Skip to main content

Genetic Knowledge of Colorectal Cancer

  • Chapter
  • First Online:
Colon Polyps and Colorectal Cancer
  • 1222 Accesses

Abstract

Colorectal cancers are a group of diseases caused by genetic predisposition, nutritional habits, lifestyle, and environmental factors. Colorectal cancers may occur due to changes in a number of well-defined colorectal cancer-related genes so far, as well as inherited factors that create familial risk. Of these genetic factors, the ones which are well-defined, highly penetrant, and associated with specific clinical syndromes cause hereditary colorectal cancers. Approximately 5–10% of all colorectal cancers are hereditary. Hereditary colorectal cancers are classified into two main groups as “hereditary non-polyposis colorectal cancer” and “hereditary colorectal cancers with polyposis” according to histopathological evaluation. While hereditary non-polyposis colorectal cancers are mainly associated with mismatch repair genes causing microsatellite instability, hereditary colorectal cancers with polyposis are associated with the APC gene. In the diagnosis of these disorders, the use of “next-generation sequence analysis” of multigene panels improved the diagnosis rates with better cost and time effectiveness. Determining the gene in which the germline mutation is involved is critical since it will guide the genetic counseling and prophylactic follow-up approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riggins GJ, et al. Mad-related genes in the human. Nat Genet. 1996;13(3):347.

    Article  CAS  Google Scholar 

  2. Weinberg RA. The biology of cancer: second international student edition. New York, NY: WW Norton & Company; 2013.

    Book  Google Scholar 

  3. Shi J, et al. Basic characteristics and therapy regimens for colorectal squamous cell carcinoma. Transl Cancer Res. 2018;7(2):268–82.

    Article  Google Scholar 

  4. Lindor NM, et al. Concise handbook of familial cancer susceptibility syndromes. JNCI Monogr. 2008;2008(38):3–93.

    Article  Google Scholar 

  5. Resta R, et al. A new definition of genetic counseling: National Society of Genetic Counselors’ Task Force report. J Genet Couns. 2006;15(2):77–83.

    Article  Google Scholar 

  6. Zhao Y, et al. Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Sci Rep. 2019;9(1):19180.

    Article  CAS  Google Scholar 

  7. Cancer in AFRO. Cancer today. Geneva: WHO; 2018.

    Google Scholar 

  8. Kantor ED, Giovannucci EL. Gene-diet interactions and their impact on colorectal cancer risk. Curr Nutr Rep. 2015;4(1):13–21.

    Article  CAS  Google Scholar 

  9. Figueiredo JC, et al. Genome-wide diet-gene interaction analyses for risk of colorectal cancer. PLoS Genet. 2014;10(4):e1004228.

    Article  CAS  Google Scholar 

  10. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  CAS  Google Scholar 

  11. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135(4):1079–99.

    Article  CAS  Google Scholar 

  12. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138(6):2059–72.

    Article  CAS  Google Scholar 

  13. Sinicrope FA, Sargent DJ. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin Cancer Res. 2012;18(6):1506–12.

    Article  CAS  Google Scholar 

  14. Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(12):686.

    Article  CAS  Google Scholar 

  15. Weisenberger DJ, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787–93.

    Article  CAS  Google Scholar 

  16. Willett CG, et al., Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer (Nature 2012;5). Int J Rad Oncol Biol Phys. 2013;86(1):87.

    Article  Google Scholar 

  17. Brocardo M, Henderson BR. APC shuttling to the membrane, nucleus and beyond. Trends Cell Biol. 2008;18(12):587–96.

    Article  CAS  Google Scholar 

  18. Brocardo M, et al. Mitochondrial targeting of adenomatous polyposis coli protein is stimulated by truncating cancer mutations regulation of Bcl-2 and implications for cell survival. J Biol Chem. 2008;283(9):5950–9.

    Article  CAS  Google Scholar 

  19. Herzig DO, Tsikitis VL. Molecular markers for colon diagnosis, prognosis and targeted therapy. J Surg Oncol. 2015;111(1):96–102.

    Article  Google Scholar 

  20. Toon CW, et al. Immunohistochemistry for myc predicts survival in colorectal cancer. PLoS One. 2014;9(2):e87456.

    Google Scholar 

  21. Atreya CE, et al. PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival. Cancer Med. 2013;2(4):496–506.

    Article  CAS  Google Scholar 

  22. Chen J, et al. BRAF V600E mutation and KRAS codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer. 2014;14(1):802.

