Skip to main content

Advertisement

Log in

Artificial Intelligence Algorithms in Diabetic Retinopathy Screening

  • Microvascular Complications: Retinopathy (R Channa, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we focus on artificial intelligence (AI) algorithms for diabetic retinopathy (DR) screening and risk stratification and factors to consider when implementing AI algorithms in the clinic.

Recent Findings

AI algorithms have been adopted, and have received regulatory approval, for automated detection of referable DR with clinically acceptable diagnostic performance. While these metrics are an important first step, performance metrics that go beyond measures of technical accuracy are needed to fully evaluate the impact of AI algorithm on patient outcomes.

Summary

Recent advances in AI present an exciting opportunity to improve patient care. Using DR as an example, we have reviewed factors to consider in the implementation of AI algorithms in real-world clinical practice. These include real-world evaluation of safety, efficacy, and equity (bias); impact on patient outcomes; ethical, logistical, and regulatory factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogurtsova K: dRF J., Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015:40-50.

  2. Zhang X, Saaddine JB, Chou C-F, Cotch MF, Cheng YJ, Geiss LS, Gregg EW, Albright AL, Klein BE, Klein R. Prevalence of diabetic retinopathy in the United States, 2005-2008. Jama. 2010;304(6):649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, Ying G-S. Diabetic retinopathy preferred practice pattern®. Ophthalmology. 2020;127(1):P66–P145.

    Article  PubMed  Google Scholar 

  5. Solomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, VanderBeek BL, Wykoff CC, Gardner TW. Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(3):412–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fuller SD, Hu J, Liu JC, Gibson E, Gregory M, Kuo J, Rajagopal R. Five-year cost-effectiveness modeling of primary care-based, nonmydriatic automated retinal image analysis screening among low-income patients with diabetes. J Diabetes Sci Technol. 2020;1932296820967011.

  7. Benoit SR, Swenor B, Geiss LS, Gregg EW, Saaddine JB. Eye care utilization among insured people with diabetes in the US, 2010–2014. Diabetes Care. 2019;42(3):427–33.

    Article  PubMed  Google Scholar 

  8. Mansberger SL, Sheppler C, Barker G, Gardiner SK, Demirel S, Wooten K, Becker TM. Long-term comparative effectiveness of telemedicine in providing diabetic retinopathy screening examinations: a randomized clinical trial. JAMA Ophthalmol. 2015;133(5):518–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. An J, Niu F, Turpcu A, Rajput Y, Cheetham TC. Adherence to the American Diabetes Association retinal screening guidelines for population with diabetes in the United States. Ophthalmic Epidemiol. 2018;25(3):257–65.

    Article  PubMed  Google Scholar 

  10. Pugh JA, Jacobson JM, Van Heuven W, Watters JA, Tuley MR, Lairson DR, Lorimor RJ, Kapadia AS, Velez R. Screening for diabetic retinopathy: the wide-angle retinal camera. Diabetes Care. 1993;16(6):889–95.

    Article  CAS  PubMed  Google Scholar 

  11. Lin DY, Blumenkranz MS, Brothers RJ, Grosvenor DM, Group TDDS. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am J Ophthalmol. 2002;134(2):204–13.

    Article  PubMed  Google Scholar 

  12. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag. 2006;27(4):12–2.

    Google Scholar 

  13. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y: Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017, 2(4).

  14. Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev. 2020;53(8):5455–516.

    Article  Google Scholar 

  15. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  PubMed  Google Scholar 

  16. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:1097–105.

    Google Scholar 

  17. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 2014.

  18. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition: 2016; 2016: 770-778.

  19. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition: 2015; 2015: 1-9.

  20. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82.

    Article  CAS  PubMed  Google Scholar 

  21. Group ETDRSR. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology. 1991;98(5):786–806.

    Article  Google Scholar 

  22. Xu K, Feng D, Mi H. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules. 2017;22(12):2054.

    Article  PubMed Central  CAS  Google Scholar 

  23. Esfahani MT, Ghaderi M, Kafiyeh R. Classification of diabetic and normal fundus images using new deep learning method. Leonardo Electron J Pract Technol. 2018;17:233–48.

    Google Scholar 

  24. Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017;39:178–93.

    Article  PubMed  Google Scholar 

  25. Jiang H, Yang K, Gao M, Zhang D, Ma H, Qian W. An interpretable ensemble deep learning model for diabetic retinopathy disease classification. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 2019: IEEE; 2019: 2045-2048.

  26. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57(13):5200–6.

    Article  PubMed  Google Scholar 

  27. Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y. Convolutional neural networks for diabetic retinopathy. Procedia Comput Sci. 2016;90:200–5.

