Skip to main content

Advertisement

Log in

Chemotherapy-Induced Cardiotoxicity

  • Management of Heart Failure (T Meyer, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Anthracycline-based chemotherapeutics have long been recognized as effective agents for treating a wide range of malignancies. However, their use is not without significant adverse cardiotoxic side effects. Strategies for prevention involve limiting free-radical production and subsequent cardiac myocyte damage. Dexrazoxane remains the most widely studied cardioprotective medication. Alternative agents may reduce cardiotoxicity but may still cause significant cardiovascular problems. The role of β-blockers and angiotensin-converting enzyme inhibitors in the treatment of heart failure is well proven. The role of these medications in the prevention and treatment of chemotherapy-induced cardiotoxicity is not well established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Geiger S, Lange V, Suhl P, et al. Anticancer therapy induced cardiotoxicity: review of the literature. Anti Canc Drug. 2010;21(6):578–90.

    Article  CAS  Google Scholar 

  2. •• Smith LA, Cornelius VR, Plummer CJ, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010 Jun 29;10:337. This is a thorough review of the literature. Due to the small trials, meta-analyses are essential with regards to this topic.

    Article  PubMed  Google Scholar 

  3. Zuppinger C, Suter TM. Cancer therapy-associated cardiotoxicity and signaling in the myocardium. J Cardiovasc Pharmacol. 2010;56(2):141–6.

    Article  PubMed  CAS  Google Scholar 

  4. •• van Dalen EC, Michiels EM, Caron HN, et al. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev. 2010 Mar 17;(3):CD005006. Review. Update in: Cochrane Database Syst Rev. 2010;(5):CD005006. This is an effective Cochrane review on preventing or reducing cardiotoxicity from anthracyclines.

  5. Oeffinger KC, Mertens AC, Sklar CA, et al. Chronic health conditions in survivors of childhood cancer. NEJM. 2006;355(15):1572–82.

    Article  PubMed  CAS  Google Scholar 

  6. • Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009 Jun 16;53(24):2231–47. This is an excellent review on the topic.

    Article  PubMed  CAS  Google Scholar 

  7. Shan K, Lincoff AM, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med. 1996;125:47–58.

    PubMed  CAS  Google Scholar 

  8. Sawyer DB, Peng X, Chen B, et al. Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis. 2010;53(2):105–13.

    Article  PubMed  CAS  Google Scholar 

  9. Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6.

    Article  PubMed  CAS  Google Scholar 

  10. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.

    Article  PubMed  CAS  Google Scholar 

  11. Ewer MS, Vooletich MT, Durand JB, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23(31):7820–6.

    Article  PubMed  CAS  Google Scholar 

  12. Cheng H, Force T. Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis. 2010;53(2):114–20.

    Article  PubMed  CAS  Google Scholar 

  13. Yeh ET, Tong AT, Lenihan DJ, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004;109(25):3122–31.

    Article  PubMed  Google Scholar 

  14. Gharib MI, Burnett AK. Chemotherapy-induced cardiotoxicity: current practice and prospects of prophylaxis. Eur J Heart Fail. 2002;4(3):235–42.

    Article  PubMed  CAS  Google Scholar 

  15. Quezado ZM, Wilson WH, Cunnion RE, et al. High-dose ifosfamide is associated with severe, reversible cardiac dysfunction. Ann Intern Med. 1993;118(1):31–6.

    PubMed  CAS  Google Scholar 

  16. Martin M, Pienkowski T, Mackey J, Breast Cancer International Research Group 001 Investigators, et al. Adjuvant docetaxel for node-positive breast cancer. N Engl J Med. 2005;352(22):2302–13.

    Article  PubMed  CAS  Google Scholar 

  17. Jain M, Townsend RR. Chemotherapy agents and hypertension: a focus on angiogenesis blockade. Curr Hypertens Rep. 2007;9(4):320–8.

    Article  PubMed  CAS  Google Scholar 

  18. Pande A, Lombardo J, Spangenthal E, et al. Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res. 2007;27(5B):3465–70.

    PubMed  CAS  Google Scholar 

  19. Wu S, Chen JJ, Kudelka A, et al. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9(2):117–23.

    Article  PubMed  CAS  Google Scholar 

  20. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.

