Skip to main content
Log in

Thyroid Hormone Signalling Alteration in Diabetic Nephropathy and Cardiomyopathy: a “Switch” to the Foetal Gene Programme

  • Microvascular Complications—Nephropathy (B Roshanravan, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

In this study, we will analyse how diabetes induces the reactivation of organs’ developmental programmes and growth, discuss how thyroid hormone (TH) signalling orchestrates these processes, and suggest novel strategies for exploiting TH-mediated reparative and regenerative properties.

Recent Findings

Diabetes is a global pandemic that poses an enormous threat to human health. The kidney and the heart are among the organs that are the most severely damaged by diabetes over time. They undergo profound metabolic, structural, and functional changes that may be due (at least partially) to a recapitulation of their early developmental programmes. There is growing evidence to suggest that this foetal reprogramming is controlled by the TH/TH receptor alpha 1 (TRα1) axis.

Summary

We introduce the hypothesis that in diabetes—and probably in other diseases—TH signalling acts in an antagonistic manner: it recapitulates a foetal profile that is necessary to coordinate metabolic and structural adaptations to sustain energy preservation and growth, but in the long term the persistent changes in these pathways are detrimental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ray KK, Laufs U, Cosentino F, Lobo MD, Landmesser U. The year in cardiology: cardiovascular prevention. Eur Heart J. 2020;41:1157–63. https://doi.org/10.1093/eurheartj/ehz929.

    Article  PubMed  Google Scholar 

  2. Global statistics on diabetes. https://www.escardio.org/Education/Diabetes-and-CVD/Recommended-Reading/global-statistics-on-diabetes, https://www.escardio.org/Education/Diabetes-and-CVD/Recommended-Reading/global-statistics-on-diabetes. Accessed 2 Mar 2020.

  3. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12:2032–45.

    Article  CAS  Google Scholar 

  4. de Matheus ASM, Tannus LRM, Cobas RA, Palma CCS, Negrato CA, de Gomes MB. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens. 2013;2013:653789.

    Article  Google Scholar 

  5. From AM, Leibson CL, Bursi F, Redfield MM, Weston SA, Jacobsen SJ, et al. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006;119:591–9.

    Article  Google Scholar 

  6. Haffner SM. Coronary heart disease in patients with diabetes. N Engl J Med. 2000;342:1040–2.

    Article  CAS  Google Scholar 

  7. •• Benedetti V, Lavecchia AM, Locatelli M, et al. Alteration of thyroid hormone signaling triggers the diabetes-induced pathological growth, remodeling, and dedifferentiation of podocytes. JCI Insight. https://doi.org/10.1172/jci.insight.130249. This study shows that diabetic stress induces the TH-TRα1 axis to adopt a fetal ligand/receptor relationship pattern that triggers the recapitulation of the fetal podocyte phenotype and subsequent pathological alterations.

  8. Depre C, Young ME, Ying J, Ahuja HS, Han Q, Garza N, et al. Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J Mol Cell Cardiol. 2000;32:985–96.

    Article  CAS  Google Scholar 

  9. Lazzeri E, Angelotti ML, Conte C, Anders H-J, Romagnani P. Surviving acute organ failure: cell polyploidization and progenitor proliferation. Trends Mol Med. 2019;25:366–81.

    Article  Google Scholar 

  10. • Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci. 2010;1188:191–8. An interesting hypothesis on how metabolic remodelling triggers foetal reprogramming to protect the stressed heart from irreversible functional impairment and programmed cell death.

    Article  CAS  Google Scholar 

  11. Rawal S, Nagesh PT, Coffey S, Van Hout I, Galvin IF, Bunton RW, et al. Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium. Cardiovasc Diabetol. 2019;18:13.

    Article  Google Scholar 

  12. Haque ZK, Wang D-Z. How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci. 2017;74:983–1000.

    Article  CAS  Google Scholar 

  13. Lin JS, Susztak K. Podocytes: the weakest link in diabetic kidney disease? Curr Diab Rep. 2016;16:45.

    Article  Google Scholar 

  14. Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne). 2014;5. https://doi.org/10.3389/fendo.2014.00151.

  15. Swynghedauw B. Phenotypic plasticity of adult myocardium: molecular mechanisms. J Exp Biol. 2006;209:2320–7.

    Article  CAS  Google Scholar 

  16. Cokkinos DV, Pantos C. Myocardial remodeling, an overview. Heart Fail Rev. 2011;16:1–4.

    Article  Google Scholar 

  17. Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: part II: potential mechanisms. Circulation. 2002;105:1861–70.

    Article  CAS  Google Scholar 

  18. Bartelds B, Knoester H, Smid GB, Takens J, Visser GH, Penninga L, et al. Perinatal changes in myocardial metabolism in lambs. Circulation. 2000;102:926–31.

    Article  CAS  Google Scholar 

  19. Piquereau J, Ventura-Clapier R. Maturation of cardiac energy metabolism during perinatal development. Front Physiol. 2018;9. https://doi.org/10.3389/fphys.2018.00959.

  20. Anatskaya OV, Vinogradov AE. Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome. Funct Integr Genomics. 2010;10:433–46.

    Article  CAS  Google Scholar 

  21. Imasawa T, Obre E, Bellance N, Lavie J, Imasawa T, Rigothier C, et al. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J. 2017;31:294–307.

    Article  CAS  Google Scholar 

  22. • Mourouzis I, Lavecchia AM, Xinaris C. Thyroid hormone signalling: from the dawn of life to the bedside. J Mol Evol. 2020;88:88–103. This review provides a detailed analysis of the evolution of TH signalling and describes the role of TH signalling in the phenotypical and morphological changes that occur after injury, repair, and regeneration in adult mammalian organs.