    Article  Google Scholar 

  28. Dutta S, Manideep B, Basha SM, Caytiles RD, Iyengar N. Classification of diabetic retinopathy images by using deep learning models. Int J Grid Distribut Comput. 2018;11(1):89–106.

    Article  Google Scholar 

  29. Wan S, Liang Y, Zhang Y. Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput Electr Eng. 2018;72:274–82.

    Article  Google Scholar 

  30. Harangi B, Toth J, Baran A, Hajdu A. Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 2019: IEEE; 2019: 2699-2702.

  31. Li X, Hu X, Yu L, Zhu L, Fu C-W, Heng P-A. CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans Med Imaging. 2019;39(5):1483–93.

    Article  PubMed  Google Scholar 

  32. Khan SH, Abbas Z, Rizvi SD. Classification of diabetic retinopathy images based on customised CNN architecture. In: 2019 Amity International Conference on Artificial Intelligence (AICAI): 2019: IEEE; 2019: 244-248.

  33. Rein DB, Zhang P, Wirth KE, Lee PP, Hoerger TJ, McCall N, Klein R, Tielsch JM, Vijan S, Saaddine J. The economic burden of major adult visual disorders in the United States. Arch Ophthalmol. 2006;124(12):1754–60.

    Article  PubMed  Google Scholar 

  34. Javitt JC, Canner JK, Frank RG, Steinwachs DM, Sommer A. Detecting and treating retinopathy in patients with type I diabetes mellitus: a health policy model. Ophthalmology. 1990;97(4):483–95.

    Article  CAS  PubMed  Google Scholar 

  35. • Wolf RM, Liu TA, Thomas C, Prichett L, Zimmer-Galler I, Smith K, Abramoff MD, Channa R. The SEE Study: safety, efficacy, and equity of implementing autonomous artificial intelligence for diagnosing diabetic retinopathy in youth. Diabetes Care. 2021, 44(3):781-787. This prospective study is the first to assess the diagnostic efficacy of an autonomous AI algorithm for diabetic eye exams in pediatric patients in a real-world setting.

  36. Tufail A, Kapetanakis VV, Salas-Vega S, Egan C, Rudisill C, Owen CG, Lee A, Louw V, Anderson J, Liew G. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol Assess. 2016;20(92):1–72.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xie Y, Nguyen QD, Hamzah H, Lim G, Bellemo V, Gunasekeran DV, Yip MY, Lee XQ, Hsu W, Lee ML. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health. 2020;2(5):e240–9.

    Article  PubMed  Google Scholar 

  38. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1(1):1–8.

    Article  Google Scholar 

  39. Ipp E, Liljenquist D, Bode B, Shah VN, Silverstein S, Regillo CD, Lim JI, Sadda S, Domalpally A, Gray G, et al. Pivotal evaluation of an artificial intelligence system for autonomous detection of referrable and vision-threatening diabetic retinopathy. JAMA Netw Open. 2021;4(11):e2134254.

    Article  PubMed  PubMed Central  Google Scholar 

  40. •• Lee AY, Yanagihara RT, Lee CS, Blazes M, Jung HC, Chee YE, Gencarella MD, Gee H, Maa AY, Cockerham GC, et al. Multicenter, head-to-head, real-world validation study of seven automated artificial intelligence diabetic retinopathy screening systems. Diabetes Care. 2021;44(5):1168–75 This is one of the largest AI-based DR screening algorithm validation study to date. In this study, the performance of seven automated AI-based DR screening algorithms was compared against that of human graders using 311,604 fundus photographs from two geographically diverse populations regardless of image quality and without any preprocessing or filtering.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, Imperatore G, Linder B, Marcovina S, Pettitt DJ. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376:1419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Long-term complications in youth-onset type 2 diabetes. N Engl J Med. 2021;385(5):416–26.

  43. Nakhla M, Daneman D, To T, Paradis G, Guttmann A. Transition to adult care for youths with diabetes mellitus: findings from a Universal Health Care System. Pediatrics. 2009;124(6):e1134–41.

    Article  PubMed  Google Scholar 

  44. Rosenberg JB, Friedman IB, Gurland JE. Compliance with screening guidelines for diabetic retinopathy in a large academic children’s hospital in the Bronx. J Diabetes Complicat. 2011;25(4):222–6.

