Skip to main content

Advertisement

Log in

Care of Infants Born to Women with Diabetes

  • Diabetes and Pregnancy (M-F Hivert and CE Powe, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Infants of women with diabetes are at risk for specific morbidities including congenital anomalies, abnormalities of fetal growth, neonatal hypoglycemia, electrolyte abnormalities, polycythemia, hyperbilirubinemia, and respiratory distress syndrome. Recent studies have shed light on long-term outcomes of these infants and presented advances in treatment. The purpose of this review is to outline the most common neonatal morbidities affecting infants of women with diabetes, the pathophysiology and prevalence of these conditions, and contemporary approaches to treatment.

Recent Findings

Recent investigative findings have led to advances in treatment approaches for these infants, particularly regarding risks of neonatal hypoglycemia.

Summary

Optimizing maternal glycemic control during pregnancy is imperative to improving infant outcomes. However, on a population level, maternal diabetes still poses significant risks to the infant. Timely and appropriate treatment of infants of women with diabetes is imperative to decrease short- and long-term morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of maternal insulin resistance during pregnancy: an updated overview. J Diabetes Res. 2019;2019:5320156–9. https://doi.org/10.1155/2019/5320156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Etomi O, Banerjee A. The management of pre-existing (type 1 and type 2) diabetes mellitus in pregnancy. Medicine. 2018;46(12):731–7. https://doi.org/10.1016/j.mpmed.2018.09.004.

    Article  Google Scholar 

  3. Farrar D. Hyperglycemia in pregnancy: prevalence, impact, and management challenges. Int J Women's Health. 2016;8:519–27. https://doi.org/10.2147/IJWH.S102117.

    Article  Google Scholar 

  4. Pedersen J. The pregnant diabetic and her newborn: problems and management. William & Wilkins: Baltimore; 1967.

    Google Scholar 

  5. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;(37 Suppl 1):S81–90. https://doi.org/10.2337/dc14-S081.

  6. Zhou TAO, Sun D, Li X, Heianza Y, Nisa H, Hu G, et al. Prevalence and trends in gestational diabetes mellitus among women in the United States, 2006–2016. Diabetes. 2018;67(Supplement 1):121-OR. https://doi.org/10.2337/db18-121-OR.

    Article  Google Scholar 

  7. Bardenheier BH, Imperatore G, Gilboa SM, Geiss LS, Saydah SH, Devlin HM, et al. Trends in gestational diabetes among hospital deliveries in 19 U.S. states, 2000-2010. Am J Prev Med. 2015;49(1):12–9. https://doi.org/10.1016/j.amepre.2015.01.026.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Deputy NP, Kim SY, Conrey EJ, Bullard KM. Prevalence and changes in preexisting diabetes and gestational diabetes among women who had a live birth — United States, 2012–2016. MMWR Morb Mortal Wkly Rep. 2018;67(43):1201–7. https://doi.org/10.15585/mmwr.mm6743a2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fong A, Serra A, Herrero T, Pan D, Ogunyemi D. Pre-gestational versus gestational diabetes: a population based study on clinical and demographic differences. J Diabetes Complicat. 2014;28(1):29–34. https://doi.org/10.1016/j.jdiacomp.2013.08.009.

    Article  PubMed  Google Scholar 

  10. Fadl HE, Ostlund IK, Magnuson AF, Hanson US. Maternal and neonatal outcomes and time trends of gestational diabetes mellitus in Sweden from 1991 to 2003. Diabet Med. 2010;27(4):436–41. https://doi.org/10.1111/j.1464-5491.2010.02978.x.

    Article  PubMed  CAS  Google Scholar 

  11. Peng TY, Ehrlich SF, Crites Y, Kitzmiller JL, Kuzniewicz MW, Hedderson MM, et al. Trends and racial and ethnic disparities in the prevalence of pregestational type 1 and type 2 diabetes in Northern California: 1996–2014. Am J Obstet Gynecol. 2017;216(2):177e1–8. https://doi.org/10.1016/j.ajog.2016.10.007.

    Article  Google Scholar 

  12. Wendland EM, Torloni MR, Falavigna M, Trujillo J, Dode MA, Campos MA, et al. Gestational diabetes and pregnancy outcomes - a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG) diagnostic criteria. BMC Pregnancy Childbirth. 2012;12(1):1–13. https://doi.org/10.1186/1471-2393-12-23.

    Article  Google Scholar 

  13. Metzger BE, Contreras M, Sacks DA, Watson W, Dooley SL, Foderaro M, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002. https://doi.org/10.1056/NEJMoa0707943.

    Article  PubMed  Google Scholar 

  14. Gabbay-Benziv R, Reece EA, Wang F, Yang P. Birth defects in pregestational diabetes: defect range, glycemic threshold and pathogenesis. World J Diabetes. 2015;6(3):481–8. https://doi.org/10.4239/wjd.v6.i3.481.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garne E, Loane M, Dolk H, Barisic I, Addor M-C, Arriola L, et al. Spectrum of congenital anomalies in pregnancies with pregestational diabetes. Birth Defects Res A Clin Mol Teratol. 2012;94(3):134–40. https://doi.org/10.1002/bdra.22886.

    Article  PubMed  CAS  Google Scholar 

  16. Mitanchez D. Foetal and neonatal complications in gestational diabetes: perinatal mortality, congenital malformations, macrosomia, shoulder dystocia, birth injuries, neonatal complications. Diabetes Metab. 2010;36(6 Pt 2):617–27. https://doi.org/10.1016/j.diabet.2010.11.013.

    Article  PubMed  CAS  Google Scholar 

  17. Schaefer-Graf UM, Buchanan TA, Xiang A, Songster G, Montoro M, Kjos SL. Patterns of congenital anomalies and relationship to initial maternal fasting glucose levels in pregnancies complicated by type 2 and gestational diabetes. Am J Obstet Gynecol. 2000;182(2):313–20. https://doi.org/10.1016/S0002-9378(00)70217-1.