    Article  CAS  Google Scholar 

  23. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122:3035–43.

    Article  CAS  Google Scholar 

  24. Pantos C, Mourouzis I. The emerging role of TRα1 in cardiac repair: potential therapeutic implications. Oxidative Med Cell Longev. 2014;2014:481482.

    Article  Google Scholar 

  25. Horn S, Heuer H. Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol. 2010;315:19–26.

    Article  CAS  Google Scholar 

  26. Wu J, Li X, Tao Y, Wang Y, Peng Y. Free triiodothyronine levels are associated with diabetic nephropathy in euthyroid patients with type 2 diabetes. Int J Endocrinol. 2015;2015:204893.

    PubMed  PubMed Central  Google Scholar 

  27. Pantos C, Xinaris C, Mourouzis I, Perimenis P, Politi E, Spanou D, et al. Thyroid hormone receptor alpha 1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol. 2008;59:253–69.

    CAS  PubMed  Google Scholar 

  28. Mourouzis I, Giagourta I, Galanopoulos G, Mantzouratou P, Kostakou E, Kokkinos AD, et al. Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: a response associated with up-regulation of Akt/mTOR and AMPK activation. Metab Clin Exp. 2013;62:1387–93.

    Article  CAS  Google Scholar 

  29. Rajagopalan V, Gerdes AM. Role of thyroid hormones in ventricular remodeling. Curr Heart Fail Rep. 2015;12:141–9.

    Article  CAS  Google Scholar 

  30. Dentice M, Ambrosio R, Damiano V, Sibilio A, Luongo C, Guardiola O, et al. Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell Metab. 2014;20:1038–48.

    Article  CAS  Google Scholar 

  31. Dentice M, Marsili A, Ambrosio R, Guardiola O, Sibilio A, Paik JH, et al. The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest. 2010;120:4021–30.

    Article  CAS  Google Scholar 

  32. Pantos C, Mourouzis I, Cokkinos DV. Thyroid hormone as a therapeutic option for treating ischaemic heart disease: from early reperfusion to late remodelling. Vasc Pharmacol. 2010;52:157–65.

    Article  CAS  Google Scholar 

  33. Iglesias P, Olea T, Vega-Cabrera C, Heras M, Bajo MA, del Peso G, et al. Thyroid function tests in acute kidney injury. J Nephrol. 2013;26:164–72.

    Article  CAS  Google Scholar 

  34. Moin ASM, Butler AE. Alterations in beta cell identity in type 1 and type 2 diabetes. Curr Diab Rep. 2019;19:83.

    Article  Google Scholar 

  35. Nam SM, Kim YN, Yoo DY, Yi SS, Choi JH, Hwang IK, et al. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes. Neural Regen Res. 2013;8:2458–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Furuya F, Shimura H, Yamashita S, Endo T, Kobayashi T. Liganded thyroid hormone receptor-alpha enhances proliferation of pancreatic beta-cells. J Biol Chem. 2010;285:24477–86.

    Article  CAS  Google Scholar 

  37. Pantos C, Xinaris C, Mourouzis I, Kokkinos AD, Cokkinos DV. TNF-alpha administration in neonatal cardiomyocytes is associated with differential expression of thyroid hormone receptors: a response prevented by T3. Horm Metab Res. 2008;40:731–4.

    Article  CAS  Google Scholar 

  38. Pantos C, Mourouzis I, Xinaris C, Kokkinos AD, Markakis K, Dimopoulos A, et al. Time-dependent changes in the expression of thyroid hormone receptor alpha 1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. Eur J Endocrinol. 2007;156:415–24.

    Article  CAS  Google Scholar 

  39. Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV. Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem. 2007;297:65–72.

    Article  CAS  Google Scholar 

  40. Lin Y, Sun Z. Thyroid hormone ameliorates diabetic nephropathy in a mouse model of type II diabetes. J Endocrinol. 2011;209:185–91.

    Article  CAS  Google Scholar 

  41. Pantos C, Mourouzis I. Thyroid hormone receptor α1 as a novel therapeutic target for tissue repair. Ann Transl Med. 2018;6:254.

    Article  Google Scholar 

  42. Collet T-H, Gussekloo J, Bauer DC, den Elzen W, Cappola AR, Balmer P, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172:799–809.

    Article  CAS  Google Scholar 

  43. Ali Rajab NM, Ukropina M, Cakic-Milosevic M. Histological and ultrastructural alterations of rat thyroid gland after short-term treatment with high doses of thyroid hormones. Saudi J Biol Sci. 2017;24:1117–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Giuseppe Remuzzi for constructive comments on the text and Kerstin Mierke for excellent editing work on the manuscript.

Funding

PM is recipient of fellowships from Persico s.r.l., Bergamo, Italy. AML is recipient of fellowships from Fondazione Aiuti per la Ricerca sulle Malattie Rare, Bergamo, Italy. PM, AML, and CX’s research is funded by Euronanomed (an ERA-NET grant), Associazione per la Ricerca sul Diabete Italia (ARDI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos Xinaris.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantzouratou, P., Lavecchia, A.M., Novelli, R. et al. Thyroid Hormone Signalling Alteration in Diabetic Nephropathy and Cardiomyopathy: a “Switch” to the Foetal Gene Programme. Curr Diab Rep 20, 58 (2020). https://doi.org/10.1007/s11892-020-01344-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-020-01344-6

Keywords

Navigation