    Article  Google Scholar 

  45. Looker H, Nyangoma S, Cromie D, Olson J, Leese G, Philip S, Black M, Doig J, Lee N, Briggs A. Predicted impact of extending the screening interval for diabetic retinopathy: the Scottish Diabetic Retinopathy Screening programme. Diabetologia. 2013;56(8):1716–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Estil S, Steinarsson AÞ, Einarsson S, Aspelund T, Stefánsson E. Diabetic eye screening with variable screening intervals based on individual risk factors is safe and effective in ophthalmic practice. Acta Ophthalmol. 2020;98(4):343–6.

    Article  PubMed  Google Scholar 

  47. Bora A, Balasubramanian S, Babenko B, Virmani S, Venugopalan S, Mitani A, de Oliveira MG, Cuadros J, Ruamviboonsuk P, Corrado GS. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health. 2021;3(1):e10–9.

    Article  PubMed  Google Scholar 

  48. Heydon P, Egan C, Bolter L, Chambers R, Anderson J, Aldington S, Stratton IM, Scanlon PH, Webster L, Mann S. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol. 2021;105(5):723–8.

    Article  PubMed  Google Scholar 

  49. Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Tay-Kearney M-L, Mehrotra A. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary care. JAMA Netw Open. 2018;1(5):e182665–5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, Hamzah H, Ho J, Lee XQ, Hsu W, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health. 2019;1(1):e35–44.

    Article  PubMed  Google Scholar 

  51. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol. 2019;20(3):405–10.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  54. England JR, Cheng PM. Artificial intelligence for medical image analysis: a guide for authors and reviewers. AJR Am J Roentgenol. 2019;212(3):513–9.

    Article  PubMed  Google Scholar 

  55. AlBadawy EA, Saha A, Mazurowski MA. Deep learning for segmentation of brain tumors: impact of cross-institutional training and testing. Med Phys. 2018;45(3):1150–8.

    Article  PubMed  Google Scholar 

  56. Beede E, Baylor E, Hersch F, Iurchenko A, Wilcox L, Ruamviboonsuk P, Vardoulakis LM. A Human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu, HI, USA: Association for Computing Machinery; 2020: 1–12.

  57. Quellec G, Al Hajj H, Lamard M, Conze P-H, Massin P, Cochener B. ExplAIn: explanatory artificial intelligence for diabetic retinopathy diagnosis. Med Image Anal. 2021;72:102118.

    Article  PubMed  Google Scholar 

  58. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.

    Article  PubMed  Google Scholar 

  59. Kauppi T, Kämäräinen J-K, Lensu L, Kalesnykiene V, Sorri I, Uusitalo H, Kälviäinen H. Constructing benchmark databases and protocols for medical image analysis: diabetic retinopathy. Comput Math Methods Med. 2013;2013:368514.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Channa R, Wolf R, Abramoff MD. Autonomous artificial intelligence in diabetic retinopathy: from algorithm to clinical application. J Diabetes Sci Technol. 2021;15(3):695–8.

    Article  PubMed  Google Scholar 

  61. Wolf RM, Channa R, Abramoff MD, Lehmann HP. Cost-effectiveness of autonomous point-of-care diabetic retinopathy screening for pediatric patients with diabetes. JAMA Ophthalmol. 2020;138(10):1063–9.

    Article  PubMed  Google Scholar 

  62. Chen MM, Golding LP, Nicola GN. Who will pay for AI? Radiol Artif Intell. 2021;3(3):e210030.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mehrabi N, Morstatter F, Saxena NA, Lerman K, Galstyan AG. A survey on bias and fairness in machine learning. ACM Comput Surv (CSUR). 2021;54:1–35.

    Article  Google Scholar 

  64. Burlina P, Joshi NJ, Paul W, Pacheco KD, Bressler NM: Addressing artificial intelligence bias in retinal disease diagnostics. ArXiv 2020, abs/2004.13515.

  65. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, Topol EJ, Ioannidis JPA, Collins GS, Maruthappu M. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, Chan A-W, Darzi A, Holmes C, Yau C, Ashrafian H, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med. 2020;26(9):1364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning. ACM Trans Intel Syst Technol. 2019;10:1–19.

    Google Scholar 

  68. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles ZB, Cormode G, Cummings R, et al. Advances and open problems in federated learning. Found Trends Mach Learn. 2021;14:1–210.

    Article  Google Scholar 

  69. Abràmoff MD, Tobey D, Char DS. Lessons learned about autonomous AI: finding a safe, efficacious, and ethical path through the development process. Am J Ophthalmol. 2020;214:134–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roomasa Channa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microvascular Complications: Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, S., Mahjoub, H., Mehta, N. et al. Artificial Intelligence Algorithms in Diabetic Retinopathy Screening. Curr Diab Rep 22, 267–274 (2022). https://doi.org/10.1007/s11892-022-01467-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-022-01467-y

Keywords

Navigation