    Article  PubMed  CAS  Google Scholar 

  18. Mills JL, Baker L, Goldman AS. Malformations in infants of diabetic mothers occur before the seventh gestational week: implications for treatment. Diabetes. 1979;28(4):292–3. https://doi.org/10.2337/diab.28.4.292.

    Article  PubMed  CAS  Google Scholar 

  19. Fuhrmann K, Reiher H, Semmler K, Fischer F, Fischer M, Glöckner E. Prevention of congenital malformations in infants of insulin-dependent diabetic mothers. Diabetes Care. 1983;6(3):219–23. https://doi.org/10.2337/diacare.6.3.219.

    Article  PubMed  CAS  Google Scholar 

  20. García-Sanz P, Mirasierra M, Moratalla R, Vallejo M. Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy. Sci Rep. 2017;7(1):1–15. https://doi.org/10.1038/s41598-017-00334-1.

    Article  CAS  Google Scholar 

  21. Bánhidy F, Ács N, Puhó EH, Czeizel AE. Congenital abnormalities in the offspring of pregnant women with type 1, type 2 and gestational diabetes mellitus: a population-based case-control study. Congenit Anom. 2010;50(2):115–21. https://doi.org/10.1111/j.1741-4520.2010.00275.x.

    Article  Google Scholar 

  22. Sawant SP, Amin AS, Bhat M. Prevalence, pattern and outcome of congenital heart disease in Bhabha Atomic Research Centre Hospital. Mumbai Indian J Pediatr. 2013;80(4):286–91. https://doi.org/10.1007/s12098-012-0910-x.

    Article  PubMed  Google Scholar 

  23. Sarrechia I, Miatton M, François K, Gewillig M, Meyns B, Vingerhoets G, et al. Neurodevelopmental outcome after surgery for acyanotic congenital heart disease. Res Dev Disabil. 2015;45–46:58–68. https://doi.org/10.1016/j.ridd.2015.07.004.

    Article  PubMed  Google Scholar 

  24. Wray J, Sensky T. Congenital heart disease and cardiac surgery in childhood: effects on cognitive function and academic ability. Heart. 2001;85(6):687–91. https://doi.org/10.1136/heart.85.6.687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lobo GJ, Nayak M. V-Y plasty or primary repair closure of myelomeningocele: our experience. J Pediatr Neurosci. 2018;13(4):398–403. https://doi.org/10.4103/JPN.JPN_40_18.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ross M, Brewer K, Wright FV, Agur A. Closed neural tube defects: neurologic, orthopedic, and gait outcomes. Pediatr Phys Ther. 2007;19(4):288–95. https://doi.org/10.1097/PEP.0b013e318158cf1e.

    Article  PubMed  Google Scholar 

  27. Thompson DNP. Postnatal management and outcome for neural tube defects including spina bifida and encephalocoeles. Prenat Diagn. 2009;29(4):412–9. https://doi.org/10.1002/pd.2199.

    Article  PubMed  Google Scholar 

  28. Adzick NS, Thom EA, Spong CY, Brock JW, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004. https://doi.org/10.1056/NEJMoa1014379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pan IW, Harris DA, Luerssen TG, Lam SK. Comparative effectiveness of surgical treatments for pediatric hydrocephalus. Neurosurgery. 2018;83(3):480–7. https://doi.org/10.1093/neuros/nyx440.

    Article  PubMed  Google Scholar 

  30. Gupta N, Park J, Solomon C, Kranz DA, Wrensch M, Wu YW. Long-term outcomes in patients with treated childhood hydrocephalus. J Neurosurg Pediatrics. 2007;106(5):334–9. https://doi.org/10.3171/ped.2007.106.5.334.

    Article  Google Scholar 

  31. Scalzone A, Flores-Mir C, Carozza D, d’Apuzzo F, Grassia V, Perillo L. Secondary alveolar bone grafting using autologous versus alloplastic material in the treatment of cleft lip and palate patients: systematic review and meta-analysis. Prog Orthod. 2019;20(1):6. https://doi.org/10.1186/s40510-018-0252-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shaye D, Liu C, Tollefson T. Cleft lip and palate: an evidence-based review. Facial Plast Surg Clin N Am. 2015;23:357–72. https://doi.org/10.1016/j.fsc.2015.04.008.

    Article  Google Scholar 

  33. Niculescu L, Chiriac-Babei C-I, Rusalim A. Hypospadias—the surgical treatment performed in “Grigore Alexandrescu” Emergency Clinical Hospital for Children. Medicina Moderna. 2017;24(4):209–13. https://doi.org/10.31689/rmm.2017.24.4.209.

    Article  Google Scholar 

  34. van der Horst HJR, de Wall LL. Hypospadias, all there is to know. Eur J Pediatr. 2017;176(4):435–41. https://doi.org/10.1007/s00431-017-2864-5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Penna FJ, Bowlin P, Alyami F, Bägli DJ, Koyle MA, Lorenzo AJ. Novel strategy for temporary decompression of the lower urinary tract in neonates using a ureteral stent. J Urol. 2015;194(4):1086–90. https://doi.org/10.1016/j.juro.2015.04.102.

    Article  PubMed  Google Scholar 

  36. Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics. 2013;131(6):1168–79. https://doi.org/10.1542/peds.2013-0009.

    Article  PubMed  Google Scholar 

  37. Chevalier RL. Congenital urinary tract obstruction: the long view. Adv Chronic Kidney Dis. 2015;22(4):312–9. https://doi.org/10.1053/j.ackd.2015.01.012.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ellis H, Kumar R, Kostyrka B. Neonatal small left colon syndrome in the offspring of diabetic mothers-an analysis of 105 children. J Pediatr Surg. 2009;44(12):2343–6. https://doi.org/10.1016/j.jpedsurg.2009.07.054.

