Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506. https://doi.org/10.1038/nrgastro.2014.66.
Article
PubMed
Google Scholar
Terciolo C, Dapoigny M, Andre F. Beneficial effects of Saccharomyces boulardii CNCM I-745 on clinical disorders associated with intestinal barrier disruption. Clin Exp Gastroenterol. 2019;12:67–82. https://doi.org/10.2147/ceg.S181590.
CAS
Article
PubMed
PubMed Central
Google Scholar
Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017;11(9):821–34. https://doi.org/10.1080/17474124.2017.1343143.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J-D, Serino M, et al. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. https://doi.org/10.1186/s12876-014-0189-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533.
CAS
Article
PubMed
PubMed Central
Google Scholar
Press AG, Hauptmann IA, Hauptmann L, Fuchs B, Fuchs M, Ewe K, et al. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 1998;12(7):673–8.
CAS
Article
PubMed
Google Scholar
Guerra A, Etienne-Mesmin L, Livrelli V, Denis S, Blanquet-Diot S, Alric M. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 2012;30(11):591–600. https://doi.org/10.1016/j.tibtech.2012.08.001.
CAS
Article
PubMed
Google Scholar
Ahuja M, Schwartz DM, Tandon M, Son A, Zeng M, Swaim W, et al. Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab. 2017;25(3):635–46. https://doi.org/10.1016/j.cmet.2017.02.007.
CAS
Article
PubMed
PubMed Central
Google Scholar
Derrien M, van Hylckama Vlieg JE. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015;23(6):354–66. https://doi.org/10.1016/j.tim.2015.03.002.
CAS
Article
PubMed
Google Scholar
Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. Isme J. 2016;10:2235–45. https://doi.org/10.1038/ismej.2016.13.
Article
PubMed
PubMed Central
Google Scholar
• Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148. https://doi.org/10.3389/fgene.2015.00148 Human gut microbes contain genomic pathways to synthesize B vitamins.
CAS
Article
PubMed
PubMed Central
Google Scholar
Albert MJ, Mathan VI, Baker SJ. Vitamin B12 synthesis by human small intestinal bacteria. Nature. 1980;283(5749):781–2. https://doi.org/10.1038/283781a0.
CAS
Article
PubMed
Google Scholar
Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One. 2017;12(6):e0179586. https://doi.org/10.1371/journal.pone.0179586.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J Immunol. 2017;199(8):2976–84. https://doi.org/10.4049/jimmunol.1700105.
CAS
Article
PubMed
Google Scholar
Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 2019;50(2):432–45.e7. https://doi.org/10.1016/j.immuni.2018.12.018.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sakata T. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr. 1987;58(1):95–103. https://doi.org/10.1079/BJN19870073.
CAS
Article
PubMed
Google Scholar
Wu W, Xiao Z, An W, Dong Y, Zhang B. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PLoS One. 2018;13(5):e0197762. https://doi.org/10.1371/journal.pone.0197762.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ford AC, Harris LA, Lacy BE, Quigley EMM, Moayyedi P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. 2018;48(10):1044–60. https://doi.org/10.1111/apt.15001.
Article
Google Scholar
Ganji-Arjenaki M, Rafieian-Kopaei M. Probiotics are a good choice in remission of inflammatory bowel diseases: a meta-analysis and systematic review. J Cell Physiol. 2018;233(3):2091–103. https://doi.org/10.1002/jcp.25911.
CAS
Article
PubMed
Google Scholar
Johnston BC, Lytvyn L, Lo CK, Allen SJ, Wang D, Szajewska H, et al. Microbial preparations (probiotics) for the prevention of Clostridium difficile infection in adults and children: An individual patient data Meta-analysis of 6,851 participants. Infect Control Hosp Epidemiol. 2018;39(7):771–81. https://doi.org/10.1017/ice.2018.84.
Article
PubMed
Google Scholar
Huang R, Wang K, Hu J. Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2016;8(8):483. https://doi.org/10.3390/nu8080483.
Article
PubMed Central
Google Scholar
McFarland LV, Evans CT, Goldstein EJC. Strain-specificity and disease-specificity of probiotic efficacy: a systematic review and meta-analysis. Front Med (Lausanne). 2018;5(124). https://doi.org/10.3389/fmed.2018.00124.
Braga VL, Rocha L, Bernardo DD, Cruz CO, Riera R. What do Cochrane systematic reviews say about probiotics as preventive interventions? Sao Paulo Med J. 2017. https://doi.org/10.1590/1516-3180.2017.0310241017.
Article
PubMed
Google Scholar
Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017;61(1):1600240. https://doi.org/10.1002/mnfr.201600240.