    Article  PubMed  CAS  Google Scholar 

  21. Palumbo A, Rajkumar SV, Dimopoulos MA, International Myeloma Working Group, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–23.

    Article  PubMed  CAS  Google Scholar 

  22. Barbey JT, Pezzullo JC, Soignet SL. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol. 2003;21(19):3609–15.

    Article  PubMed  CAS  Google Scholar 

  23. Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Canc Inst. 2010;102(1):14–25.

    Article  CAS  Google Scholar 

  24. Ganz WI, Sridhar KS, Ganz SS, et al. Review of tests for monitoring doxorubicin-induced cardiomyopathy. Oncology. 1996;53:461–70.

    Article  PubMed  CAS  Google Scholar 

  25. Marchandise B, Schroeder E, Bosly A, et al. Early detection of doxorubicin cardiotoxicity: interest of Doppler echocardiographic analysis of left ventricular filling dynamics. Am Heart J. 1989;118(1):92–8.

    Article  PubMed  CAS  Google Scholar 

  26. Ewer MS, Ali MK, Gibbs HR, et al. Cardiac diastolic function in pediatric patients receiving doxorubicin. Acta Oncol. 1994;33(6):645–9.

    Article  PubMed  CAS  Google Scholar 

  27. Weesner KM, Bledsoe M, Chauvenet A, et al. Exercise echocardiography in the detection of anthracycline cardiotoxicity. Cancer. 1991;68(2):435–8.

    Article  PubMed  CAS  Google Scholar 

  28. Klewer SE, Goldberg SJ, Donnerstein RL, et al. Dobutamine stress echocardiography: a sensitive indicator of diminished myocardial function in asymptomatic doxorubicin-treated long-term survivors of childhood cancer. J Am Coll Cardiol. 1992;19(2):394–401.

    Article  PubMed  CAS  Google Scholar 

  29. • Sawaya H, Sebag IA, Plana JC, et al. Early detection and predictor of cardiotoxicity in chemotherapy- treated patients. Am J Cardiol. 2011;107:1375–80. This is a recent article reviewing the risk factors, surveillance, and means of identifying cardiotoxicity.

    Article  PubMed  CAS  Google Scholar 

  30. Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22.

    Article  PubMed  CAS  Google Scholar 

  31. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    Article  PubMed  CAS  Google Scholar 

  32. Cardinale D, Salvatici M, Sandri MT. Review: role of biomarkers in cardioncology. Clin Chem Lab Med. 2011 Sep 6.

  33. Sandri MT, Salvatici M, Cardinale D, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51:1405–10.

    Article  PubMed  CAS  Google Scholar 

  34. Lefrak EA, Pitha J, Rosenheim S, et al. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32:302–14.

    Article  PubMed  CAS  Google Scholar 

  35. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900–5.

    Article  PubMed  CAS  Google Scholar 

  36. Ryberg M, Nielsen D, Cortese G, et al. New insight into epirubicin cardiac toxicity: competing risk analysis of 1097 breast cancer patients. J Natl Canc Inst. 2008;100:1058.

    Article  CAS  Google Scholar 

  37. Posner LE, Dukart G, Goldberg J, et al. Mitoxantrone: an overview of safety and toxicity. Investig New Drugs. 1985;3:123.

    CAS  Google Scholar 

  38. Cvetkovic RS, Scott LJ. Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy. Drugs. 2005;65:1005–24.

    Article  PubMed  CAS  Google Scholar 

  39. Speyer JL, Green MD, Zeleniuch-Jacquotte A, et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol. 1992;10:117–27.

    PubMed  CAS  Google Scholar 

  40. Swain SM, Whaley FS, Gerber MC, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15:1318–32.

    PubMed  CAS  Google Scholar 

  41. Venturini M, Michelotti A, Del Mastro L, et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol. 1996;14:3112–20.

    PubMed  CAS  Google Scholar 

  42. Wexler LH, Andrich MP, Venzon D, et al. Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J Clin Oncol. 1996;14:362–72.

    PubMed  CAS  Google Scholar 

  43. Lopez M, Vici P, Di Lauro K, et al. Randomized prospective clinical trial of highdose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J Clin Oncol. 1998;16:86–92.