    Article  PubMed  Google Scholar 

  39. Davis WS, Campbell JB. Neonatal small left colon syndrome: occurrence in asymptomatic infants of diabetic mothers. Am J Dis Child. 1975;129(9):1024–7. https://doi.org/10.1001/archpedi.1975.02120460014004.

    Article  PubMed  CAS  Google Scholar 

  40. Stewart DR, Nixon GW, Johnson DG, Condon VR. Neonatal small left colon syndrome. Ann Surg. 1977;186(6):741–5.

    Article  CAS  Google Scholar 

  41. Al Kaissi A, Klaushofer K, Grill F. Caudal regression syndrome and popliteal webbing in connection with maternal diabetes mellitus: a case report and literature review. Cases J. 2008;1(1):407. https://doi.org/10.1186/1757-1626-1-407.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kumar Y, Gupta N, Hooda K, Sharma P, Sharma S, Kochar P, et al. Caudal regression syndrome: a case series of a rare congenital anomaly. Pol J Radiol. 2017;82:188–92. https://doi.org/10.12659/PJR.900971.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ornoy A, Reece EA, Pavlinkova G, Kappen C, Miller RK. Effect of maternal diabetes on the embryo, fetus, and children: congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Res C Embryo Today. 2015;105(1):53–72. https://doi.org/10.1002/bdrc.21090.

    Article  PubMed  CAS  Google Scholar 

  44. Committee on Practice Bulletins—Obstetrics, Caughey AB, Kaimal AJ, Gabbe SG. ACOG practice bulletin no. 201: pregestational diabetes mellitus. Obstet Gynecol. 2018;132(6):e228. https://doi.org/10.1097/AOG.0000000000002960.

    Article  Google Scholar 

  45. Starikov R, Bohrer J, Goh W, Kuwahara M, Chien EK, Lopes V, et al. Hemoglobin A1c in pregestational diabetic gravidas and the risk of congenital heart disease in the fetus. Pediatr Cardiol. 2013;34(7):1716–22. https://doi.org/10.1007/s00246-013-0704-6.

    Article  PubMed  Google Scholar 

  46. Davey BT, Seubert DE, Phoon CKL. Indications for fetal echocardiography: high referral, low yield? Obstet Gynecol Surv. 2009;64(6):405–15. https://doi.org/10.1097/OGX.0b013e31819f9d7b.

    Article  PubMed  Google Scholar 

  47. Wong SF, Chan FY, Cincotta RB, Oats JJN, McIntyre HD. Routine ultrasound screening in diabetic pregnancies. Ultrasound Obstet Gynecol. 2002;19(2):171–6. https://doi.org/10.1046/j.0960-7692.2001.00560.x.

    Article  PubMed  CAS  Google Scholar 

  48. Ehrenberg HM, Mercer BM, Catalano PM. The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol. 2004;191(3):964–8. https://doi.org/10.1016/j.ajog.2004.05.052.

    Article  PubMed  CAS  Google Scholar 

  49. Mocanu EV, Greene RA, Byrne BM, Turner MJ. Obstetric and neonatal outcome of babies weighing more than 4.5 kg: an analysis by parity. Eur J Obstet Gynecol Reprod Biol. 2000;92(2):229–33. https://doi.org/10.1016/S0301-2115(99)00280-8.

    Article  PubMed  CAS  Google Scholar 

  50. Boulet SL, Alexander GR, Salihu HM, Pass M. Macrosomic births in the United States: determinants, outcomes, and proposed grades of risk. Am J Obstet Gynecol. 2003;188(5):1372–8. https://doi.org/10.1067/mob.2003.302.

    Article  PubMed  Google Scholar 

  51. American College of Obstetricians and Gynecologists. Macrosomia: ACOG practice bulletin, number 216. Obstet Gynecol. 2020;135(1). https://doi.org/10.1097/AOG.0000000000003606.

  52. Persson M, Fadl H, Hanson U, Pasupathy D. Disproportionate body composition and neonatal outcome in offspring of mothers with and without gestational diabetes mellitus. Diabetes Care. 2013;36(11):3543–8. https://doi.org/10.2337/dc13-0899.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Esakoff TF, Cheng YW, Sparks TN, Caughey AB. The association between birthweight 4000 g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. Am J Obstet Gynecol. 2009;200(6):672 e1–4. https://doi.org/10.1016/j.ajog.2009.02.035.

    Article  Google Scholar 

  54. Gu S, An X, Fang L, Zhang X, Zhang C, Wang J, et al. Risk factors and long-term health consequences of macrosomia: a prospective study in Jiangsu Province. China J Biomed Res. 2012;26(4):235–40. https://doi.org/10.7555/JBR.26.20120037.

    Article  PubMed  Google Scholar 

  55. Knop MR, Geng TT, Gorny AW, Ding R, Li C, Ley SH, et al. Birth weight and risk of type 2 diabetes mellitus, cardiovascular disease, and hypertension in adults: a meta-analysis of 7 646 267 participants from 135 studies. J Am Heart Assoc. 2018;7(23):e008870. https://doi.org/10.1161/JAHA.118.008870.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wei J, Heng W, Gao J. Effects of low glycemic index diets on gestational diabetes mellitus: a meta-analysis of randomized controlled clinical trials. Medicine (Baltimore). 2016;95(22):e3792. https://doi.org/10.1097/MD.0000000000003792.

    Article  CAS  Google Scholar 

  57. Combs CA, Rosenn B, Miodovnik M, Siddiqi TA. Sonographic EFW and macrosomia: is there an optimum formula to predict diabetic fetal macrosomia? J Matern Fetal Med. 2000;9(1):55–61. https://doi.org/10.1002/(SICI)1520-6661(200001/02)9:1<55::AID-MFM12>3.0.CO;2-9.