    Article  Google Scholar 

  23. Day F, et al. A mutant BRAF V600E-specific immunohistochemical assay: correlation with molecular mutation status and clinical outcome in colorectal cancer. Target Oncol. 2015;10(1):99–109.

    Article  Google Scholar 

  24. Kadowaki S, et al. Prognostic value of KRAS and BRAF mutations in curatively resected colorectal cancer. World J Gastroenterol: WJG. 2015;21(4):1275.

    Article  CAS  Google Scholar 

  25. Li W, et al. Colorectal carcinomas with KRAS codon 12 mutation are associated with more advanced tumor stages. BMC Cancer. 2015;15(1):340.

    Article  CAS  Google Scholar 

  26. Liao X, et al. Prognostic role of PIK3CA mutation in colorectal cancer: cohort study and literature review. Clin Cancer Res. 2012;18(8):2257–68.

    Article  CAS  Google Scholar 

  27. Morkel M, et al. Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget. 2015;6(25):20785.

    Article  Google Scholar 

  28. Rosty C, et al. PIK3CA activating mutation in colorectal carcinoma: associations with molecular features and survival. PLoS One. 2013;8(6):e65479.

    Article  CAS  Google Scholar 

  29. Yaeger R, et al. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin Cancer Res. 2015;21(6):1313–20.

    Article  CAS  Google Scholar 

  30. Popat S, Houlston RS. A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur J Cancer. 2005;41(14):2060–70.

    Article  CAS  Google Scholar 

  31. Munro A, Lain S, Lane D. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br J Cancer. 2005;92(3):434–44.

    Article  CAS  Google Scholar 

  32. Sarli L, et al. Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosome 18q. Dis Colon Rectum. 2004;47(9):1467–82.

    Article  Google Scholar 

  33. Valle L, et al. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol. 2019;247(5):574–88.

    Article  Google Scholar 

  34. Lamlum H, et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s ‘two-hit’ hypothesis. Nat Med. 1999;5(9):1071–5.

    Article  CAS  Google Scholar 

  35. Duraturo F, et al. Genetics, diagnosis and treatment of Lynch syndrome: old lessons and current challenges. Oncol Lett. 2019;17(3):3048–54.

    CAS  Google Scholar 

  36. Blount J, Prakash A. The changing landscape of Lynch syndrome due to PMS2 mutations. Clin Genet. 2018;94(1):61–9.

    Article  CAS  Google Scholar 

  37. Burócziová M. Molecular characteristics of mismatch repair pathway in ovarian cancer. Gynecol Oncol. 2016;132(2):506–12.

    Google Scholar 

  38. Madhusudan S, Wilson DM III. DNA repair and cancer: from bench to clinic. Boca Raton, FL: CRC Press; 2013.

    Book  Google Scholar 

  39. Vasen H, et al. The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34(5):424–5.

    Article  CAS  Google Scholar 

  40. Vasen HF, et al. Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut. 2008;57(5):704–13.

    Article  CAS  Google Scholar 

  41. Vasen HF, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the international collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–6.

    Article  CAS  Google Scholar 

  42. Rodriguez-Bigas MA, et al. A National Cancer Institute workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst. 1997;89(23):1758–62.

    Article  CAS  Google Scholar 

  43. Umar A, et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.

    Article  CAS  Google Scholar 

  44. Lindor NM, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293(16):1979–85.

    Article  CAS  Google Scholar 

  45. Shiovitz S, et al. Characterisation of familial colorectal cancer type X, Lynch syndrome, and non-familial colorectal cancer. Br J Cancer. 2014;111(3):598.

    Article  CAS  Google Scholar 

  46. Moreira L, et al. Identification of Lynch syndrome among patients with colorectal cancer. JAMA. 2012;308(15):1555–65.

    Article  CAS  Google Scholar 

  47. Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options in Oncol. 2015;16(7):30.

    Article  Google Scholar 

  48. Kohlmann W, Gruber SB. Lynch syndrome, in GeneReviews®. Seattle, WA: University of Washington; 2018.

    Google Scholar 

  49. Gausachs M, et al. MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study. Eur J Hum Genet. 2012;20(7):762.

    Article  CAS  Google Scholar 

  50. Thompson BA, et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet. 2014;46(2):107.

    Article  CAS  Google Scholar 

  51. Xavier A, et al. Comprehensive mismatch repair gene panel identifies variants in patients with Lynch-like syndrome. Mol Genet Genomic Med. 2019;7(8):e850.

