Skip to main content
Log in

The emerging role for type 5 phosphodiesterase inhibition in heart failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Patients with heart failure (HF) due to left ventricular (LV) systolic dysfunction have abnormal endothelium-dependent, nitric oxide-cyclic guanosine monophosphate-mediated vasodilation in the pulmonary and skeletal muscle vasculature. Therefore, inhibition of type 5 phosphodiesterase (PDE5), the principle enzyme responsible for cyclic guanosine monophosphate catabolism in the lungs and skeletal muscle, has been targeted in an effort to counteract vasoconstriction that contributes to increased right and LV afterload in HF. The efficacy of PDE5 inhibition in the treatment of pulmonary arterial hypertension has led to the investigation of its potential utility in the treatment of HF patients with secondary pulmonary hypertension. Moreover, recent preclinical studies suggest direct myocardial effects of PDE5 inhibition that may counteract β-adrenergic, hypertrophic, and pro-apoptotic signaling, three critical pathways in the development of LV dysfunction. This review outlines both the underlying rationale and the results of initial studies of the therapeutic effects of PDE5 inhibition in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Beavo JA: Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 1995, 75:725–748.

    PubMed  CAS  Google Scholar 

  2. Wallis RM, Corbin JD, Francis SH, et al.: Tissue distribution of phosphodiesterase families and the effect of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 1999, 83:3C-12C.

    Article  PubMed  CAS  Google Scholar 

  3. Semigran MJ: Type 5 phosphodiesterase inhibition: the focus shifts to the heart. Circulation 2005, 112:2589–2591.

    Article  PubMed  Google Scholar 

  4. Maurice DH, Palmer D, Tilley DG, et al.: Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol 2003, 64:533–546.

    Article  PubMed  CAS  Google Scholar 

  5. Reffelmann T, Kloner RA: Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Circulation 2003, 108:239–244.

    Article  PubMed  Google Scholar 

  6. Kloner RA: Cardiovascular Effects of the 3 phosphodiesterase-5 inhibitors approved for the treatment of erectile dysfunction. Circulation 2004, 110:3149–3155.

    Article  PubMed  Google Scholar 

  7. Gresser U, Gleiter CH: Erectile dysfunction: comparison of efficacy and side effects of the PDE-5 inhibitors sildenafil, vardenafil and tadalafil: review of the literature. Eur J Med Res 2002, 7:435–446.

    PubMed  CAS  Google Scholar 

  8. Colucci WS, Jaski BE, Fifer MA, et al.: Milrinone: a positive inotropic vasodilator. Trans Assoc Am Physicians 1984, 97:124–133.

    PubMed  CAS  Google Scholar 

  9. Burstein S, Semigran MJ, Dec GW, et al.: Positive inotropic and lusitropic effects of intravenous fiosequinan in patients with heart failure. J Am Coll Cardiol 1992, 20:822–829.

    Article  PubMed  CAS  Google Scholar 

  10. Katz SD, Balidemaj K, Homma S, et al.: Acute type 5 phosphodiesterase inhibition with sildenafil enhances flowmediated vasodilation in patients with chronic heart failure. J Am Coll Cardiol 2000, 36:845–851.

    Article  PubMed  CAS  Google Scholar 

  11. Treasure CB, Alexander RW: The dysfunctional endothelium in heart failure. J Am Coll Cardiol 1993, 22:129A-134A.

    Article  PubMed  CAS  Google Scholar 

  12. Porter TR, Taylor DO, Cycan A, et al.: Endothelium-dependent pulmonary artery responses in chronic heart failure influence of pulmonary hypertension. J Am Coll Cardiol 1993, 22:1418–1424.

    Article  PubMed  CAS  Google Scholar 

  13. Di Salvo TG, Mathier M, Semigran MJ, et al.: Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol 1995, 25:1143–1153.

    Article  PubMed  Google Scholar 

  14. Franciosa JA, Baker BJ, Seth L: Pulmonary versus systemic hemodynamics in determining exercise capacity of patients with chronic left ventricular failure. Am Heart J 1985, 110:807–813.

    Article  PubMed  CAS  Google Scholar 

  15. Moraes DL, Colucci WS, Givertz MM: Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation 2000, 102:1718–1723.

    PubMed  CAS  Google Scholar 

  16. Loh E, Stamler JS, Hare JM, et al.: Cardiovascular effects of inhaled nitric oxide in patients with left ventricular dysfunction. Circulation 1994, 90:2780–2785.