    PubMed  CAS  Google Scholar 

  44. Marty M, Espie M, Llombart A, Dexrazoxane Study G, et al. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol. 2006;17:614–22.

    Article  PubMed  CAS  Google Scholar 

  45. • van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2008:CD003917. This is a typical Cochrane review on cardioprotective strategies with anthracyclines.

  46. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.

    Article  PubMed  CAS  Google Scholar 

  47. Waldner R, Laschan C, Lohninger A, et al. Effects of doxorubicin-containing chemotherapy and a combination with L-carnitine on oxidative metabolism in patients with non-Hodgkin lymphoma. J Cancer Res Clin Oncol. 2006;132:121–8.

    Article  PubMed  Google Scholar 

  48. Myers C, Bonow R, Palmeri S, et al. A randomized controlled trial assessing the prevention of doxorubicin cardiomyopathy by N-acetylcysteine. Semin Oncol. 1983;10:53–5.

    PubMed  CAS  Google Scholar 

  49. Nakamae H, Tsumura K, Terada Y, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104:2492.

    Article  PubMed  CAS  Google Scholar 

  50. al-Shabanah O, Mansour M, el-Kashef H, et al. Captopril ameliorates myocardial and hematological toxicities induced by adriamycin. Biochem Mol Biol Int. 1998;45:419–27.

    PubMed  CAS  Google Scholar 

  51. Sacco G, Bigioni M, Evangelista S, et al. Cardioprotective effects of zofenopril, a new angiotensin-converting enzyme inhibitor, on doxorubicin-induced cardiotoxicity in the rat. Eur J Pharmacol. 2001;414:71–8.

    Article  PubMed  CAS  Google Scholar 

  52. Vaynblat M, Shah HR, Bhaskaran D, et al. Simultaneous angiotensin converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail. 2002;4:583–6.

    Article  PubMed  CAS  Google Scholar 

  53. • Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20. This is a rare prospective study assessing treatment with standard heart failure medications. Unfortunately, there was no comparative placebo arm.

    Article  PubMed  CAS  Google Scholar 

  54. Yoon GJ, Telli ML, Kao DP, et al. Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? J Am Coll Cardiol. 2010;56:1644.

    Article  PubMed  Google Scholar 

  55. Fazio S, Calmieri EA, Ferravate B, et al. Doxorubicin-induced cardiomyopathy treated with carvedilol. Clin Cardiol. 1998;21:777–9.

    Article  PubMed  CAS  Google Scholar 

  56. Noori A, Lindenfeld J, Wolfel E, et al. Beta-blockade in adriamycin-induced cardiomyopathy. J Card Fail. 2000;6:115–9.

    PubMed  CAS  Google Scholar 

  57. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13:699–709.

    Article  PubMed  CAS  Google Scholar 

  58. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20:517–22.

    Google Scholar 

  59. Tallaj JA, Franco V, Rayburn BK, et al. Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. J Heart Lung Transplant. 2005;24:201–19.

    Article  Google Scholar 

  60. Musci M, Loebe M, Grauhan O, et al. Heart transplantation for doxorubicin-induced congestive heart failure in children and adolescents. Transplant Proc. 1997;29(1–2):578–9.

    Article  PubMed  CAS  Google Scholar 

  61. Dorent R, Pavie A, Nataf P, et al. Heart transplantation is a valid therapeutic option for anthracycline cardiomyopathy. Transplant Proc. 1995;27(2):1683.

    PubMed  CAS  Google Scholar 

  62. Christiansen S. Clinical management of doxorubicin-induced heart failure. J Cardiovasc Surg. 2011;52:13–7.

    Google Scholar 

  63. Harris L, Batist G, Belt R, TLC D-99 Study Group, et al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer. 2002;94(1):25–36.

    Article  PubMed  CAS  Google Scholar 

  64. Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001;19(5):1444–54.

    PubMed  CAS  Google Scholar 

Download references

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaikh, A.Y., Shih, J.A. Chemotherapy-Induced Cardiotoxicity. Curr Heart Fail Rep 9, 117–127 (2012). https://doi.org/10.1007/s11897-012-0083-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-012-0083-y

Keywords

Navigation