    Article  CAS  Google Scholar 

  52. Hamilton SR, et al. The molecular basis of Turcot's syndrome. N Engl J Med. 1995;332(13):839–47.

    Article  CAS  Google Scholar 

  53. Neugut AI, Jacobson JS, De Vivo I. Epidemiology of colorectal adenomatous polyps. Cancer Epidemiol Prevent Biomarkers. 1993;2(2):159–76.

    CAS  Google Scholar 

  54. Winawer SJ, et al. A comparison of colonoscopy and double-contrast barium enema for surveillance after polypectomy. N Engl J Med. 2000;342(24):1766–72.

    Article  CAS  Google Scholar 

  55. Aretz S, et al. High proportion of large genomic deletions and a genotype–phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet. 2007;44(11):702–9.

    Article  CAS  Google Scholar 

  56. Bisgaard ML, et al. Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat. 1994;3(2):121–5.

    Article  CAS  Google Scholar 

  57. Campbell W, Spence R, Parks T. Familial adenomatous polyposis. Br J Surg. 1994;81(12):1722–33.

    Article  CAS  Google Scholar 

  58. Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol. 2006;101(2):385.

    Article  Google Scholar 

  59. Moisio A-L, Järvinen H, Peltomäki P. Genetic and clinical characterisation of familial adenomatous polyposis: a population based study. Gut. 2002;50(6):845–50.

    Article  CAS  Google Scholar 

  60. Fodde R, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol. 2001;3(4):433.

    Article  CAS  Google Scholar 

  61. Lamlum H, et al. APC mutations are sufficient for the growth of early colorectal adenomas. Proc Natl Acad Sci. 2000;97(5):2225–8.

    Article  CAS  Google Scholar 

  62. Morin PJ, et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997;275(5307):1787–90.

    Article  CAS  Google Scholar 

  63. Uthoff SM, et al. Wingless-type frizzled protein receptor signaling and its putative role in human colon cancer. Mol Carcinogen. 2001;31(1):56–62.

    Article  CAS  Google Scholar 

  64. Van De Wetering M, et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111(2):241–50.

    Article  Google Scholar 

  65. Attard TM, et al. Brain tumors in individuals with familial adenomatous polyposis: a cancer registry experience and pooled case report analysis. Cancer. 2007;109(4):761–6.

    Article  Google Scholar 

  66. Bertario L, et al. Genotype and phenotype factors as determinants of desmoid tumors in patients with familial adenomatous polyposis. Int J Cancer. 2001;95(2):102–7.

    Article  CAS  Google Scholar 

  67. Bertario L, et al. Multiple approach to the exploration of genotype-phenotype correlations in familial adenomatous polyposis. J Clin Oncol. 2003;21(9):1698–707.

    Article  CAS  Google Scholar 

  68. Brensinger J, et al. Variable phenotype of familial adenomatous polyposis in pedigrees with 3′ mutation in the APC gene. Gut. 1998;43(4):548–52.

    Article  CAS  Google Scholar 

  69. Caspari R, et al. Familial adenomatous polyposis: desmoid tumours and lack of ophthalmic lesions (CHRPE) associated with APC mutations beyond codon 1444. Hum Mol Genet. 1995;4(3):337–40.

    Article  CAS  Google Scholar 

  70. Giardiello FM, et al. Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology. 2000;119(6):1447–53.

    Article  CAS  Google Scholar 

  71. Laken SJ, et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet. 1997;17(1):79.

    Article  CAS  Google Scholar 

  72. Leoz ML, et al. The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management. Appl Clin Genet. 2015;8:95.

    CAS  Google Scholar 

  73. Li J, et al. Point mutations in exon 1B of APC reveal gastric adenocarcinoma and proximal polyposis of the stomach as a familial adenomatous polyposis variant. Am J Hum Genet. 2016;98(5):830–42.

    Article  CAS  Google Scholar 

  74. Saurin J-C, et al. The influence of mutation site and age on the severity of duodenal polyposis in patients with familial adenomatous polyposis. Gastrointest Endosc. 2002;55(3):342–7.