    Article  PubMed  CAS  Google Scholar 

  58. Boulvain M, Senat M-V, Perrotin F, Winer N, Beucher G, Subtil D, et al. Induction of labour versus expectant management for large-for-date fetuses: a randomised controlled trial. Lancet. 2015;385(9987):2600–5. https://doi.org/10.1016/s0140-6736(14)61904-8.

    Article  PubMed  Google Scholar 

  59. Sadeh-Mestechkin D, Walfisch A, Shachar R, Shoham-Vardi I, Vardi H, Hallak M. Suspected macrosomia? Better not tell. Arch Gynecol Obstet. 2008;278(3):225–30. https://doi.org/10.1007/s00404-008-0566-y.

    Article  PubMed  CAS  Google Scholar 

  60. Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015;66(Suppl 2):14–20. https://doi.org/10.1159/000371628.

    Article  PubMed  CAS  Google Scholar 

  61. Evers I, de Valk H, Mol B, ter Braak E, Visser G. Macrosomia despite good glycaemic control in type I diabetic pregnancy; results of a nationwide study in the Netherlands. Diabetologia. 2002;45(11):1484–9. https://doi.org/10.1007/s00125-002-0958-7.

    Article  PubMed  CAS  Google Scholar 

  62. Dalfrà MG, Chilelli NC, Di Cianni G, Mello G, Lencioni C, Biagioni S, et al. Glucose fluctuations during gestation: an additional tool for monitoring pregnancy complicated by diabetes. Int J Endocrinol. 2013;2013:1–8. https://doi.org/10.1155/2013/279021.

    Article  CAS  Google Scholar 

  63. Dalfrà MG, Sartore G, Cianni GD, Mello G, Lencioni C, Ottanelli S, et al. Glucose variability in diabetic pregnancy. Diabetes Technol Ther. 2011;13(8):853–9. https://doi.org/10.1089/dia.2010.0145.

    Article  PubMed  Google Scholar 

  64. James-Todd T, Cohen A, Wenger J, Brown F. Time-specific placental growth factor (PlGF) across pregnancy and infant birth weight in women with preexisting diabetes. Hypertens Pregnancy. 2016;35(3):436–46. https://doi.org/10.3109/10641955.2016.1172085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Eleftheriades M, Papastefanou I, Lambrinoudaki I, Kappou D, Lavranos D, Akalestos A, et al. Elevated placental growth factor concentrations at 11-14 weeks of gestation to predict gestational diabetes mellitus. Metabolism. 2014;63(11):1419–25. https://doi.org/10.1016/j.metabol.2014.07.016.

    Article  PubMed  CAS  Google Scholar 

  66. Ong CYT, Lao TT, Spencer K, Nicolaides KH. Maternal serum level of placental growth factor in diabetic pregnancies. J Reprod Med. 2004;49(6):477–80.

    PubMed  CAS  Google Scholar 

  67. Schaefer-Graf UM, Graf K, Kulbacka I, Kjos SL, Dudenhausen J, Vetter K, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008;31(9):1858–63. https://doi.org/10.2337/dc08-0039.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang X, Guan Q, Zhao J, Yang F, Yuan Z, Yin Y, et al. Association of maternal serum lipids at late gestation with the risk of neonatal macrosomia in women without diabetes mellitus. Lipids Health Dis. 2018;17(1):1–9. https://doi.org/10.1186/s12944-018-0707-7.

    Article  CAS  Google Scholar 

  69. Whyte K, Kelly H, O’Dwyer V, Gibbs M, O’Higgins A, Turner MJ. Offspring birth weight and maternal fasting lipids in women screened for gestational diabetes mellitus (GDM). Eur J Obstet Gynecol Reprod Biol. 2013;170(1):67–70. https://doi.org/10.1016/j.ejogrb.2013.04.015.

    Article  PubMed  CAS  Google Scholar 

  70. Ladfors L, Shaat N, Wiberg N, Katasarou A, Berntorp K, Kristensen K. Fetal overgrowth in women with type 1 and type 2 diabetes mellitus. PLoS One. 2017;12(11):e0187917. https://doi.org/10.1371/journal.pone.0187917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Son K-R, Back H-J, Cho C-Y, Choi Y-Y, Song T-B, Park C-H. Complications and perinatal factors according to the birth weight groups in the infants of diabetic mothers. Korean J Pediatr. 2003;46(5):447–53.

    Google Scholar 

  72. Dodds SD, Wolfe SW. Perinatal brachial plexus palsy. Curr Opin Pediatr. 2000;12(1):40–7.

    Article  CAS  Google Scholar 

  73. Starikov R, Inman K, Chen K, Lopes V, Coviello E, Pinar H, et al. Comparison of placental findings in type 1 and type 2 diabetic pregnancies. Placenta. 2014;35(12):1001–6. https://doi.org/10.1016/j.placenta.2014.10.008.

    Article  PubMed  CAS  Google Scholar 

  74. Gutaj P, Wender-Ozegowska E. Diagnosis and management of IUGR in pregnancy complicated by type 1 diabetes mellitus. Curr Diab Rep. 2016;16(5):39. https://doi.org/10.1007/s11892-016-0732-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Committee on Practice Bulletins—Obstetrics, Medicine Society for Maternal-Fetal. ACOG practice bulletin no. 204: fetal growth restriction. Obstet Gynecol. 2019;133(2):e97. https://doi.org/10.1097/AOG.0000000000003070.

    Article  Google Scholar 

  76. von Beckerath A-K, Kollmann M, Rotky-Fast C, Karpf E, Lang U, Klaritsch P. Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction. Am J Obstet Gynecol. 2013;208(2):130.e1–6. https://doi.org/10.1016/j.ajog.2012.11.014.

    Article  Google Scholar 

  77. Weissgerber TL, Mudd LM. Preeclampsia and diabetes. Curr Diab Rep. 2015;15(3):9. https://doi.org/10.1007/s11892-015-0579-4.

