype among these models, molecular signatures differ depending on type and combination of comorbidities present.

Summary

Inflammation, oxidative stress, hypertension, and metabolic derangements have been positioned as therapeutic targets to suppress the metabolic-inflammatory circuit in HFpEF. However, the stratification of unique patient phenogroups within the collective HFpEF subgroup argues for specific interventions for distinct phenogroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7.

    Article  Google Scholar 

  2. Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;372(14):1333–41. https://doi.org/10.1056/NEJMoa1406656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. https://doi.org/10.1002/ejhf.592.

    Article  PubMed  Google Scholar 

  4. Tromp J, Westenbrink BD, Ouwerkerk W, van Veldhuisen DJ, Samani NJ, Ponikowski P, et al. Identifying Pathophysiological Mechanisms in Heart Failure With Reduced Versus Preserved Ejection Fraction. J Am Coll Cardiol. 2018;72(10):1081–90. https://doi.org/10.1016/j.jacc.2018.06.050.

    Article  CAS  PubMed  Google Scholar 

  5. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323(4):236–41. https://doi.org/10.1056/NEJM199007263230405.

    Article  CAS  PubMed  Google Scholar 

  6. Hage C, Michaelsson E, Linde C, Donal E, Daubert JC, Gan LM, et al. Inflammatory biomarkers predict heart failure severity and prognosis in patients with heart failure with preserved ejection fraction: a holistic proteomic approach. Circ Cardiovasc Genet. 2017;10(1). https://doi.org/10.1161/CIRCGENETICS.116.001633.

  7. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71. https://doi.org/10.1016/j.jacc.2013.02.092.

    Article  PubMed  Google Scholar 

  8. Streng KW, Nauta JF, Hillege HL, Anker SD, Cleland JG, Dickstein K, et al. Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int J Cardiol. 2018;271:132–9. https://doi.org/10.1016/j.ijcard.2018.04.001.

    Article  PubMed  Google Scholar 

  9. Echouffo-Tcheugui JB, Xu H, DeVore AD, Schulte PJ, Butler J, Yancy CW, et al. Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: findings from Get With The Guidelines-Heart Failure registry. Am Heart J. 2016;182:9–20. https://doi.org/10.1016/j.ahj.2016.07.025.

    Article  PubMed  Google Scholar 

  10. Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail. 2011;4(3):324–31. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959890.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tromp J, Khan MA, Klip IT, Meyer S, de Boer RA, Jaarsma T, et al. Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. J Am Heart Assoc. 2017;6(4). https://doi.org/10.1161/JAHA.116.003989.

  12. Murphy SP, Kakkar R, McCarthy CP, Januzzi JL, Jr. Inflammation in heart failure: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(11):1324–40. doi: https://doi.org/10.1016/j.jacc.2020.01.014. This review describes mechanistic links between heart failure and inflammation, and discusses clinical trials that implemented anti-inflammatory therapies.

  13. Schiattarella GG, Sequeira V, Ameri P. Distinctive patterns of inflammation across the heart failure syndrome. Heart Fail Rev. 2021;26(6):1333–44. https://doi.org/10.1007/s10741-020-09949-5.

    Article  PubMed  Google Scholar 

  14. McHugh K, DeVore AD, Wu J, Matsouaka RA, Fonarow GC, Heidenreich PA, et al. Heart failure with preserved ejection fraction and diabetes: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73(5):602–11. https://doi.org/10.1016/j.jacc.2018.11.033.

    Article  PubMed  Google Scholar 

  15. Yap J, Tay WT, Teng TK, Anand I, Richards AM, Ling LH, et al. Association of diabetes mellitus on cardiac remodeling, quality of life, and clinical outcomes in heart failure with reduced and preserved ejection fraction. J Am Heart Assoc. 2019;8(17): e013114. https://doi.org/10.1161/JAHA.119.013114.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cong S, Ramachandra CJA, Mai Ja KM, Yap J, Shim W, Wei L, et al. Mechanisms underlying diabetic cardiomyopathy: from pathophysiology to novel therapeutic targets. Cond Med. 2020;3(2):82–97.

    PubMed  PubMed Central  Google Scholar 

  17. Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6(8):701–9. https://doi.org/10.1016/j.jchf.2018.05.018.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsujimoto T, Kajio H. Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol. 2017;70(22):2739–49. https://doi.org/10.1016/j.jacc.2017.09.1111.

