Skip to main content

Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 243))

Abstract

An important hallmark of cardiac failure is abnormal second messenger signaling due to impaired synthesis and catabolism of cyclic adenosine 3′,5′- monophosphate (cAMP) and cyclic guanosine 3′,5′- monophosphate (cGMP). Their dysregulation, altered intracellular targeting, and blunted responsiveness to stimulating pathways all contribute to pathological remodeling, muscle dysfunction, reduced cell survival and metabolism, and other abnormalities. Therapeutic enhancement of either cyclic nucleotides can be achieved by stimulating their synthesis and/or by suppressing members of the family of cyclic nucleotide phosphodiesterases (PDEs). The heart expresses seven of the eleven major PDE subtypes – PDE1, 2, 3, 4, 5, 8, and 9. Their differential control over cAMP and cGMP signaling in various cell types, including cardiomyocytes, provides intriguing therapeutic opportunities to counter heart disease. This review examines the roles of these PDEs in the failing and hypertrophied heart and summarizes experimental and clinical data that have explored the utility of targeted PDE inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo CM et al (2010) Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 107:19079–19083

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad F et al (2015) Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem 290:6763–6776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert CL, Sleeper M, Sweeney HL (2012) Abstract 9504: phosphodiesterase modulation of cardiomyopathy in Murine and Canine models of muscular dystrophy treated with sildenafil and tadalafil. Circulation 126:A9504

    Google Scholar 

  • Andersen RO et al (2012) Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts. Dev Biol 363:258–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beca S et al (2013) Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ Res 112:289–297

    Article  CAS  PubMed  Google Scholar 

  • Behling A et al (2008) Effects of 5′-phosphodiesterase four-week long inhibition with sildenafil in patients with chronic heart failure: a double-blind, placebo-controlled clinical trial. J Card Fail 14:189–197

    Article  CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  • Bishu K et al (2011) Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 124:2882–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobin P et al (2016) Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by cAMP-phosphodiesterase inhibitors. Cardiovasc Res 110:151–161

    Article  PubMed  Google Scholar 

  • Brenman JE et al (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752

    Article  CAS  PubMed  Google Scholar 

  • Chen W et al (2016) Endothelial actions of ANP enhance myocardial inflammatory infiltration in the early phase after acute infarction. Circ Res 119:237–248

    Article  CAS  PubMed  Google Scholar 

  • Chung YW et al (2015) Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci U S A 112:E2253–E2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin JD et al (2000) Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem 267:2760–2767

    Article  CAS  PubMed  Google Scholar 

  • Cuffe MS et al (2002) Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA 287:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Cygnar KD, Zhao H (2009) Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat Neurosci 12:454–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Xi L, Kukreja RC (2008) Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. J Biol Chem 283:29572–29585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degen CV et al (2015) The emperor’s new clothes: PDE5 and the heart. PLoS One 10, e0118664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DiBianco R et al (1989) A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. N Engl J Med 320:677–683

    Article  CAS  PubMed  Google Scholar 

  • Ding B et al (2005) Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation 111:2469–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duinen MV et al (2015) Treatment of cognitive impairment in schizophrenia: potential value of phosphodiesterase inhibitors in prefrontal dysfunction. Curr Pharm Des 21:3813–3828

    Article  PubMed  CAS  Google Scholar 

  • Esseltine JL, Scott JD (2013) AKAP signaling complexes: pointing towards the next generation of therapeutic targets? Trends Pharmacol Sci 34:648–655

    Article  CAS  PubMed  Google Scholar 

  • Fields LA, Koschinski A, Zaccolo M (2016) Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes. Cell Signal 28:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischmeister R et al (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828

    Article  CAS  PubMed  Google Scholar 

  • Fisher DA et al (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem 273:15559–15564

    Article  CAS  PubMed  Google Scholar 

  • Francis SH et al (2002) Phosphorylation of isolated human phosphodiesterase-5 regulatory domain induces an apparent conformational change and increases cGMP binding affinity. J Biol Chem 277:47581–47587