    Article  PubMed  CAS  Google Scholar 

  78. Wixey JA, Chand KK, Colditz PB, Bjorkman ST. Review: Neuroinflammation in intrauterine growth restriction. Placenta. 2017;54:117–24. https://doi.org/10.1016/j.placenta.2016.11.012.

    Article  PubMed  Google Scholar 

  79. Kopec G, Shekhawat PS, Mhanna MJ. Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab Syndr Obes. 2017;10:285–95. https://doi.org/10.2147/DMSO.S115890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Leng J, Hay J, Liu G, Zhang J, Wang J, Liu H, et al. Small-for-gestational age and its association with maternal blood glucose, body mass index and stature: a perinatal cohort study among Chinese women. BMJ Open. 2016;6(9):e010984. https://doi.org/10.1136/bmjopen-2015-010984.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bettencourt-Silva R, Souteiro P, Magalhaes D, Belo S, Oliveira A, Carvalho D, Queiros J Small for gestational age and gestational diabetes - should we be more permissive? Presented at the 19th European Congress of Endocrinology; Lisbon, Portugal: 2017 May 20-23. Endocr Abstr https://doi.org/10.1530/endoabs.49.EP564.

  82. Gutaj P, Wender-Ożegowska E, Iciek R, Zawiejska A, Pietryga M, Brązert J. Maternal serum placental growth factor and fetal SGA in pregnancy complicated by type 1 diabetes mellitus. J Perinat Med. 2014;42(5):629–33. https://doi.org/10.1515/jpm-2013-0227.

    Article  PubMed  CAS  Google Scholar 

  83. Culpepper C, Hendrickson K, Marshall S, Benes J, Grover TR, Dowling D, et al. Implementation of feeding guidelines hastens the time to initiation of enteral feeds and improves growth velocity in very low birth-weight infants. Adv Neonatal Care. 2017;17(2):139–45.

    Article  Google Scholar 

  84. Ramos GA, Hanley AA, Aguayo J, Warshak CR, Kim JH, Moore TR. Neonatal chemical hypoglycemia in newborns from pregnancies complicated by type 2 and gestational diabetes mellitus - the importance of neonatal ponderal index. J Matern Fetal Neonatal Med. 2012;25(3):267–71. https://doi.org/10.3109/14767058.2011.573828.

    Article  PubMed  CAS  Google Scholar 

  85. McKinlay CJD, Alsweiler JM, Ansell JM, Anstice NS, Chase JG, Gamble GD, et al. Neonatal glycemia and neurodevelopmental outcomes at 2 years. N Engl J Med. 2015;373(16):1507–18. https://doi.org/10.1056/NEJMoa1504909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. McKinlay CJD, Alsweiler JM, Anstice NS, Burakevych N, Chakraborty A, Chase JG, et al. Association of neonatal glycemia with neurodevelopmental outcomes at 4.5 years. JAMA Pediatr. 2017;171(10):972–83. https://doi.org/10.1001/jamapediatrics.2017.1579.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kaiser JR, Bai S, Gibson N, Holland G, Lin TM, Swearingen CJ, et al. Association between transient newborn hypoglycemia and fourth-grade achievement test proficiency: a population-based study. JAMA Pediatr. 2015;169(10):913–21. https://doi.org/10.1001/jamapediatrics.2015.1631.

    Article  PubMed  Google Scholar 

  88. Shah R, Harding J, Brown J, McKinlay C. Neonatal glycaemia and neurodevelopmental outcomes: a systematic review and meta-analysis. Neonatology. 2019;115(2):116–26. https://doi.org/10.1159/000492859.

    Article  PubMed  CAS  Google Scholar 

  89. van Kempen AAMW, Eskes PF, Nuytemans DHGM, van der Lee JH, Dijksman LM, van Veenendaal NR, et al. Lower versus traditional treatment threshold for neonatal hypoglycemia. N Engl J Med. 2020;382(6):534–44. https://doi.org/10.1056/NEJMoa1905593.

    Article  PubMed  Google Scholar 

  90. Lowe WL, Scholtens DM, Kuang A, Linder B, Lawrence JM, Lebenthal Y, et al. Hyperglycemia and adverse pregnancy outcome follow-up study (HAPO FUS): maternal gestational diabetes mellitus and childhood glucose metabolism. Diabetes Care. 2019;42(3):372–80. https://doi.org/10.2337/dc18-1646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mosca A, Paleari R, Dalfrà MG, Di Cianni G, Cuccuru I, Pellegrini G, et al. Reference intervals for hemoglobin A1c in pregnant women: data from an Italian multicenter study. Clin Chem. 2006;52(6):1138–43. https://doi.org/10.1373/clinchem.2005.064899.

    Article  PubMed  CAS  Google Scholar 

  92. van der Burg JW, Sen S, Chomitz VR, Seidell JC, Leviton A, Dammann O. The role of systemic inflammation linking maternal BMI to neurodevelopment in children. Pediatr Res. 2016;79(1):3–12. https://doi.org/10.1038/pr.2015.179.

    Article  PubMed  CAS  Google Scholar 

  93. Genova MP, Todorova-Ananieva K, Atanasova B, Tzatchev K. Assessment of beta-cell function during pregnancy and after delivery. Acta Medica Bulgarica. 2014;41(1):5–12. https://doi.org/10.2478/amb-2014-0001.

    Article  Google Scholar 

  94. Alemu BT, Olayinka O, Baydoun HA, Hoch M, Elci MA. Neonatal hypoglycemia in diabetic mothers: a systematic review. Curr Pediatr Res 2017;21(1):42-53. https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1026&context=commhealth_fac_pubs

  95. Adamkin DH, Committee on Fetus and Newborn Clinical report—postnatal glucose homeostasis in late-preterm and term infants Pediatrics 2011. Postnatal Glucose Homeostasis in Late-Preterm and Term Infants. 127:575–9. https://doi.org/10.1542/peds.2010-3851.