    PubMed  CAS  Google Scholar 

  17. Semigran MJ, Cockrill BA, Kacmarek R, et al.: Hemodynamic effects of inhaled nitric oxide in heart failure. J Am Coll Cardiol 1994, 24:982–988.

    Article  PubMed  CAS  Google Scholar 

  18. Koelling TM, Kirmse M, Di Salvo TG, et al.: Inhaled nitric oxide improves exercise capacity in patients with severe heart failure and right ventricular dysfunction. Am J Cardiol 1998, 81:1494–1497.

    Article  PubMed  CAS  Google Scholar 

  19. Rabe KF, Tenor H, Dent G, et al.: Identification of PDE isozymes in human pulmonary artery and effect of selective PDE inhibitors. Am J Physiol 1994, 266:L536-L543.

    PubMed  CAS  Google Scholar 

  20. Galiè N, Ghofrani HA, Torbicki A: Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 2005, 353:2148–2157.

    Article  PubMed  Google Scholar 

  21. Cockrill BA, Kacmarek RM, Fifer MA, et al.: Comparison of the effects of nitric oxide, nitroprusside, and nifedipine on hemodynamics and right ventricular contractility in patients with chronic pulmonary hypertension. Chest 2001, 119:128–136.

    Article  PubMed  CAS  Google Scholar 

  22. Burstein S, Semigran MJ, Dec GW, et al.: Positive inotropic and lusitropic effects of intravenous flosequinan in patients with heart failure. J Am Coll Cardiol 1992, 20:822–829.

    Article  PubMed  CAS  Google Scholar 

  23. Hare JM, Kim B, Flavahan NA, et al.: Pertussis toxinsensitive G proteins influence nitric oxide synthase III activity and protein levels in rat heart. J Clin Invest 1998, 101:1424–1431.

    Article  PubMed  CAS  Google Scholar 

  24. Mery PF, Pavoine C, Belhassen L, et al.: Nitric oxide regulates cardiac Ca2+ current: involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylate cyclase activation. J Biol Chem 1994, 268:26286–26295.

    Google Scholar 

  25. Mery P, Lohmann SM, Walter U, Fischmeister R: Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 1991, 88:1197–1201.

    Article  PubMed  CAS  Google Scholar 

  26. Trautwein W, Trube G: Negative inotropic effects of cyclic GMP in cardiac fiber fragments. Pflugers Arch 1976, 366:293–295.

    Article  PubMed  CAS  Google Scholar 

  27. Hare JM, Loh E, Creager MA, Colucci WS: Nitric oxide inhibits the positive inotropic response to β-adrenergic stimulation in humans with left ventricular dysfunction. Circulation. 1995, 92:2198–2203.

    PubMed  CAS  Google Scholar 

  28. Castro LRV, Verde I, Dermot MF, et al.: Cyclic guanosine monophosphate compartmentalization in rat cardiac myocytes. Circulation 2006, 113:2221–2228.

    Article  PubMed  CAS  Google Scholar 

  29. Kotera J, Fujishige K, Akatsuka H, et al.: Novel alternative splice variants of cGMP-binding cGMP-specific phosphodiesterase. J Biol Chem 1998, 273:26982–26990.

    Article  PubMed  CAS  Google Scholar 

  30. Yanaka N, Kotera J, Ohtsuka A, et al.: Expression, structure and chromosomal localization of the human cGMP-binding cGMP-specific phosphodiesterase PDE5A gene. Eur J Biochem 1998, 255:391–399.

    Article  PubMed  CAS  Google Scholar 

  31. Maurice DH, Palmer D, Tilley DG: Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol 2003, 64:533–546.

    Article  PubMed  CAS  Google Scholar 

  32. Senzaki H, Smith CJ, Juang GJ, et al.: Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 2001, 15:1718–1726.

    Article  PubMed  CAS  Google Scholar 

  33. Takimoto E, Champion HC, Belardi D, et al.: cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 2005, 96:100–109.

    Article  PubMed  CAS  Google Scholar 

  34. Ziolo MT, Lewandowski SJ, Smith JM, et al.: Inhibition of cyclic GMP hydrolysis with zaprinast reduces basal and cyclic AMP-elevated L-type calcium current in guinea-pig ventricular myocytes. Br J Pharmacol 2003, 138:986–994.

    Article  PubMed  CAS  Google Scholar 

  35. Borlaug BA, Melenovsky V, Marhin T, et al.: Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation 2005, 112:2642–2649. Healthy human subjects receiving sildenafil demonstrated diminished dobutamine-induced augmentation of contractility as measured by peak power index and LV ejection fraction. These findings suggest that increasing intracellular cGMP in cardiomyocytes, through inhibition of PDE5, may act as a brake on β-adrenergic signaling by counteracting calcium release from the sarcoplasmic reticulum.

    Article  PubMed  CAS  Google Scholar 

  36. Takimoto E, Champion HC, Li M, et al.: Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005, 11:214–222.

    Article  PubMed  CAS  Google Scholar 

  37. Narula J, Haider N, Virmani R, et al.: Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996, 335:1182–1189.

    Article  PubMed  CAS  Google Scholar 

  38. Singal PK, Iliskovic N: Doxorubicin-induced cardiomyopathy. N Engl J Med 1998, 339:900–905.

    Article  PubMed  CAS  Google Scholar 

  39. Ockaili R, Salloum F, Hawkins J, Kukreja RC: Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol 2002, 283:H1263-H1269.

    PubMed  CAS  Google Scholar 

  40. Kumar D, Kirshenbaum LA, Li T, et al.: Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxid Redox Signal 2001, 3:135–145.

    Article  PubMed  CAS  Google Scholar 

  41. Salloum F, Yin C, Xi L, Kukreja RC: Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 2003, 92:595–597.

    Article  PubMed  CAS  Google Scholar 

  42. Fisher PW, Salloum F, Das A, et al.: Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 2005, 111:1601–1610.

    Article  PubMed  CAS  Google Scholar 

  43. Lepore JJ, Maroo A, Pereira NL, et al.: Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest 2005, 127:1647–1653.

    Article  PubMed  CAS  Google Scholar 

  44. Guazzi M, Tumminello G, Di Marco F, et al.: The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J Am Coll Cardiol 2004, 44:2339–2348.

    Article  PubMed  CAS  Google Scholar 

  45. Guazzi M, Tumminello G, Di Marco F, Guazzi MD: Influences of sildenafil on lung function and hemodynamics in patients with chronic heart failure. Clin Pharmacol Ther 2004, 76:371–378.

    Article  PubMed  CAS  Google Scholar 

  46. Lewis GD, Lachman J, Camuso J, et al.: Sildenafil improves hemodynamics and exercise tolerance in patients with advanced heart failure. Circulation 2006, In press.

  47. Bocchi EA, Guimaraes G, Mocelin A, et al.: Sildenafil effects on exercise, neurohormonal activation, and erectile dysfunction in congestive heart failure: a double-blind, placebo-controlled, randomized study followed by a prospective treatment for erectile dysfunction. Circulation 2002, 106:1097–1103.

    Article  PubMed  Google Scholar 

  48. Cohn JN, Archibald DG, Ziesche S, et al.: Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med 1986, 314:1547–1552.

    Article  PubMed  CAS  Google Scholar 

  49. Cheitlin MD, Hutter AM Jr, Brindis RG, et al.: Use of sildenafil (Viagra) in patients with cardiovascular disease. Technology and Practice Executive Committee. Circulation 1999, 99:168–177.

    PubMed  CAS  Google Scholar 

  50. Webster LJ, Michelakis ED, Davis T, et al.: Use of sildenafil for safe improvement of erectile function and quality of life in men with New York Heart Association classes II and III congestive heart failure: a prospective, placebo-controlled, double-blind crossover trial. Arch Intern Med 2004, 164:514–520.

    Article  PubMed  CAS  Google Scholar 

  51. Katz SD, Parker JD, Glasser DB, et al.: Efficacy and safety of sildenafil citrate in men with erectile dysfunction and chronic heart failure. Am J Cardiol 2005, 95:36–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Semigran MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, G.D., Semigran, M.J. The emerging role for type 5 phosphodiesterase inhibition in heart failure. Curr Heart Fail Rep 3, 123–128 (2006). https://doi.org/10.1007/s11897-006-0011-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-006-0011-0

Keywords

Navigation