    Article  Google Scholar 

  75. Soravia C, et al. Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet. 1998;62(6):1290–301.

    Article  CAS  Google Scholar 

  76. Croner RS, et al. Age and manifestation related symptoms in familial adenomatous polyposis. BMC Cancer. 2005;5(1):24.

    Article  Google Scholar 

  77. Neale K, Ritchie S, Thomson JP. Screening of offspring of patients with familial adenomatous polyposis: the St. Mark’s Hospital polyposis register experience. In: Familial adenomatous polyposis. New York, NY: Springer; 1990. p. 61–6.

    Google Scholar 

  78. Petersen GM, Slack J, Nakamura Y. Screening guidelines and premorbid diagnosis of familial adenomatous polyposis using linkage. Gastroenterology. 1991;100(6):1658–64.

    Article  CAS  Google Scholar 

  79. Leppert M, et al. Genetic analysis of an inherited predisposition to colon cancer in a family with a variable number of adenomatous polyps. N Engl J Med. 1990;322(13):904–8.

    Article  CAS  Google Scholar 

  80. Lynch HT, et al. Attenuated familial adenomatous polyposis (AFAP) a phenotypically and genotypically distinctive variant of FAP. Cancer. 1995;76(12):2427–33.

    Article  CAS  Google Scholar 

  81. Gardner EJ, Richards RC. Multiple cutaneous and subcutaneous lesions occurring simultaneously with hereditary polyposis and osteomatosis. Am J Hum Genet. 1953;5(2):139.

    CAS  Google Scholar 

  82. Turcot J, Després J-P, Pierre FS. Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum. 1959;2:465.

    Article  CAS  Google Scholar 

  83. Grover S, et al. Prevalence and phenotypes of APC and MUTYH mutations in patients with multiple colorectal adenomas. JAMA. 2012;308(5):485–92.

    Article  CAS  Google Scholar 

  84. Kadiyska T, et al. APC promoter 1B deletion in familial polyposis—implications for mutation-negative families. Clin Genet. 2014;85(5):452–7.

    Article  CAS  Google Scholar 

  85. Michils G, et al. Large deletions of the APC gene in 15% of mutation-negative patients with classical polyposis (FAP): a Belgian study. Hum Mutat. 2005;25(2):125–34.

    Article  CAS  Google Scholar 

  86. Mu W, et al. Detection of structural variation using target captured next-generation sequencing data for genetic diagnostic testing. Genet Med. 2019;21(7):1603–10.

    Article  Google Scholar 

  87. Patenaude A. Cancer susceptibility testing: risks, benefits, and personal beliefs. The genetic testing of children. Oxford: BIOS Scientific; 1998. p. 145–56.

    Google Scholar 

  88. Sieber OM, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med. 2003;348(9):791–9.

    Article  Google Scholar 

  89. Viel A, et al. A specific mutational signature associated with DNA 8-oxoguanine persistence in MUTYH-defective colorectal cancer. EBioMedicine. 2017;20:39–49.

    Article  Google Scholar 

  90. Lipton L, et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res. 2003;63(22):7595–9.

    CAS  Google Scholar 

  91. Marra G, Jiricny J. Multiple colorectal adenomas—is their number up? Waltham, MA: Massachusetts Medical Society; 2003.

    Book  Google Scholar 

  92. Cleary SP, et al. Germline MutY human homologue mutations and colorectal cancer: a multisite case-control study. Gastroenterology. 2009;136(4):1251–60.

    Article  CAS  Google Scholar 

  93. Jo WS, et al. Correlation of polyp number and family history of colon cancer with germline MYH mutations. Clin Gastroenterol Hepatol. 2005;3(10):1022–8.

    Article  CAS  Google Scholar 

  94. Venesio T, et al. High frequency of MYH gene mutations in a subset of patients with familial adenomatous polyposis. Gastroenterology. 2004;126(7):1681–5.

    Article  CAS  Google Scholar 

  95. Nielsen M, et al. Analysis of MUTYH genotypes and colorectal phenotypes in patients with MUTYH-associated polyposis. Gastroenterology. 2009;136(2):471–6.

    Article  CAS  Google Scholar 

  96. Theodoratou E, et al. A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. Br J Cancer. 2010;103(12):1875.

    Article  CAS  Google Scholar 

  97. Wang L, et al. MYH mutations in patients with attenuated and classic polyposis and with young-onset colorectal cancer without polyps. Gastroenterology. 2004;127(1):9–16.