  96. Agrawal RK, Lui K, Gupta JM. Neonatal hypoglycaemia in infants of diabetic mothers. J Paediatr Child Health. 2000;36(4):354–6. https://doi.org/10.1046/j.1440-1754.2000.00512.x.

    Article  PubMed  CAS  Google Scholar 

  97. Thornton PS, Stanley CA, De Leon DD, Harris D, Haymond MW, Hussain K, et al. Recommendations from the pediatric Endocrine Society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. J Pediatr. 2015;167(2):238–45. https://doi.org/10.1016/j.jpeds.2015.03.057.

    Article  PubMed  Google Scholar 

  98. Sen S, Andrews C, Turner D, Monthé-Drèze C, Wachman EM. Type of feeding provided with dextrose gel impacts hypoglycemia outcome. Accepted for publication, J Perinatology, 2020.

  99. Hoseth E, Joergensen A, Ebbesen F, Moeller M. Blood glucose levels in a population of healthy, breast fed, term infants of appropriate size for gestational age. Arch Dis Child Fetal Neonatal Ed. 2000;83(2):F117–F9. https://doi.org/10.1136/fn.83.2.F117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cornblath M, Hawdon JM, Williams AF, Aynsley-Green A, Ward-Platt MP, Schwartz R, et al. Controversies regarding definition of neonatal hypoglycemia: suggested operational thresholds. Pediatrics. 2000;105(5):1141–5. https://doi.org/10.1542/peds.105.5.1141.

    Article  PubMed  CAS  Google Scholar 

  101. Cornblath M, Ichord R. Hypoglycemia in the neonate. Semin Perinatol. 2000;24(2):136–49. https://doi.org/10.1053/sp.2000.6364.

    Article  PubMed  CAS  Google Scholar 

  102. Hawdon JM, Ward Platt MP, Aynsley-Green A. Patterns of metabolic adaptation for preterm and term infants in the first neonatal week. Arch Dis Child. 1992;67(4 Spec No):357–65. https://doi.org/10.1136/adc.67.4_Spec_No.357.

  103. Harris DL, Gamble GD, Weston PJ, Harding JE. What happens to blood glucose concentrations after oral treatment for neonatal hypoglycemia? J Pediatr. 2017;190:136–41. https://doi.org/10.1016/j.jpeds.2017.06.034.

    Article  PubMed  CAS  Google Scholar 

  104. Sen S, Turner D, Monthé-Drèze C, Gregory K. A graded approach to intravenous fluid administration for neonatal hypoglycemia minimizes blood glucose swings and length of NICU stay. Poster presented at Pediatric Academic Society Conference; Baltimore, MD: 2019 April 27–30.

  105. Harris DL, Weston PJ, Signal M, Chase JG, Harding JE. Dextrose gel for neonatal hypoglycaemia (the Sugar Babies Study): a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9910):2077–83. https://doi.org/10.1016/s0140-6736(13)61645-1.

    Article  PubMed  CAS  Google Scholar 

  106. Gregory K, Turner D, Benjamin CN, Monthé-Drèze C, Johnson L, Hurwitz S, et al. Incorporating dextrose gel and feeding in the treatment of neonatal hypoglycaemia. Arch Dis Child Fetal Neonatal Ed. 2020;105(1):45–9. https://doi.org/10.1136/archdischild-2018-316430.

    Article  PubMed  Google Scholar 

  107. Rawat M, Chandrasekharan P, Turkovich S, Barclay N, Perry K, Schroeder E, et al. Oral dextrose gel reduces the need for intravenous dextrose therapy in neonatal hypoglycemia. Biomed Hub. 2016;1(3):1–9. https://doi.org/10.1159/000448511

  108. Harris DL, Alsweiler JM, Ansell JM, Gamble GD, Thompson B, Wouldes TA, et al. Outcome at 2 years after dextrose gel treatment for neonatal hypoglycemia: follow-up of a randomized trial. J Pediatr. 2016;170:54–9.e2. https://doi.org/10.1016/j.jpeds.2015.10.066.

    Article  PubMed  CAS  Google Scholar 

  109. Tsang RC, Chen IW, Friedman MA, Gigger M, Steichen J, Koffler H, et al. Parathyroid function in infants of diabetic mothers. J Pediatr. 1975;86(3):399–404. https://doi.org/10.1016/S0022-3476(75)80970-X.

    Article  PubMed  CAS  Google Scholar 

  110. Al-Nemri AM, Alsohime F, Shaik AH, El-Hissi GA, Al-Agha MI, Al-Abdulkarim NF, et al. Perinatal and neonatal morbidity among infants of diabetic mothers at a university hospital in Central Saudi Arabia. Saudi Med J. 2018;39(6):592–7. https://doi.org/10.15537/smj.2018.6.22907.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hay WW Jr. Care of the infant of the diabetic mother. Curr Diab Rep. 2012;12(1):4–15. https://doi.org/10.1007/s11892-011-0243-6.

    Article  PubMed  Google Scholar 

  112. Rosenn B, Miodovnik M, Tsang R. Common clinical manifestations of maternal diabetes in newborn infants: implications for the practicing pediatrician. Pediatr Ann. 1996;25(4):215–22. https://doi.org/10.3928/0090-4481-19960401-09.

    Article  PubMed  CAS  Google Scholar 

  113. Mimouni F, Tsang RC, Hertzberg VS, Miodovnik M. Polycythemia, hypomagnesemia, and hypocalcemia in infants of diabetic mothers. Am J Dis Child. 1986;140(8):798–800. https://doi.org/10.1001/archpedi.1986.02140220080037.

    Article  PubMed  CAS  Google Scholar 

  114. Mimouni F, Tsang RC. Neonatal hypocalcemia: to treat or not to treat? (a review). J Am Coll Nutr. 1994;13(5):408–15. https://doi.org/10.1080/07315724.1994.10718429.