CAS
Article
Google Scholar
Su Y, Chen X, Liu M, Guo X. Effect of three lactobacilli with strain-specific activities on the growth performance, faecal microbiota and ileum mucosa proteomics of piglets. J Anim Sci Biotechnol. 2017;8:52. https://doi.org/10.1186/s40104-017-0183-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Yang GY, Yu J, Su JH, Jiao LG, Liu X, Zhu YH. Oral administration of Lactobacillus rhamnosus GG ameliorates Salmonella Infantis-induced inflammation in a pig model via activation of the IL-22BP/IL-22/STAT3 pathway. Front Cell Infect Microbiol. 2017;7:323. https://doi.org/10.3389/fcimb.2017.00323 Proactive administration of probiotics supported the immune system’s ability to defend the host against pathogenic microbes.
CAS
Article
PubMed
PubMed Central
Google Scholar
Capurso L. Thirty years of Lactobacillus rhamnosus GG: a review. J Clin Gastroenterol. 2019;53(Suppl 1):S1–s41. https://doi.org/10.1097/mcg.0000000000001170.
CAS
Article
PubMed
Google Scholar
Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target? Nature Reviews Gastroenterology &Amp. Hepatology. 2016;14:9. https://doi.org/10.1038/nrgastro.2016.169.
CAS
Article
Google Scholar
Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Investig Dermatol. 2007;127(11):2525–32. https://doi.org/10.1038/sj.jid.5700865.
CAS
Article
PubMed
Google Scholar
Dignass AU. Mechanisms and modulation of intestinal epithelial repair. Inflamm Bowel Dis. 2001;7(1):68–77. https://doi.org/10.1097/00054725-200102000-00014.
CAS
Article
PubMed
Google Scholar
Rao RK, Samak G. Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci. 2013;9(2):99–107.
CAS
Article
PubMed
PubMed Central
Google Scholar
• Yi H, Wang L, Xiong Y, Wen X, Wang Z, Yang X, et al. Effects of Lactobacillus reuteri LR1 on the growth performance, intestinal morphology, and intestinal barrier function in weaned pigs. J Anim Sci. 2018;96(6):2342–51. https://doi.org/10.1093/jas/sky129 Probiotics maintained growth and structural integrity of small intestine physiology when challenged with an antibiotic.
Article
PubMed
PubMed Central
Google Scholar
Cui Y, Liu L, Dou X, Wang C, Zhang W, Gao K, et al. Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide. Oncotarget. 2017;8(44):77489–99. https://doi.org/10.18632/oncotarget.20536.
Article
PubMed
PubMed Central
Google Scholar
Kim SH, Jeung W, Choi ID, Jeong JW, Lee DE, Huh CS, et al. Lactic acid Bacteria improves Peyer’s patch cell-mediated immunoglobulin a and tight-junction expression in a destructed gut microbial environment. J Microbiol Biotechnol. 2016;26(6):1035–45. https://doi.org/10.4014/jmb.1512.12002.
CAS
Article
PubMed
Google Scholar
Ren C, Dokter-Fokkens J, Figueroa Lozano S, Zhang Q, de Haan BJ, Zhang H, et al. Lactic acid bacteria may impact intestinal barrier function by modulating goblet cells. Mol Nutr Food Res. 2018;62(6):1700572. https://doi.org/10.1002/mnfr.201700572.
CAS
Article
PubMed Central
Google Scholar
Chen L, Li H, Li J, Chen Y, Yang Y. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis. Int J Mol Med. 2019;43(3):1139–48. https://doi.org/10.3892/ijmm.2019.4050.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dukowicz AC, Lacy BE, Levine GM. Small intestinal bacterial overgrowth: a comprehensive review. Gastroenterol Hepatol (N Y). 2007;3(2):112–22.
Google Scholar
Quigley EM, Fried M, Gwee KA, Khalif I, Hungin AP, Lindberg G, et al. World gastroenterology organisation global guidelines irritable bowel syndrome: a global perspective update September 2015. J Clin Gastroenterol. 2016;50(9):704–13. https://doi.org/10.1097/mcg.0000000000000653.
Article
PubMed
Google Scholar
Saffouri GB, Shields-Cutler RR, Chen J, Yang Y, Lekatz HR, Hale VL, et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun. 2019;10(1):2012. https://doi.org/10.1038/s41467-019-09964-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fine KD, Schiller LR. AGA technical review on the evaluation and management of chronic diarrhea. Gastroenterology. 1999;116(6):1464–86. https://doi.org/10.1016/S0016-5085(99)70513-5.
CAS
Article
PubMed
Google Scholar
Bouhnik Y, Alain S, Attar A, Flourie B, Raskine L, Sanson-Le Pors MJ, et al. Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome. Am J Gastroenterol. 1999;94(5):1327–31. https://doi.org/10.1111/j.1572-0241.1999.01016.x.
CAS
Article
PubMed
Google Scholar
Gatta L, Scarpignato C. Systematic review with meta-analysis: rifaximin is effective and safe for the treatment of small intestine bacterial overgrowth. Aliment Pharmacol Ther. 2017;45(5):604–16. https://doi.org/10.1111/apt.13928.
CAS
Article
PubMed
PubMed Central
Google Scholar
Barkin JA, Keihanian T, Barkin JS, Antequera CM, Moshiree B. Preferential usage of rifaximin for the treatment of hydrogen-positive small intestinal bacterial overgrowth. Rev Gastroenterol Peru. 2019;39(2):111–5.
PubMed
Google Scholar
Grace E, Shaw C, Whelan K, Andreyev HJN. Review article: small intestinal bacterial overgrowth – prevalence, clinical features, current and developing diagnostic tests, and treatment. Aliment Pharmacol Ther. 2013;38(7):674–88. https://doi.org/10.1111/apt.12456.
CAS
Article
PubMed
Google Scholar
Zhong C, Qu C, Wang B, Liang S, Zeng B. Probiotics for preventing and treating small intestinal bacterial overgrowth: a meta-analysis and systematic review of current evidence. J Clin Gastroenterol. 2017;51(4):300–11. https://doi.org/10.1097/mcg.0000000000000814.
CAS
Article
PubMed
Google Scholar
Kumar K, Saadi M, Ramsey FV, Schey R, Parkman HP. Effect of Bifidobacterium infantis 35624 (align) on the lactulose breath test for small intestinal bacterial overgrowth. Dig Dis Sci. 2018;63(4):989–95. https://doi.org/10.1007/s10620-018-4945-3.
Article
PubMed
Google Scholar
Aziz I, Tornblom H, Simren M. Small intestinal bacterial overgrowth as a cause for irritable bowel syndrome: guilty or not guilty? Curr Opin Gastroenterol. 2017;33(3):196–202. https://doi.org/10.1097/mog.0000000000000348.
Article
PubMed
Google Scholar
Stanghellini V. Functional dyspepsia and irritable bowel syndrome: beyond Rome IV. Dig Dis (Basel, Switzerland). 2017;35(Suppl 1):14–7. https://doi.org/10.1159/000485408.
Article
Google Scholar
Principi N, Cozzali R, Farinelli E, Brusaferro A, Esposito S. Gut dysbiosis and irritable bowel syndrome: the potential role of probiotics. J Infect. 2018;76(2):111–20. https://doi.org/10.1016/j.jinf.2017.12.013.
Article
PubMed
Google Scholar
Catinean A, Neag AM, Nita A, Buzea M, Buzoianu AD. Bacillus spp. spores-A promising treatment option for patients with irritable bowel syndrome. Nutrients. 2019;11(9). https://doi.org/10.3390/nu11091968.
Article
PubMed Central
Google Scholar
Dunlop SP, Hebden J, Campbell E, Naesdal J, Olbe L, Perkins AC, et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am J Gastroenterol. 2006;101(6):1288–94. https://doi.org/10.1111/j.1572-0241.2006.00672.x.
Article
PubMed
Google Scholar
Goswami P, Das P, Verma AK, Prakash S, Das TK, Nag TC, et al. Are alterations of tight junctions at molecular and ultrastructural level different in duodenal biopsies of patients with celiac disease and Crohn’s disease? Virchows Arch. 2014;465(5):521–30. https://doi.org/10.1007/s00428-014-1651-1.
CAS
Article
PubMed
Google Scholar
Dunne WT, Cooke WT, Allan RN. Enzymatic and morphometric evidence for Crohn’s disease as a diffuse lesion of the gastrointestinal tract. Gut. 1977;18(4):290–4. https://doi.org/10.1136/gut.18.4.290.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Pérez-Torras S, Iglesias I, Llopis M, Lozano JJ, Antolín M, Guarner F, et al. Transportome profiling identifies profound alterations in Crohn’s disease partially restored by commensal bacteria. J Crohn’s Colitis. 2016;10(7):850–9. https://doi.org/10.1093/ecco-jcc/jjw042 Dysregulated transporters are found in Crohn’s disease, and beneficial commensal gut bacteria can improve function.
Article
Google Scholar
Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, et al. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol. 2014;52(2):398–406. https://doi.org/10.1128/jcm.01500-13.
Article
PubMed
PubMed Central
Google Scholar
• Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92. https://doi.org/10.1016/j.chom.2014.02.005 Mucosal sampling of Crohn’s disease reveals a distrinct microbial profile with a reduction in butyrate producing bacteria.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review. Inflamm Bowel Dis. 2015;21(6):1219–28. https://doi.org/10.1097/mib.0000000000000382.
Article
PubMed
Google Scholar
De Cruz P, Kang S, Wagner J, Buckley M, Sim WH, Prideaux L, et al. Association between specific mucosa-associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study. J Gastroenterol Hepatol. 2015;30(2):268–78. https://doi.org/10.1111/jgh.12694.
Article
PubMed
Google Scholar
Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep. 2017;7(1):11450. https://doi.org/10.1038/s41598-017-11734-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther. 2017;46(4):389–400. https://doi.org/10.1111/apt.14203.
CAS
Article
PubMed
Google Scholar
Langella P, Guarner F, Martín R. Editorial: next-generation probiotics: from commensal bacteria to novel drugs and food supplements. Front Microbiol. 2019;10(1973). https://doi.org/10.3389/fmicb.2019.01973.
Sjöberg F, Barkman C, Nookaew I, Östman S, Adlerberth I, Saalman R, et al. Low-complexity microbiota in the duodenum of children with newly diagnosed ulcerative colitis. PLoS One. 2017;12(10):e0186178. https://doi.org/10.1371/journal.pone.0186178.
CAS
Article
PubMed
PubMed Central
Google Scholar
Taylor L, Almutairdi A, Shommu N, Fedorak R, Ghosh S, Reimer RA, et al. Cross-sectional analysis of overall dietary intake and Mediterranean dietary pattern in patients with Crohn’s disease. Nutrients. 2018;10(11). https://doi.org/10.3390/nu10111761.
Article
PubMed Central
Google Scholar
Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe. 2018;23(4):458–69.e5. https://doi.org/10.1016/j.chom.2018.03.011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fan P, Liu P, Song P, Chen X, Ma X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci Rep. 2017;7:43412. https://doi.org/10.1038/srep43412.
Article
PubMed
PubMed Central
Google Scholar
Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: impact of low calorie sweeteners and the link to insulin resistance? Physiol Behav. 2016;164(Pt B):488–93. https://doi.org/10.1016/j.physbeh.2016.04.029.
CAS
Article
PubMed
Google Scholar
Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66(8):1414–27. https://doi.org/10.1136/gutjnl-2016-313099.
CAS
Article
PubMed
Google Scholar
Tuohy KM, Conterno L, Gasperotti M, Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem. 2012;60(36):8776–82. https://doi.org/10.1021/jf2053959.
CAS
Article
PubMed
Google Scholar
Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND, et al. The effects of vegetarian and vegan diets on gut microbiota. Front Nutr. 2019;6:47. https://doi.org/10.3389/fnut.2019.00047.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zinocker MK, Lindseth IA. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients. 2018;10(3). https://doi.org/10.3390/nu10030365.
Article
PubMed Central
Google Scholar
Benjamin J, Makharia GK, Kalaivani M, Joshi YK. Nutritional status of patients with Crohn's disease. Indian J Gastroenterol. 2008;27(5):195–200.
PubMed
Google Scholar
Fabisiak N, Fabisiak A, Watala C, Fichna J. Fat-soluble vitamin deficiencies and inflammatory bowel disease: systematic review and meta-analysis. J Clin Gastroenterol. 2017;51(10):878–89. https://doi.org/10.1097/mcg.0000000000000911.
CAS
Article
PubMed
Google Scholar
Tuddenham S, Sears CL. The intestinal microbiome and health. Curr Opin Infect Dis. 2015;28(5):464–70. https://doi.org/10.1097/QCO.0000000000000196.
CAS
Article
PubMed
PubMed Central
Google Scholar
Blutt SE, Crawford SE, Ramani S, Zou WY, Estes MK. Engineered human gastrointestinal cultures to study the microbiome and infectious diseases. Cell Mol Gastroenterol Hepatol. 2017;5(3):241–51. https://doi.org/10.1016/j.jcmgh.2017.12.001.
Article
PubMed
PubMed Central
Google Scholar
Wang L, Llorente C, Hartmann P, Yang A-M, Chen P, Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods. 2015;421:44–53. https://doi.org/10.1016/j.jim.2014.12.015.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dorshow RB, Johnson JR, Debreczeny MP, Riley IR, Shieh J-J, Rogers TE et al. Noninvasive point-of-care measurement of gastrointestinal permeability. SPIE BiOS SPIE; 2019.