    Article  PubMed  Google Scholar 

  19. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kresoja KP, Rommel KP, Wachter R, Henger S, Besler C, Kloting N, et al. Proteomics to improve phenotyping in obese patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2021;23(10):1633–44. https://doi.org/10.1002/ejhf.2291.

    Article  CAS  PubMed  Google Scholar 

  21. Koepp KE, Obokata M, Reddy YNV, Olson TP, Borlaug BA. Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction. JACC Heart Fail. 2020;8(8):657–66. https://doi.org/10.1016/j.jchf.2020.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Elsanhoury A, Nelki V, Kelle S, Van Linthout S, Tschope C. Epicardial fat expansion in diabetic and obese patients with heart failure and preserved ejection fraction-a specific HFpEF Phenotype. Front Cardiovasc Med. 2021;8: 720690. https://doi.org/10.3389/fcvm.2021.720690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Collier P, Watson CJ, Voon V, Phelan D, Jan A, Mak G, et al. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur J Heart Fail. 2011;13(10):1087–95. https://doi.org/10.1093/eurjhf/hfr079.

    Article  CAS  PubMed  Google Scholar 

  24. Hulsmans M, Sager HB, Roh JD, Valero-Munoz M, Houstis NE, Iwamoto Y, et al. Cardiac macrophages promote diastolic dysfunction. J Exp Med. 2018;215(2):423–40. https://doi.org/10.1084/jem.20171274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, et al. CCR2(+) Monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl Sci. 2018;3(2):230–44. https://doi.org/10.1016/j.jacbts.2017.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haudek SB, Cheng J, Du J, Wang Y, Hermosillo-Rodriguez J, Trial J, et al. Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J Mol Cell Cardiol. 2010;49(3):499–507. https://doi.org/10.1016/j.yjmcc.2010.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu J, Lin SC, Chen J, Miao Y, Taffet GE, Entman ML, et al. CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis. Am J Physiol Heart Circ Physiol. 2011;301(2):H538–47. https://doi.org/10.1152/ajpheart.01114.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Everett BM, Cornel JH, Lainscak M, Anker SD, Abbate A, Thuren T, et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation. 2019;139(10):1289–99. https://doi.org/10.1161/CIRCULATIONAHA.118.038010.

    Article  CAS  PubMed  Google Scholar 

  29. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, Anti TNFTACHFI. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107(25):3133–40. https://doi.org/10.1161/01.CIR.0000077913.60364.D2.

    Article  CAS  PubMed  Google Scholar 

  30. Pieske B, Tschope C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40(40):3297-317. https://doi.org/10.1093/eurheartj/ehz641. This study reports a new diagnostic algorithm ‘HFA-PEFF’ that can be performed in the ambulatory setting. It allows for firm diagnosis for chronic HFpEF, which often pose as a challenge.

  31. Valero-Munoz M, Backman W, Sam F. Murine models of heart failure with preserved ejection fraction: a “Fishing Expedition.” JACC Basic Transl Sci. 2017;2(6):770–89. https://doi.org/10.1016/j.jacbts.2017.07.013.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568(7752):351–6. doi: https://doi.org/10.1038/s41586-019-1100-z. This study reports concomitant metabolic and hypertensive stress in mice can recapitulate numerous systemic and cardiovascular features of HFpEF in humans, with iNOS-driven dysregulation of the IRE1alpha-XBP1 pathway an important mechanism underlying cardiomyocyte dysfunction in HFpEF.

  33. Withaar C, Meems LMG, Markousis-Mavrogenis G, Boogerd CJ, Sillje HHW, Schouten EM, et al. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res. 2021;117(9):2108–24. https://doi.org/10.1093/cvr/cvaa256.

    Article  CAS  PubMed  Google Scholar 

  34. Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, et al. Targeting mitochondria-inflammation circuit by beta-hydroxybutyrate mitigates HFpEF. Circ Res. 2021;128(2):232–45. https://doi.org/10.1161/CIRCRESAHA.120.317933.

    Article  CAS  PubMed  Google Scholar 

  35. Sorop O, Heinonen I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen ITN, et al. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res. 2018;114(7):954–64. https://doi.org/10.1093/cvr/cvy038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olver TD, Edwards JC, Jurrissen TJ, Veteto AB, Jones JL, Gao C, et al. Western diet-fed, aortic-banded Ossabaw swine: a preclinical model of cardio-metabolic heart failure. JACC Basic Transl Sci. 2019;4(3):404–21. https://doi.org/10.1016/j.jacbts.2019.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Byrne NJ, Matsumura N, Maayah ZH, Ferdaoussi M, Takahara S, Darwesh AM, et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ Heart Fail. 2020;13(1): e006277. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006277.