    Article  PubMed  CAS  Google Scholar 

  115. Chan J, Jones LJ, Osborn DA, Abdel-Latif ME. Non-invasive high-frequency ventilation in newborn infants with respiratory distress. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.Cd012712.

  116. Bourbon JR, Farrell PM. Fetal lung development in the diabetic pregnancy. Pediatr Res. 1985;19(3):253–67.

    Article  CAS  Google Scholar 

  117. Miakotina OL, Dekowski SA, Snyder JM. Insulin inhibits surfactant protein a and B gene expression in the H441 cell line. Biochim Biophys Acta. 1998;1442(1):60–70. https://doi.org/10.1016/S0167-4781(98)00121-3.

    Article  PubMed  CAS  Google Scholar 

  118. Miakotina OL, Goss KL, Snyder JM. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells. Respir Res. 2002;3(1):26. https://doi.org/10.1186/rr191.

    Article  Google Scholar 

  119. Marseglia L, D'Angelo G, Granese R, Falsaperla R, Reiter RJ, Corsello G, et al. Role of oxidative stress in neonatal respiratory distress syndrome. Free Radic Biol Med. 2019;142:132–7. https://doi.org/10.1016/j.freeradbiomed.2019.04.029.

    Article  PubMed  CAS  Google Scholar 

  120. Robert MF, Neff RK, Hubbell JP, Taeusch HW, Avery ME. Association between maternal diabetes and the respiratory-distress syndrome in the newborn. N Engl J Med. 1976;294(7):357–60. https://doi.org/10.1056/NEJM197602122940702.

    Article  PubMed  CAS  Google Scholar 

  121. Matti P, Pistoia L, Fornalè M, Brunn E, Zardini E. Prevalence of RDS in diabetic pregnancy. Minerva Ginecol. 1996;48(10):409–13.

    PubMed  CAS  Google Scholar 

  122. Reiterer F, Schwaberger B, Freidl T, Schmolzer G, Pichler G, Urlesberger B. Lung-protective ventilatory strategies in intubated preterm neonates with RDS. Paediatr Respir Rev. 2017;23:89–96. https://doi.org/10.1016/j.prrv.2016.10.007.

    Article  PubMed  CAS  Google Scholar 

  123. van Kaam AH, De Luca D, Hentschel R, Hutten J, Sindelar R, Thome U, et al. Modes and strategies for providing conventional mechanical ventilation in neonates. Pediatr Res. 2019. https://doi.org/10.1038/s41390-019-0704-1.

  124. Shim G-H. Update of minimally invasive surfactant therapy. Korean J Pediatr. 2017;60(9):273–81. https://doi.org/10.3345/kjp.2017.60.9.273.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012;11:CD001456. https://doi.org/10.1002/14651858.CD001456.pub2.

    Article  PubMed  Google Scholar 

  126. Duman N, Tuzun F, Sever AH, Arslan MK, Iscan B, Dilek M, et al. Nasal intermittent positive pressure ventilation with or without very early surfactant therapy for the primary treatment of respiratory distress syndrome. J Matern Fetal Neonatal Med. 2016;29(2):252–7. https://doi.org/10.3109/14767058.2014.997203.

    Article  PubMed  CAS  Google Scholar 

  127. Pet GC, Juul SE. The potential of erythropoietin to treat asphyxia in newborns. Res Rep Neonatol. 2014;4:195–207.

    Google Scholar 

  128. Thunbo MO, Sinding M, Bogaard P, Korsager AS, Frokjaer JB, Ostergaard LR, et al. Postpartum placental CT angiography in normal pregnancies and in those complicated by diabetes mellitus. Placenta. 2018;69:20–5. https://doi.org/10.1016/j.placenta.2018.06.309.

    Article  PubMed  Google Scholar 

  129. Cnattingius S, Lindam A, Persson M. Risks of asphyxia-related neonatal complications in offspring of mothers with type 1 or type 2 diabetes: the impact of maternal overweight and obesity. Diabetologia. 2017;60(7):1244–51. https://doi.org/10.1007/s00125-017-4279-2.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):329–38. https://doi.org/10.1016/j.earlhumdev.2010.05.010.

    Article  PubMed  Google Scholar 

  131. Natarajan G, Pappas A, Shankaran S. Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE). Semin Perinatol. 2016;40(8):549–55. https://doi.org/10.1053/j.semperi.2016.09.007.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013;1:CD003311. https://doi.org/10.1002/14651858.CD003311.pub3.

    Article  Google Scholar 

  133. Wu YW, Bauer LA, Ballard RA, Ferriero DM, Glidden DV, Mayock DE, et al. Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics. 2012;130(4):683–91. https://doi.org/10.1542/peds.2012-0498.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lee Y-C, Chang Y-C, Wu C-C, Huang C-C. Hypoxia-preconditioned human umbilical vein endothelial cells protect against neurovascular damage after hypoxic ischemia in neonatal brain. Mol Neurobiol. 2018;55(10):7743–57. https://doi.org/10.1007/s12035-018-0867-5.

    Article  PubMed  CAS  Google Scholar 

  135. Hopfeld-Fogel A, Kasirer Y, Mimouni FB, Hammerman C, Bin-Nun A. Neonatal polycythemia and hypoglycemia in newborns: are they related? Am J Perinatol. 2020. https://doi.org/10.1055/s-0040-1701193.

  136. Mimouni F, Miodovnik M, Siddiqi TA, Butler JB, Holroyde J, Tsang RC. Neonatal polycythemia in infants of insulin dependent diabetic mothers. Obstet Gynecol. 1986;68(3):370–2.

    Article  CAS  Google Scholar 

  137. Cetin H, Yalaz M, Akisu M, Kultursay N. Polycythaemia in infants of diabetic mothers: β-hydroxybutyrate stimulates erythropoietic activity. J Int Med Res. 2011;39(3):815–21. https://doi.org/10.1177/147323001103900314.

