Skip to main content
Log in

Using Genetics to Identify Hereditary Colorectal Polyposis and Cancer Syndromes in Your Patient

  • Large Intestine (B Cash, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

The majority of patients with colorectal polyps and cancer do not have a Mendelian cause of the disease. Age, lifestyle, and environmental factors interact with complex genetic traits to contribute to the etiology. However, approximately 5–10 % of patients with colorectal cancer (CRC) and more than 40 % of patients meeting specific clinical features of the hereditary polyposis syndromes have a discoverable, actionable genetic cause which will significantly alter their medical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vasen HF, Mecklin JP, Khan PM, et al. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34:424–5.

    Article  CAS  PubMed  Google Scholar 

  2. Vasen HF, Watson P, Mecklin JP, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116:1453–6.

    Article  CAS  PubMed  Google Scholar 

  3. Syngal S, Fox EA, Eng C, et al. Sensitivity and specificity of clinical criteria for hereditary non-polyposis colorectal cancer associated mutations in MSH2 and MLH1. J Med Genet. 2000;37:641–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352:1851–60.

    Article  CAS  PubMed  Google Scholar 

  5. Macaron C, Leach BH, Burke CA. Hereditary colorectal cancer syndromes and genetic testing. J Surg Oncol. 2015;111(1):103–11.

    Article  PubMed  Google Scholar 

  6. Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of lynch syndrome: a consensus statement by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2014;147:502–26. This paper is the latest United States consensus statement on the management of individuals with Lynch syndrome.

    Article  PubMed  Google Scholar 

  7. Yurgelun MB, Goel A, Hornick JL, et al. Microsatellite instability and DNA mismatch repair protein deficiency in Lynch syndrome colorectal polyps. Cancer Prev Res. 2012;5(4):574–82. This paper demonstrates the accuracy of MSI and IHC analysis obtained at endoscopic resection/biopsy of adenomatous polyps in patients with Lynch syndrome.

    Article  CAS  Google Scholar 

  8. Evaluation of Genomic Applications in Practice and Prevention. Recommendation from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 2009 Jane;11(1):35–41.

  9. Rodriguez-Soler M, Perez-Carbonell L, Guarinos C, et al. Risk of cancer in cases of suspected lynch syndrome without germline mutation. Gastroenterology. 2013;144:926–32.

    Article  CAS  PubMed  Google Scholar 

  10. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA, et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology. 2014;146:643–6. Landmark article demonstrating the occurrence and prevalence of bi-allelic somatic mutations in patients with Lynch like syndrome.

    Article  CAS  PubMed  Google Scholar 

  11. Lindor NM, Rabe K, Petersen GM, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293:1979–85. Important paper demonstrating the lower risk of CRC and negative risk of extra-colonic cancers in patients who meet Amsterdam criteria but no evidence of MMR deficiency in their tumors.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bonadona V, Bonaïti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305(22):2304–10.

    Article  CAS  PubMed  Google Scholar 

  13. Hendriks YM, Wagner A, Morreau H, et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology. 2004;127:17–25.

    Article  CAS  PubMed  Google Scholar 

  14. Senter L, Clendenning M, Sotamaa K, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology. 2008;135(2):419–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Edelstein DL, Axilbund J, Baxter M, et al. Rapid development of colorectal neoplasia in patients with Lynch syndrome. Clin Gastroenterol Hepatol. 2011;9(4):340–3.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Syngal S, Brand RE, Church JM, et al. ACG Clinical Guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110:223–62. Latest United States consensus statement on genetic testing and management of hereditary gastrointestinal cancer syndromes.

    Article  PubMed  Google Scholar 

  17. Vasen HF, Blanco I, Aktan-Collan K, et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut. 2013;62(6):812–23. Latest European guidelines on clinical management of Lynch syndrome.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Haanstra JF, Kleibeuker JH, Koornstra JJ. Role of new endoscopic techniques in Lynch syndrome. Familial Cancer. 2013;12(2):267–72.

    Article  PubMed  Google Scholar 

  19. Kamiński MF, Hassan C, Bisschops R, et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy. 2014;46:435–49.

    Article  PubMed  Google Scholar 

  20. Bianchi L, Burke CA, Bennett A, et al. Fundic gland polyp dysplasia is common in familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2008;6:180–5.

    Article  PubMed  Google Scholar 

  21. Jarrar AM, Milas M, Mitchell J, et al. Screening for thyroid cancer in patients with familial adenomatous polyposis. Ann Surg. 2011;253:515–21.

    Article  PubMed  Google Scholar 

  22. Feng X, Milas M, O'Malley M, et al. Characteristics of benign and malignant thyroid disease in familial adenomatous polyposis patients and recommendations for disease surveillance. Thyroid. 2015;25(3):325–32.

    Article  PubMed  Google Scholar 

  23. Tenesa A, Campbell H, Barneston R, et al. Association of MUTYH and colorectal cancer. Br J Cancer. 2006;95:239–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Theodoratou E, Campbell H, Tenesa A, et al. A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. Br J Cancer. 2010;103:1875–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Win AK, Dowty JG, Cleary SP, et al. Risk of colorectal cancer for carriers of mutations in MUTYH with or without a family history of cancer. Gastroenterology. 2014;146:1208–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Palles C, Cazier JB, Howarth KM, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013;45:136–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. NCCN Clinical Practice Guidelines in Oncology. Genetic/familial high-risk assessment: colorectal. Version I.2015. NCCN.org

  28. Aytac E, Sulu B, Heald B, et al. Genotype-defined cancer risk in juvenile polyposis syndrome. Br J Surg. 2015;102(1):114–8.

    Article  CAS  PubMed  Google Scholar 

  29. O’Malley M, LaGuardia L, Kalady MF, et al. The prevalence of hereditary hemorrhagic telangiectasia in juvenile polyposis syndrome. Dis Colon Rectum. 2012;55:886–92.

    Article  PubMed  Google Scholar 

  30. Giardello FM, Brensinger JD, Tersmette A, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119:1447–53.

    Article  Google Scholar 

  31. Heald B, Mester J, Rybicki L, et al. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139:1927–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mester J, Eng C. When overgrowth bumps into cancer: the PTEN-opathies. Am J Med Genet C: Semin Med Genet. 2013;163C:114–21.

    Article  Google Scholar 

  33. Heald B, Church J. Genetic testing for hereditary colorectal cancer syndromes: a significant change in technology and its clinical implications. Color Dis. 2014;16(12):942–6.

    Article  CAS  Google Scholar 

  34. Meder B, Haas J, Keller A, et al. Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies. Circ Cardiovasc Genet. 2011;4(2):110–22.

    Article  CAS  PubMed  Google Scholar 

  35. Pritchard CC, Smith C, Salipante SJ, et al. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn. 2012;14(4):357–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Morgan JE, Carr IM, Sheridan E, et al. Genetic diagnosis of familial breast cancer using clonal sequencing. Hum Mutat. 2010;31(4):484–91.

    Article  CAS  PubMed  Google Scholar 

  37. Hall MJ, Forman AD, Pilarski R, Wiesner G, Giri VN. Gene panel testing for inherited cancer risk. J Natl Compr Cancer Netw. 2014;12(9):1339–46.

  38. Mauer CB, Pirzadeh-Miller SM, Robinson LD, Euhus DM. The integration of next-generation sequencing panels in the clinical cancer genetics practice: an institutional experience. Genet Med 2013.

  39. Kurian AW, Hare EE, Mills MA, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol. 2014;32(19):2001–9.

  40. Stoffel EM, Mangu PB, Gruber SB, et al. Hereditary colorectal cancer syndromes: American Society of Clinical Oncology Clinical Practice Guideline endorsement of the familial risk-colorectal cancer: European Society for Medical Oncology Clinical Practice Guidelines. J Clin Oncol. 2015;33(2):209–17. Latest consensus statement on diagnosis and management of patients with hereditary colorectal cancer.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Carole Macaron, and Carol A. Burke declare that they have no conflict of interest. Brandie Heald is on the Speakers Bureau for Myriad Genetics Laboratory.

Human and Animal Rights and Informed Consent

This article contains studies with human subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Burke.

Additional information

This article is part of the Topical Collection on Large Intestine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macaron, C., Heald, B. & Burke, C.A. Using Genetics to Identify Hereditary Colorectal Polyposis and Cancer Syndromes in Your Patient. Curr Gastroenterol Rep 17, 39 (2015). https://doi.org/10.1007/s11894-015-0463-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-015-0463-z

Keywords

Navigation