    Article  CAS  Google Scholar 

  98. Win AK, et al. Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology. 2014;146(5):1208–11.

    Article  CAS  Google Scholar 

  99. Vogt S, et al. Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology. 2009;137(6):1976–85.

    Article  CAS  Google Scholar 

  100. Walton S-J, et al. Frequency and features of duodenal adenomas in patients with MUTYH-associated polyposis. Clin Gastroenterol Hepatol. 2016;14(7):986–92.

    Google Scholar 

  101. Castillejo A, et al. Prevalence of germline MUTYH mutations among Lynch-like syndrome patients. Eur J Cancer. 2014;50(13):2241–50.

    CAS  Google Scholar 

  102. Ricci MT, et al. Type and frequency of MUTYH variants in Italian patients with suspected MAP: a retrospective multicenter study. J Hum Genet. 2017;62(2):309.

    CAS  Google Scholar 

  103. Rouleau E, et al. First large rearrangement in the MUTYH gene and attenuated familial adenomatous polyposis syndrome. Clin Genet. 2011;80(3):301–3.

    CAS  Google Scholar 

  104. Torrezan GT, et al. Breakpoint characterization of a novel large intragenic deletion of MUTYH detected in a MAP patient: case report. BMC Med Genet. 2011;12(1):128.

    Article  CAS  Google Scholar 

  105. Nielsen M, et al. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol. 2011;79(1):1–16.

    Google Scholar 

  106. Syngal S, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223.

    Google Scholar 

  107. Aretz S, et al. Large submicroscopic genomic APC deletions are a common cause of typical familial adenomatous polyposis. J Med Genet. 2005;42(2):185–92.

    CAS  Google Scholar 

  108. Boudeau J, Sapkota G, Alessi DR. LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett. 2003;546(1):159–65.

    CAS  Google Scholar 

  109. Hearle N, et al. Mapping of a translocation breakpoint in a Peutz–Jeghers hamartoma to the putative PJS locus at 19q13. 4 and mutation analysis of candidate genes in polyp and STK11-negative PJS cases. Genes Chromosom Cancer. 2004;41(2):163–9.

    CAS  Google Scholar 

  110. Hernan I, et al. De novo germline mutation in the serine–threonine kinase STK11/LKB1 gene associated with Peutz–Jeghers syndrome. Clin Genet. 2004;66(1):58–62.

    Article  CAS  Google Scholar 

  111. Jenne DE, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threoninekinase. Nat Genet. 1998;18(1):38.

    Article  CAS  Google Scholar 

  112. Kullmann L, Krahn MP. Controlling the master—upstream regulation of the tumor suppressor LKB1. Oncogene. 2018;37(23):3045.

    Article  CAS  Google Scholar 

  113. Tchekmedyian A, et al. Findings from the Peutz-Jeghers syndrome registry of Uruguay. PLoS One. 2013;8(11):e79639.

    Article  Google Scholar 

  114. Amos C, et al. Genotype–phenotype correlations in Peutz-Jeghers syndrome. J Med Genet. 2004;41(5):327–33.

    Article  CAS  Google Scholar 

  115. Lim W, et al. Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology. 2004;126(7):1788–94.

    Article  CAS  Google Scholar 

  116. Salloch H, et al. Truncating mutations in Peutz-Jeghers syndrome are associated with more polyps, surgical interventions and cancers. Int J Color Dis. 2010;25(1):97–107.

    Article  Google Scholar 

  117. Duan S-X, et al. Peutz–Jeghers syndrome with intermittent upper intestinal obstruction: a case report and review of the literature. Medicine. 2017;96(17):e6538.

    Article  Google Scholar 

  118. Haggitt RC, Reid BJ. Hereditary gastrointestinal polyposis syndromes. Am J Surg Pathol. 1986;10(12):871–87.

    Article  CAS  Google Scholar 

  119. McKay V, et al. First report of somatic mosaicism for mutations in STK11 in four patients with Peutz–Jeghers syndrome. Familial Cancer. 2016;15(1):57–61.

    Article  CAS  Google Scholar 

  120. Resta N, et al. Cancer risk associated with STK11/LKB1 germline mutations in Peutz–Jeghers syndrome patients: results of an Italian multicenter study. Dig Liver Dis. 2013;45(7):606–11.