    Article  PubMed  CAS  Google Scholar 

  138. Green DW, Khoury J, Mimouni F. Neonatal hematocrit and maternal glycemic control in insulin-dependent diabetes. J Pediatr. 1992;120(2 Pt 1):302–5. https://doi.org/10.1016/s0022-3476(05)80449-4.

    Article  PubMed  CAS  Google Scholar 

  139. Gordon EA. Polycythemia and hyperviscosity of the newborn. J Perinat Neonat Nur. 2003;17(3):209–21.

    Article  Google Scholar 

  140. Özek E, Soll R, Schimmel MS. Partial exchange transfusion to prevent neurodevelopmental disability in infants with polycythemia. Cochrane Database Syst Rev. 2010;1. https://doi.org/10.1002/14651858.CD005089.pub2.

  141. Uslu S, Ozdemir H, Bulbul A, Comert S, Can E, Nuhoglu A. The evaluation of polycythemic newborns: efficacy of partial exchange transfusion. J Matern Fetal Neonatal Med. 2011;24(12):1492–7. https://doi.org/10.3109/14767058.2010.550350.

    Article  PubMed  Google Scholar 

  142. Hopewell B, Steiner LA, Ehrenkranz RA, Bizzarro MJ, Gallagher PG. Partial exchange transfusion for polycythemia hyperviscosity syndrome. Am J Perinatol. 2011;28(7):557–64. https://doi.org/10.1055/s-0031-1274504.

    Article  PubMed  Google Scholar 

  143. Jenner ZB, Dudley AEO, Mendez-Figueroa H, Ellis VS, Chen H-Y, Chauhan SP. Morbidity associated with fetal macrosomia among women with diabetes mellitus. J Perinatol. 2018;35(5):515–20. https://doi.org/10.1055/s-0037-1608811.

    Article  Google Scholar 

  144. Ullah S, Rahman K, Hedayati M. Hyperbilirubinemia in neonates: types, causes, clinical examinations, preventive measures and treatments: a narrative review article. Iran J Public Health. 2016;45(5):558–68.

    PubMed  PubMed Central  Google Scholar 

  145. Lauer BJ, Spector ND. Hyperbilirubinemia in the newborn. Pediatr Rev. 2011;32(8):341–9. https://doi.org/10.1542/pir.32-8-341.

    Article  PubMed  Google Scholar 

  146. Peevy KJ, Landaw SA, Gross SJ. Hyperbilirubinemia in infants of diabetic mothers. Pediatrics. 1980;66(3):417–9.

    PubMed  CAS  Google Scholar 

  147. Hunter DJ, Burrows RF, Mohide PT, Whyte RK. Influence of maternal insulin-dependent diabetes mellitus on neonatal morbidity. CMAJ. 1993;149(1):47–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Provisional Committee on Quality Improvement, Subcommittee on Hyperbilirubinemia. Practice parameter: management of hyperbilirubinemia in the healthy term newborn. Pediatrics. 1994;94(4):558–65.

    Google Scholar 

  149. Bhutani VK. Committee on fetus and newborn, American Academy of Pediatrics. Phototherapy to prevent severe neonatal hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2011;128(4):e1046–52. https://doi.org/10.1542/peds.2011-1494.

    Article  PubMed  Google Scholar 

  150. Burke BL, Robbins JM, Bird TM, Hobbs CA, Nesmith C, Tilford JM. Trends in hospitalizations for neonatal jaundice and kernicterus in the United States, 1988-2005. Pediatrics. 2009;123(2):524–32. https://doi.org/10.1542/peds.2007-2915.

    Article  PubMed  Google Scholar 

  151. Fein EH, Friedlander S, Lu Y, Pak Y, Sakai-Bizmark R, Smith LM, et al. Phototherapy for neonatal unconjugated hyperbilirubinemia: examining outcomes by level of care. Hosp Pediatr. 2019;9(2):115–20. https://doi.org/10.1542/hpeds.2018-0136.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wolf MF, Childers J, Gray KD, Chivily C, Glenn M, Jones L, et al. Exchange transfusion safety and outcomes in neonatal hyperbilirubinemia. J Perinatol. 2020. https://doi.org/10.1038/s41372-020-0642-0.

  153. Ibekwe RC, Ibekwe MU, Muoneke VU. Outcome of exchange blood transfusions done for neonatal jaundice in Abakaliki. South Eastern Nigeria J Clin Neonatol. 2012;1(1):34–7. https://doi.org/10.4103/2249-4847.92239.

    Article  PubMed  Google Scholar 

  154. Chitty HE, Ziegler N, Savoia H, Doyle LW, Fox LM. Neonatal exchange transfusions in the 21st century: a single hospital study. J Paediatr Child Health. 2013;49(10):825–32. https://doi.org/10.1111/jpc.12290.

    Article  PubMed  Google Scholar 

  155. Rosenfeld W, Hudak M, Ruiz N. Stannsoporphin (SnMP), tin mesoporphyrin, combined with phototherapy (PT) is superior to PT alone in neonates with hyperbilirubinemia (HB) and hemolysis. Pediatrics. 2019;144(2 Meeting Abstract):685. https://doi.org/10.1542/peds.144.2_MeetingAbstract.685.

    Article  Google Scholar 

  156. Bhutani VK, Poland R, Meloy LD, Hegyi T, Fanaroff AA, Maisels MJ. Clinical trial of tin mesoporphyrin to prevent neonatal hyperbilirubinemia. J Perinatol. 2016;36(7):533–9. https://doi.org/10.1038/jp.2016.22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarbattama Sen.

Ethics declarations

Conflict of Interest

Sydney Peters, Chloe Andrews, and Sarbattama Sen each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diabetes and Pregnancy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, S., Andrews, C. & Sen, S. Care of Infants Born to Women with Diabetes. Curr Diab Rep 20, 39 (2020). https://doi.org/10.1007/s11892-020-01331-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-020-01331-x

Keywords

Navigation