    Article  CAS  PubMed  Google Scholar 

  38. Melenovsky V, Hwang SJ, Redfield MM, Zakeri R, Lin G, Borlaug BA. Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circ Heart Fail. 2015;8(2):295–303. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001667.

    Article  PubMed  Google Scholar 

  39. Bode D, Wen Y, Hegemann N, Primessnig U, Parwani A, Boldt LH, et al. Oxidative stress and inflammatory modulation of Ca(2+) handling in metabolic HFpEF-related left atrial cardiomyopathy. Antioxidants (Basel). 2020;9(9). doi: https://doi.org/10.3390/antiox9090860.

  40. Zhang L, Chen J, Yan L, He Q, Xie H, Chen M. Resveratrol ameliorates cardiac remodeling in a murine model of heart failure with preserved ejection fraction. Front Pharmacol. 2021;12: 646240. https://doi.org/10.3389/fphar.2021.646240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guimbal S, Cornuault L, Rouault P, Hollier PL, Chapouly C, Bats ML, et al. Mast cells are the trigger of small vessel disease and diastolic dysfunction in diabetic obese mice. Arterioscler Thromb Vasc Biol. 2021;41(4):e193–207. https://doi.org/10.1161/ATVBAHA.121.315900.

    Article  CAS  PubMed  Google Scholar 

  42. Trial J, Diaz Lankenau R, Angelini A, Tovar Perez JE, Taffet GE, Entman ML, et al. Treatment with a DC-SIGN ligand reduces macrophage polarization and diastolic dysfunction in the aging female but not male mouse hearts. Geroscience. 2021;43(2):881–99. https://doi.org/10.1007/s11357-020-00255-4.

    Article  CAS  PubMed  Google Scholar 

  43. Tromp J, Shen L, Jhund PS, Anand IS, Carson PE, Desai AS, et al. Age-related characteristics and outcomes of patients with heart failure with preserved ejection fraction. J Am Coll Cardiol. 2019;74(5):601–12. doi: https://doi.org/10.1016/j.jacc.2019.05.052. This study reports the associations among age, clinical characteristics and outcomes in HFpEF patients. Younger HFpEF patients tend to be obese men, died more often of cardiovascular causes, whereas elderly HFpEF patients were more likely to be women with more comorbidities, and died more often from non-cardiovascular causes.

  44. Lin YHCS, Ong SG, Ramachandra CJA, Hausenloy DJ. New therapeutic targets to prevent diastolic dysfunction in heart failure with preserved ejection fraction. Conditioning Medicine. 2020;3(3):171–83.

    Google Scholar 

  45. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131(14):1247–59. https://doi.org/10.1161/CIRCULATIONAHA.114.013215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cibi DM, Sandireddy R, Bogireddi H, Tee N, Ghani S, Singh BK, et al. Cardiac tissue factor regulates inflammation, hypertrophy, and heart failure in mouse model of type 1 diabetes. Diabetes. 2021;70(9):2131–46. https://doi.org/10.2337/db20-0719.

    Article  PubMed  Google Scholar 

  47. Juni RP, Kuster DWD, Goebel M, Helmes M, Musters RJP, van der Velden J, et al. Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. JACC Basic Transl Sci. 2019;4(5):575–91. https://doi.org/10.1016/j.jacbts.2019.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Soetkamp D, Gallet R, Parker SJ, Holewinski R, Venkatraman V, Peck K, et al. Myofilament phosphorylation in stem cell treated diastolic heart failure. Circ Res. 2021;129(12):1125–40. https://doi.org/10.1161/CIRCRESAHA.119.316311.

    Article  CAS  PubMed  Google Scholar 

  49. Uryash A, Mijares A, Flores V, Adams JA, Lopez JR. Effects of naringin on cardiomyocytes from a rodent model of type 2 diabetes. Front Pharmacol. 2021;12: 719268. https://doi.org/10.3389/fphar.2021.719268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schiattarella GG, Altamirano F, Kim SY, Tong D, Ferdous A, Piristine H, et al. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat Commun. 2021;12(1):1684. doi: https://doi.org/10.1038/s41467-021-21931-9. This study reports the Xbp1s-FoxO1 axis as an important mechanism in the pathogenesis of cardiometabolic HFpEF, and targeting this axis can reduce myocardial lipid accumulation.

  51. Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med. 2018;24(1):3. https://doi.org/10.1186/s10020-018-0005-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ramachandra CJA, Cong S, Chan X, Yap EP, Yu F, Hausenloy DJ. Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets. Free Radic Biol Med. 2021;166:297–312. https://doi.org/10.1016/j.freeradbiomed.2021.02.040.

    Article  CAS  PubMed  Google Scholar 

  53. Sukumaran V, Tsuchimochi H, Tatsumi E, Shirai M, Pearson JT. Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1–7/Mas receptor cascade. Biochem Pharmacol. 2017;144:90–9. https://doi.org/10.1016/j.bcp.2017.07.022.

    Article  CAS  PubMed  Google Scholar 

  54. Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res. 1999;85(8):753–66. https://doi.org/10.1161/01.res.85.8.753.

    Article  CAS  PubMed  Google Scholar 

  55. Aroor AR, Habibi J, Kandikattu HK, Garro-Kacher M, Barron B, Chen D, et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol. 2017;16(1):61. https://doi.org/10.1186/s12933-017-0544-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu L, Balzarolo M, Robinson EL, Lorenz V, Verde GD, Joray L, et al. NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction. Cardiovasc Res. 2021. https://doi.org/10.1093/cvr/cvab349.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tourki B, Kain V, Shaikh SR, Leroy X, Serhan CN, Halade GV. Deficit of resolution receptor magnifies inflammatory leukocyte directed cardiorenal and endothelial dysfunction with signs of cardiomyopathy of obesity. FASEB J. 2020;34(8):10560–73. https://doi.org/10.1096/fj.202000495RR.

    Article  CAS  PubMed  Google Scholar 

  58. Tourki B, Kain V, Pullen AB, Norris PC, Patel N, Arora P, et al. Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Mol Metab. 2020;31:138–49. https://doi.org/10.1016/j.molmet.2019.10.008.

    Article  CAS  PubMed  Google Scholar 

  59. Friebel J, Weithauser A, Witkowski M, Rauch BH, Savvatis K, Dorner A, et al. Protease-activated receptor 2 deficiency mediates cardiac fibrosis and diastolic dysfunction. Eur Heart J. 2019;40(40):3318–32. doi: https://doi.org/10.1093/eurheartj/ehz117. This study reports protease-activated receptor 2 as an important regulator of profibrotic PAR1 and TGF-β signalling in the heart, and modulating this pathway may be a promising therapeutic approach to alleviate HFpEF.

  60. Gopal K, Almutairi M, Al Batran R, Eaton F, Gandhi M, Ussher JR. Cardiac-specific deletion of pyruvate dehydrogenase impairs glucose oxidation rates and induces diastolic dysfunction. Front Cardiovasc Med. 2018;5:17. https://doi.org/10.3389/fcvm.2018.00017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brandt MM, Nguyen ITN, Krebber MM, van de Wouw J, Mokry M, Cramer MJ, et al. Limited synergy of obesity and hypertension, prevalent risk factors in onset and progression of heart failure with preserved ejection fraction. J Cell Mol Med. 2019;23(10):6666–78. https://doi.org/10.1111/jcmm.14542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Altara R, Zouein FA, Brandao RD, Bajestani SN, Cataliotti A, Booz GW. In silico analysis of differential gene expression in three common rat models of diastolic dysfunction. Front Cardiovasc Med. 2018;5:11. https://doi.org/10.3389/fcvm.2018.00011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang M, Shan Y, Wu C, Cao P, Sun W, Han J, et al. Efficacy and safety of Qishen Yiqi dripping pill for heart failure with preserved ejection fraction: a systematic review and meta-analysis. Front Pharmacol. 2020;11: 626375. https://doi.org/10.3389/fphar.2020.626375.

    Article  CAS  PubMed  Google Scholar 

  64. Huang Y, Zhang K, Liu M, Su J, Qin X, Wang X, et al. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway. Phytomedicine. 2021;91: 153633. https://doi.org/10.1016/j.phymed.2021.153633.

    Article  CAS  PubMed  Google Scholar 

  65. Pop C, Stefan MG, Muntean DM, Stoicescu L, Gal AF, Kiss B, et al. Protective effects of a discontinuous treatment with alpha-lipoic acid in obesity-related heart failure with preserved ejection fraction, in rats. Antioxidants (Basel). 2020;9(11). doi: https://doi.org/10.3390/antiox9111073.

  66. Ramachandra CJA, Ja K, Chua J, Cong S, Shim W, Hausenloy DJ. Myeloperoxidase as a multifaceted target for cardiovascular protection. Antioxid Redox Signal. 2020;32(15):1135–49. https://doi.org/10.1089/ars.2019.7971.

    Article  CAS  PubMed  Google Scholar 

  67. Croteau D, Qin F, Chambers JM, Kallick E, Luptak I, Panagia M, et al. Differential effects of sacubitril/valsartan on diastolic function in mice with obesity-related metabolic heart disease. JACC Basic Transl Sci. 2020;5(9):916–27. https://doi.org/10.1016/j.jacbts.2020.07.006.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Davila A, Tian Y, Czikora I, Li J, Su H, Huo Y, et al. Adenosine kinase inhibition augments conducted vasodilation and prevents left ventricle diastolic dysfunction in heart failure with preserved ejection fraction. Circ Heart Fail. 2019;12(8): e005762. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6(2):105–13. https://doi.org/10.1016/S2213-8587(17)30412-6.

    Article  PubMed  Google Scholar 

  70. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021. doi: https://doi.org/10.1056/NEJMoa2107038. This study reports empagliflozin to successfully reduce the combined risk of cardiovascular death or hospitalisation for HFpEF, regardless of patients’ diabetes status.

  71. Cappetta D, De Angelis A, Ciuffreda LP, Coppini R, Cozzolino A, Micciche A, et al. Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium. Pharmacol Res. 2020;157: 104781. https://doi.org/10.1016/j.phrs.2020.104781.

    Article  CAS  PubMed  Google Scholar 

  72. Croteau D, Luptak I, Chambers JM, Hobai I, Panagia M, Pimentel DR, et al. Effects of sodium-glucose linked transporter 2 inhibition with ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice. J Am Heart Assoc. 2021;10(13): e019995. https://doi.org/10.1161/JAHA.120.019995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–5. https://doi.org/10.2337/db15-1356.

    Article  CAS  PubMed  Google Scholar 

  74. Pietschner R, Kolwelter J, Bosch A, Striepe K, Jung S, Kannenkeril D, et al. Effect of empagliflozin on ketone bodies in patients with stable chronic heart failure. Cardiovasc Diabetol. 2021;20(1):219. https://doi.org/10.1186/s12933-021-01410-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, Li Z, et al. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to spironolactone. JACC Heart Fail. 2020;8(3):172–84. https://doi.org/10.1016/j.jchf.2019.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sabbah MS, Fayyaz AU, de Denus S, Felker GM, Borlaug BA, Dasari S, et al. Obese-inflammatory phenotypes in heart failure with preserved ejection fraction. Circ Heart Fail. 2020;13(8):e006414. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.119.006414. This study reports the presence of unique obese-inflammatory phenotypes in HFpEF. Inflammation is present in some, but not all HFpEF patients, and is associated with impaired microvascular status, profibrotic state and worse function outcome.

  77. Ramachandra CJA, Kp MMJ, Chua J, Hernandez-Resendiz S, Liehn EA, Knoll R, et al. Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes. Cardiovasc Res. 2021. doi: https://doi.org/10.1093/cvr/cvab077. This study reports myeloperoxidase as a novel therapeutic target for alleviating diastolic dysfunction, as MPO inhibition restored MYBPC3 phosphorylation and improved relaxation in human hypertrophic cardiomyocytes.

Download references

Funding

Chrishan Ramachandra is supported by the Singapore Ministry of Health’s National Medical Research Council Open Fund-Young Individual Research Grant (NMRC/OFYIRG/0073/2018), the SingHealth Duke-NUS Academic Medicine Research Grant (AM/TP033/2020 [SRDUKAMR2033]), and the Khoo Bridge Funding Award (Duke-NUS-KBrFA/2022/0059). Myu Mai Ja Kp is supported by the National Heart Centre Singapore Centre Grant PROTECT Seed Fund (NHCS-CGSF/2022/003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrishan J. Ramachandra.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, E.P., Kp, M.M.J. & Ramachandra, C.J. Targeting the Metabolic-Inflammatory Circuit in Heart Failure With Preserved Ejection Fraction. Curr Heart Fail Rep 19, 63–74 (2022). https://doi.org/10.1007/s11897-022-00546-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-022-00546-1

Keywords

Navigation