    Article  CAS  Google Scholar 

  121. Schumacher V, et al. STK11 genotyping and cancer risk in Peutz-Jeghers syndrome. J Med Genet. 2005;42(5):428–35.

    Article  CAS  Google Scholar 

  122. Scully RE. Sex cord tumor with annular tubules a distinctive ovarian tumor of the Peutz-Jeghers syndrome. Cancer. 1970;25(5):1107–21.

    Article  CAS  Google Scholar 

  123. Srivatsa PJ, Keeney GL, Podratz KC. Disseminated cervical adenoma malignum and bilateral ovarian sex cord tumors with annular tubules associated with Peutz-Jeghers syndrome. Gynecol Oncol. 1994;53(2):256–64.

    Article  CAS  Google Scholar 

  124. Utsunomiya J, et al. Peutz-Jeghers syndrome: its natural course and management. Johns Hopkins Med J. 1975;136(2):71–82.

    CAS  Google Scholar 

  125. Van Lier M, et al. High cancer risk in Peutz–Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol. 2010;105(6):1258.

    Article  Google Scholar 

  126. Van Lier MG, et al. Peutz–Jeghers syndrome and family planning: the attitude towards prenatal diagnosis and pre-implantation genetic diagnosis. Eur J Hum Genet. 2012;20(2):236.

    Article  CAS  Google Scholar 

  127. Wang Z, et al. STK 11 domain XI mutations: candidate genetic drivers leading to the development of dysplastic polyps in P eutz–J eghers syndrome. Hum Mutat. 2014;35(7):851–8.

    Article  CAS  Google Scholar 

  128. Chow E, Macrae F. A review of juvenile polyposis syndrome. J Gastroenterol Hepatol. 2005;20(11):1634–40.

    Article  CAS  Google Scholar 

  129. Jass J, et al. Juvenile polyposis—a precancerous condition. Histopathology. 1988;13(6):619–30.

    Article  CAS  Google Scholar 

  130. Latchford AR, et al. Juvenile polyposis syndrome: a study of genotype, phenotype, and long-term outcome. Dis Colon Rectum. 2012;55(10):1038–43.

    Article  Google Scholar 

  131. Zbuk KM, Eng C. Hamartomatous polyposis syndromes. Nat Rev Gastroenterol Hepatol. 2007;4(9):492.

    Article  CAS  Google Scholar 

  132. Burger B, et al. Novel de novo mutation of MADH4/SMAD4 in a patient with juvenile polyposis. Am J Med Genet. 2002;110(3):289–91.

    Article  Google Scholar 

  133. Fogt F, et al. Low prevalence of loss of heterozygosity and SMAD4 mutations in sporadic and familial juvenile polyposis syndrome-associated juvenile polyps. Am J Gastroenterol. 2004;99(10):2025.

    Article  CAS  Google Scholar 

  134. Howe JR, et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet. 2001;28(2):184.

    Article  CAS  Google Scholar 

  135. Gallione CJ, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852–9.

    Article  CAS  Google Scholar 

  136. Lesca G, et al. Distribution of ENG and ACVRL1 (ALK1) mutations in French HHT patients. Hum Mutat. 2006;27(6):598.

    Article  Google Scholar 

  137. Sayed M, et al. Germlinesmad4 orbmpria mutations and phenotype of juvenile polyposis. Ann Surg Oncol. 2002;9(9):901–6.

    Article  CAS  Google Scholar 

  138. Calva-Cerqueira D, et al. The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet. 2009;75(1):79–85.

    Article  CAS  Google Scholar 

  139. Dahdaleh FS, et al. Juvenile polyposis and other intestinal polyposis syndromes with microdeletions of chromosome 10q22–23. Clin Genet. 2012;81(2):110–6.

    Article  CAS  Google Scholar 

  140. Brosens LA, et al. Risk of colorectal cancer in juvenile polyposis. Gut. 2007;56(7):965–7.

    Article  Google Scholar 

  141. Cohen S, et al. Management of juvenile polyposis syndrome in children and adolescents: a position paper from the ESPGHAN polyposis working group. J Pediatr Gastroenterol Nutr. 2019;68(3):453–62.

    Article  Google Scholar 

  142. Dunlop M, British Society for Gastroenterology; Association of Coloproctology for Great Britain and Ireland. Guidance on gastrointestinal surveillance for hereditary non-polyposis colorectal cancer, familial adenomatous polypolis, juvenile polyposis, and Peutz-Jeghers syndrome. Gut. 2002;51(Suppl 5):V21–7.