    Article  CAS  PubMed  Google Scholar 

  • Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiol Rev 91:651–690

    Article  CAS  PubMed  Google Scholar 

  • Ghofrani HA et al (2004) Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J Am Coll Cardiol 44:1488–1496

    CAS  PubMed  Google Scholar 

  • Giannetta E et al (2012) Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 125:2323–2333

    Article  CAS  PubMed  Google Scholar 

  • Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375

    Article  CAS  PubMed  Google Scholar 

  • Guazzi M et al (2011) Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation 124:164–174

    Article  CAS  PubMed  Google Scholar 

  • Hammers DW et al (2016) Tadalafil treatment delays the onset of cardiomyopathy in dystrophin-deficient hearts. J Am Heart Assoc 5, e003911

    Article  PubMed  PubMed Central  Google Scholar 

  • Haynes MP et al (2000) Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 87:677–682

    Article  CAS  PubMed  Google Scholar 

  • Heckman PR, Wouters C, Prickaerts J (2015) Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer’s disease: a translational overview. Curr Pharm Des 21:317–331

    Article  CAS  PubMed  Google Scholar 

  • Ho JE et al (2014) Effect of phosphodiesterase inhibition on insulin resistance in obese individuals. J Am Heart Assoc 3, e001001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoendermis ES et al (2015) Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J 36:2565–2573

    Article  PubMed  Google Scholar 

  • Kentish JC et al (2001) Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res 88:1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Kim KH et al (2015) PDE 5 inhibition with udenafil improves left ventricular systolic/diastolic functions and exercise capacity in patients with chronic heart failure with reduced ejection fraction; A 12-week, randomized, double-blind, placebo-controlled trial. Am Heart J 169(813–822), e3

    Google Scholar 

  • Kinoshita H et al (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106:1849–1860

    Article  CAS  PubMed  Google Scholar 

  • Knight WE et al (2014) Abstract 25: the role of cAMP-phosphodiesterase 1C signaling in pathological cardiac remodeling and dysfunction. Circ Res 115:A25

    Google Scholar 

  • Kobayashi K et al (2007) Relation of spasms and myoclonus to suppression-burst on EEG in epileptic encephalopathy in early infancy. Neuropediatrics 38:244–250

    Article  CAS  PubMed  Google Scholar 

  • Koitabashi N et al (2010) Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation Novel mechanism of cardiac stress modulation by PDE5 inhibition. J Mol Cell Cardiol 48:713–724

    Article  CAS  PubMed  Google Scholar 

  • Lee DI et al (2015) Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy J et al (2008) Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ Res 102:1091–1100

    Article  CAS  PubMed  Google Scholar 

  • Leung SW et al (2007) Non-genomic vascular actions of female sex hormones: physiological implications and signalling pathways. Clin Exp Pharmacol Physiol 34:822–826

    Article  CAS  PubMed  Google Scholar 

  • Leung DG et al (2014) Sildenafil does not improve cardiomyopathy in Duchenne/Becker muscular dystrophy. Ann Neurol 76:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis GD et al (2007) Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116:1555–1562

    Article  CAS  PubMed  Google Scholar 

  • Loufrani L, Levy BI, Henrion D (2002) Defect in microvascular adaptation to chronic changes in blood flow in mice lacking the gene encoding for dystrophin. Circ Res 91:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Loughney K et al (1996) Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated, 3′,5′-cyclic nucleotide phosphodiesterases. J Biol Chem 271:796–806

    Article  CAS  PubMed  Google Scholar 

  • Lu Z et al (2010) Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation 121:1474–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukowski R et al (2010) Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc Natl Acad Sci U S A 107:5646–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  CAS  PubMed  Google Scholar 

  • Martins TJ, Mumby MC, Beavo JA (1982) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 257:1973–1979

    CAS  PubMed  Google Scholar 

  • Maurice DH et al (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meacci E et al (1992) Molecular cloning and expression of human myocardial cGMP-inhibited cAMP phosphodiesterase. Proc Natl Acad Sci U S A 89:3721–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehel H et al (2013) Phosphodiesterase-2 is up-regulated in human failing hearts and blunts beta-adrenergic responses in cardiomyocytes. J Am Coll Cardiol 62:1596–1606

    Article  CAS  PubMed  Google Scholar 

  • Metra M et al (2009) Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J 30:3015–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mika D et al (2013) Differential regulation of cardiac excitation-contraction coupling by cAMP phosphodiesterase subtypes. Cardiovasc Res 100:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CL et al (2009) Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res 105:956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CL et al (2011) Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. Basic Res Cardiol 106:1023–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongillo M et al (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234

    Article  CAS  PubMed  Google Scholar 

  • Movsesian M, Wever-Pinzon O, Vandeput F (2011) PDE3 inhibition in dilated cardiomyopathy. Curr Opin Pharmacol 11:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy RM et al (2011) Exercise oscillatory ventilation in systolic heart failure: an indicator of impaired hemodynamic response to exercise. Circulation 124:1442–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagayama T et al (2007) Control of in vivo left ventricular [correction] contraction/relaxation kinetics by myosin binding protein C: protein kinase A phosphorylation dependent and independent regulation. Circulation 116:2399–2408

    Article  CAS  PubMed  Google Scholar 

  • Nagayama T et al (2008) Sustained soluble guanylate cyclase stimulation offsets nitric-oxide synthase inhibition to restore acute cardiac modulation by sildenafil. J Pharmacol Exp Ther 326:380–387

    Article  CAS  PubMed  Google Scholar 

  • Nagayama T et al (2009) Pressure-overload magnitude-dependence of the anti-hypertrophic efficacy of PDE5A inhibition. J Mol Cell Cardiol 46:560–567

    Article  CAS  PubMed  Google Scholar 

  • Nagendran J et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116:238–248

    Article  CAS  PubMed  Google Scholar 

  • Nakano SJ et al (2016) Cardiac adenylyl cyclase and phosphodiesterase expression profiles vary by age, disease, and chronic phosphodiesterase inhibitor treatment. J Card Fail

    Google Scholar 

  • Nelson MD et al (2014) PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 82:2085–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida M et al (2010) Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J Biol Chem 285:13244–13253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nygren PJ, Scott JD (2015) Therapeutic strategies for anchored kinases and phosphatases: exploiting short linear motifs and intrinsic disorder. Front Pharmacol 6:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oikawa M et al (2013) Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 64:11–19

    Article  CAS  PubMed  Google Scholar 

  • Packer M et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 325:1468–1475

    Article  CAS  PubMed  Google Scholar 

  • Pokreisz P et al (2009) Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 119:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez CE et al (2015) Treatment with Sildenafil Improves Insulin Sensitivity in Prediabetes: a Randomized. Control Trial J Clin Endocrinol Metab 100:4533–4540

    Article  CAS  PubMed  Google Scholar 

  • Ranek MJ et al (2013) Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redfield MM et al (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–1277

    Article  CAS  PubMed  Google Scholar 

  • Reiken SR et al (2003) PKA phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts: role of phosphatases and response to isoproterenol. J Biol Chem 278(1):444–453

    Article  CAS  PubMed  Google Scholar 

  • Rosman GJ et al (1997) Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic nucleotide phosphodiesterase. Gene 191:89–95

    Article  CAS  PubMed  Google Scholar 

  • Rybalkin SD et al (2003) PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 22:469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadhu K et al (1999) Differential expression of the cyclic GMP-stimulated phosphodiesterase PDE2A in human venous and capillary endothelial cells. J Histochem Cytochem 47:895–906

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H et al (2014) PDE5 inhibitor efficacy is estrogen dependent in female heart disease. J Clin Invest 124:2464–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada N et al (2001) cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys Res Commun 280:798–805

    Article  CAS  PubMed  Google Scholar 

  • Seo K et al (2014) Hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation. Circ Res 114:823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah SJ et al (2016) Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134:73–90

    Article  PubMed  Google Scholar 

  • Shan X et al (2012) Differential expression of PDE5 in failing and nonfailing human myocardium. Circ Heart Fail 5:79–86

    Article  CAS  PubMed  Google Scholar 

  • Shimizu-Albergine M et al (2012) cAMP-specific phosphodiesterases 8A and 8B, essential regulators of Leydig cell steroidogenesis. Mol Pharmacol 81:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CJ et al (1997) Development of decompensated dilated cardiomyopathy is associated with decreased gene expression and activity of the milrinone-sensitive cAMP phosphodiesterase PDE3A. Circulation 96:3116–23

    Article  CAS  PubMed  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA (1998) Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem 273:15553–15558

    Article  CAS  PubMed  Google Scholar 

  • Stelzer JE, Patel JR, Moss RL (2006) Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C. Circ Res 99:884–890

    Article  CAS  PubMed  Google Scholar 

  • Sun B et al (2007) Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell Signal 19:1765–1771

    Article  CAS  PubMed  Google Scholar 

  • Surks HK et al (1999) Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science 286:1583–1587

    Article  CAS  PubMed  Google Scholar 

  • Tadalafil and Sildenafil for Duchenne Muscular Dystrophy Clinicaltrials.gov: NCT01359670

    Google Scholar 

  • Takimoto E et al (2005a) cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 96:100–109

    Article  CAS  PubMed  Google Scholar 

  • Takimoto E et al (2005b) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222

    Article  CAS  PubMed  Google Scholar 

  • Takimoto E et al (2009) Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J Clin Invest 119:408–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tokudome T et al (2008) Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart. Circulation 117:2329–2339

    Article  CAS  PubMed  Google Scholar 

  • Umar S, van der Laarse A (2010) Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol Cell Biochem 333:191–201

    Article  CAS  PubMed  Google Scholar 

  • van Heerebeek L et al (2012) Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126:830–839

    Article  PubMed  CAS  Google Scholar 

  • Vandecasteele G et al (2001) Cyclic GMP regulation of the L-type Ca(2+) channel current in human atrial myocytes. J Physiol 533:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeput F et al (2007) Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes. J Biol Chem 282:32749–32757

    Article  CAS  PubMed  Google Scholar 

  • Vandeput F et al (2013) Selective regulation of cyclic nucleotide phosphodiesterase PDE3A isoforms. Proc Natl Acad Sci U S A 110:19778–19783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verde I et al (1999) Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Br J Pharmacol 127:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenwijngaert S et al (2013) Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy contribute to adverse LV remodeling. PLoS One 8, e58841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P et al (2003) Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5). Differential tissue distribution and subcellular localization of PDE9A variants. Gene 314:15–27

    Article  CAS  PubMed  Google Scholar 

  • Wechsler J et al (2002) Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. J Biol Chem 277:38072–38078

    Article  CAS  PubMed  Google Scholar 

  • Weishaar RE et al (1987) Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res 61:539–547

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki R et al (2002) Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90:1181–1188

    Article  CAS  PubMed  Google Scholar 

  • Yan C et al (2007) Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop. Circ Res 100:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanaka N et al (2003) cGMP-phosphodiesterase activity is up-regulated in response to pressure overload of rat ventricles. Biosci Biotechnol Biochem 67:973–979

    Article  CAS  PubMed  Google Scholar 

  • Zaccolo M (2009) cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 158:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  CAS  PubMed  Google Scholar 

  • Zhang M et al (2008) Expression, activity, and pro-hypertrophic effects of PDE5A in cardiac myocytes. Cell Signal 20:2231–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M et al (2010) Myocardial remodeling is controlled by myocyte-targeted gene regulation of phosphodiesterase type 5. J Am Coll Cardiol 56:2021–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao CY, Greenstein JL, Winslow RL (2016) Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol 91:215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoccarato A et al (2015) Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2. Circ Res 117:707–719

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Kass MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, G.E., Kass, D.A. (2016). Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease. In: Bauersachs, J., Butler, J., Sandner, P. (eds) Heart Failure. Handbook of Experimental Pharmacology, vol 243. Springer, Cham. https://doi.org/10.1007/164_2016_82

Download citation

Publish with us

Policies and ethics