    Article  Google Scholar 

  143. Zhou X-P, et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am J Hum Genet. 2003;73(2):404–11.

    Article  CAS  Google Scholar 

  144. Pilarski R, et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16.

    Article  CAS  Google Scholar 

  145. Lachlan KL, et al. Cowden syndrome and Bannayan–Riley–Ruvalcaba syndrome represent one condition with variable expression and age-related penetrance: results of a clinical study of PTEN mutation carriers. J Med Genet. 2007;44(9):579–85.

    Article  CAS  Google Scholar 

  146. Abel TW, et al. Lhermitte-Duclos disease: a report of 31 cases with immunohistochemical analysis of the PTEN/AKT/mTOR pathway. J Neuropathol Exp Neurol. 2005;64(4):341–9.

    Article  Google Scholar 

  147. Butler MG, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42(4):318–21.

    Article  CAS  Google Scholar 

  148. Caux F, et al. Segmental overgrowth, lipomatosis, arteriovenous malformation and epidermal nevus (SOLAMEN) syndrome is related to mosaic PTEN nullizygosity. Eur J Hum Genet. 2007;15(7):767.

    Article  CAS  Google Scholar 

  149. Ngeow J, et al. Detecting germline PTEN mutations among at-risk patients with cancer: an age-and sex-specific cost-effectiveness analysis. J Clin Oncol. 2015;33(23):2537.

    Article  Google Scholar 

  150. Mester J, Eng C. Estimate of de novo mutation frequency in probands with PTEN hamartoma tumor syndrome. Genet Med. 2012;14(9):819.

    Article  CAS  Google Scholar 

  151. Nelen MR, et al. Novel PTEN mutations in patients with Cowden disease: absence of clear genotype–phenotype correlations. Eur J Hum Genet. 1999;7(3):267.

    Article  CAS  Google Scholar 

  152. Pilarski R, et al. Predicting PTEN mutations: an evaluation of Cowden syndrome and Bannayan–Riley–Ruvalcaba syndrome clinical features. J Med Genet. 2011;48(8):505–12.

    Article  CAS  Google Scholar 

  153. Tan M-H, et al. A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet. 2011;88(1):42–56.

    Article  CAS  Google Scholar 

  154. Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22(3):183–98.

    Article  CAS  Google Scholar 

  155. Marsh DJ, et al. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet. 1999;8(8):1461–72.

    Article  CAS  Google Scholar 

  156. Stambolic V, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29–39.

    Article  CAS  Google Scholar 

  157. Bennett KL, Mester J, Eng C. Germline epigenetic regulation of KILLIN in Cowden and Cowden-like syndrome. JAMA. 2010;304(24):2724–31.

    Article  CAS  Google Scholar 

  158. Ni Y, et al. Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet. 2008;83(2):261–8.

    Article  CAS  Google Scholar 

  159. Orloff MS, et al. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet. 2013;92(1):76–80.

    Article  CAS  Google Scholar 

  160. Yehia L, et al. Germline heterozygous variants in SEC23B are associated with Cowden syndrome and enriched in apparently sporadic thyroid cancer. Am J Hum Genet. 2015;97(5):661–76.

    Article  CAS  Google Scholar 

  161. Colby S, et al. Exome sequencing reveals germline gain-of-function EGFR mutation in an adult with Lhermitte–Duclos disease. Mol Case Stud. 2016;2(6):a001230.

    Article  CAS  Google Scholar 

  162. Ni Y, et al. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet. 2011;21(2):300–10.

    Article  CAS  Google Scholar 

  163. Heald B, et al. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139(6):1927–33.

    Article  CAS  Google Scholar 

  164. Nieuwenhuis M, et al. Is colorectal surveillance indicated in patients with PTEN mutations? Color Dis. 2012;14(9):e562–6.

    Article  CAS  Google Scholar 

  165. Stanich PP, et al. Colonic polyposis and neoplasia in Cowden syndrome. In: Mayo Clinic proceedings. Amsterdam: Elsevier; 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirbiyik, O., Özyilmaz, B. (2021). Genetic Knowledge of Colorectal Cancer. In: Engin, O. (eds) Colon Polyps and Colorectal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-57273-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57273-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57272-3

  • Online ISBN: 978-3-030-57273-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics