Skip to main content

Advertisement

Log in

Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy

  • Microvascular Complications—Retinopathy (DL Chao and G Yiu, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diabetic retinopathy (DR) is the leading cause of acquired vision loss in adults across the globe. Early identification and treatment of patients with DR is paramount for vision preservation. The aim of this review paper is to outline current and new imaging techniques and biomarkers that are valuable for clinical diagnosis and management of DR.

Recent Findings

Ultrawide field imaging and automated deep learning algorithms are recent advancements on traditional fundus photography and fluorescein angiography. Optical coherence tomography (OCT) and OCT angiography are techniques that image retinal anatomy and vasculature and OCT is routinely used to monitor response to treatment. Many circulating, vitreous, and genetic biomarkers have been studied to facilitate disease detection and development of new treatments.

Summary

Recent advancements in retinal imaging and identification of promising new biomarkers for DR have the potential to increase detection, risk stratification, and treatment for patients with DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    PubMed  Google Scholar 

  2. • Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–77. Provides updated DR epidemiology and risk factors and current guidelines.

    PubMed  Google Scholar 

  3. He F, Xia X, Wu X, Yu X, Huang F. Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: a meta-analysis: Diabetologia. 2013;56(3):457-66. https://doi.org/10.1007/s00125-012-2796-6.

    PubMed  Google Scholar 

  4. Kawasaki R, Tanaka S, Tanaka S, Abe S, Sone H, Yokote K, et al. Risk of cardiovascular diseases is increased even with mild diabetic retinopathy: the Japan Diabetes Complications Study. Ophthalmology. 2013;120(3):574–82.

    PubMed  Google Scholar 

  5. Ding J, Wong TY. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr Diab Rep. 2012;12(4):346–54.

    PubMed  Google Scholar 

  6. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    CAS  PubMed  Google Scholar 

  7. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

    PubMed  PubMed Central  Google Scholar 

  8. Group ETDRSR. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology. 1991;98(5):786–806.

    Google Scholar 

  9. Wilkinson C, Ferris III FL, Klein RE, Lee PP, Agardh CD, Davis M et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales 2003;110(9):1677–82.

  10. Williams GA, Scott IU, Haller JA, Maguire AM, Marcus D, McDonald HR. Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology. Ophthalmology. 2004;111(5):1055–62.

    PubMed  Google Scholar 

  11. Shi L, Wu H, Dong J, Jiang K, Lu X, Shi J. Telemedicine for detecting diabetic retinopathy: a systematic review and meta-analysis. Br J Ophthalmol. 2015;99(6):823–31.

    PubMed  Google Scholar 

  12. Mansberger SL, Sheppler C, Barker G, Gardiner SK, Demirel S, Wooten K, et al. Long-term comparative effectiveness of telemedicine in providing diabetic retinopathy screening examinations: a randomized clinical trial. JAMA Ophthalmol. 2015;133(5):518–25.

    PubMed  PubMed Central  Google Scholar 

  13. Nguyen HV, Tan GSW, Tapp RJ, Mital S, Ting DSW, Wong HT, et al. Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore. Ophthalmology. 2016;123(12):2571–80.

    PubMed  Google Scholar 

  14. Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, et al. The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol. 2007;91(11):1512–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama. 2016;316(22):2402–10.

    PubMed  Google Scholar 

  16. • Tufail A, Rudisill C, Egan C, Kapetanakis VV, Salas-Vega S, Owen CG, et al. Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology. 2017;124(3):343–51. Identifies automated algorithms for DR screening capable of high diagnostic accuracy and potenital for cost savings.

    PubMed  Google Scholar 

  17. Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye. 2018;32(6):1138–44.

    PubMed  PubMed Central  Google Scholar 

  18. • Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Digit Med. 2018;1(1). https://doi.org/10.1038/s41746-018-0040-6. Landmark study that lead to FDA approval of the first artificial intelligence system for DR screening.

  19. Aiello LP, Odia I, Glassman AR, Melia M, Jampol LM, Bressler NM, et al. Comparison of Early Treatment Diabetic Retinopathy Study standard 7-field imaging with ultrawide-field imaging for determining severity of diabetic retinopathy. JAMA Ophthalmol. 2019;137(1):65–73.

    PubMed  Google Scholar 

  20. Silva PS, Cavallerano JD, Tolls D, Omar A, Thakore K, Patel B, et al. Potential efficiency benefits of nonmydriatic ultrawide field retinal imaging in an ocular telehealth diabetic retinopathy program. Diabetes Care. 2014;37(1):50–5.

    PubMed  Google Scholar 

  21. Falavarjani KG, Wang K, Khadamy J, Sadda SR. Ultra-wide-field imaging in diabetic retinopathy; an overview. J Curre Ophthalmol. 2016;28(2):57–60.

    Google Scholar 

  22. Silva PS, Cavallerano JD, Haddad NMN, Kwak H, Dyer KH, Omar AF, et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology. 2015;122(5):949–56.

    PubMed  Google Scholar 

  23. Cole ED, Novais EA, Louzada RN, Waheed NK. Contemporary retinal imaging techniques in diabetic retinopathy: a review. Clin Exp Ophthalmol. 2016;44(4):289–99.

    PubMed  Google Scholar 

  24. Wessel MM, Aaker GD, Parlitsis G, Cho M, D'Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina (Philadelphia, Pa). 2012;32(4):785–91. https://doi.org/10.1097/IAE.0b013e3182278b64.

    Article  Google Scholar 

  25. Patel RD, Messner LV, Teitelbaum B, Michel KA, Hariprasad SM. Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am J Ophthalmol. 2013;155(6):1038–44.e2. https://doi.org/10.1016/j.ajo.2013.01.007.

    Article  PubMed  Google Scholar 

  26. Rabbani H, Allingham MJ, Mettu PS, Cousins SW, Farsiu S. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Invest Ophthalmol Vis Sci. 2015;56(3):1482–92.

    PubMed  PubMed Central  Google Scholar 

  27. Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, et al. Frequency of adverse systemic reactions after fluorescein angiography: results of a prospective study. Ophthalmology. 1991;98(7):1139–42.

    CAS  PubMed  Google Scholar 

  28. Kornblau IS, El-Annan JF. Adverse reactions to fluorescein angiography: a comprehensive review of the literature. Surv Ophthalmol. 2019;64:679–93.

    PubMed  Google Scholar 

  29. Lee J, Rosen R. Optical coherence tomography angiography in diabetes. Curr Diab Rep. 2016;16(12):123.

    PubMed  Google Scholar 

  30. Kang SW, Park CY, Ham D-I. The correlation between fluorescein angiographic and optical coherence tomographic features in clinically significant diabetic macular edema. Am J Ophthalmol. 2004;137(2):313–22.

    PubMed  Google Scholar 

  31. Byeon SH, Chu YK, Hong YT, Kim M, Kang HM, Kwon OW. New insights into the pathoanatomy of diabetic macular edema: angiographic patterns and optical coherence tomography. Retina (Philadelphia, Pa). 2012;32(6):1087–99.

    Google Scholar 

  32. Koleva-Georgieva D, Sivkova N. Types of diabetic macular edema assessed by optical coherence tomography. Folia Med. 2008;50(3):30–8.

    Google Scholar 

  33. Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132(11):1309–16.

    PubMed  Google Scholar 

  34. Sun JK, Radwan SH, Soliman AZ, Lammer J, Lin MM, Prager SG, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema. Diabetes. 2015;64(7):2560–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Laviers H, Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol. 2014;252(12):1871–83.

    CAS  PubMed  Google Scholar 

  36. Kim JT, Lee DH, Joe SG, Kim J-G, Yoon YH. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2013;54(5):3378–84.

    PubMed  Google Scholar 

  37. Vujosevic S, Martini F, Cavarzeran F, Pilotto E, Midena E. Macular and peripapillary choroidal thickness in diabetic patients. Retina (Philadelphia, Pa). 2012;32(9):1781–90.

    Google Scholar 

  38. Massin P, Bandello F, Garweg JG, Hansen LL, Harding SP, Larsen M, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care. 2010;33(11):2399–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mitchell P, Bandello F, Schmidt-Erfurth U, Lang GE, Massin P, Schlingemann RO, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118(4):615–25.

    PubMed  Google Scholar 

  40. Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, et al. Optical coherence tomography angiography features of diabetic retinopathy. Retina (Philadelphia, Pa). 2015;35(11):2371.

    Google Scholar 

  41. • Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina (Philadelphia, Pa). 2016;36(11):2039 Demontrates changes in the middle capillary plexus in DR that have not been previously identified.

    CAS  Google Scholar 

  42. Onishi AC, Nesper PL, Roberts PK, Moharram GA, Chai H, Liu L, et al. Importance of considering the middle capillary plexus on OCT angiography in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2018;59(5):2167–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee J, Moon BG, Cho AR, Yoon YH. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology. 2016;123(11):2368–75.

    PubMed  Google Scholar 

  44. Talisa E, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina (Philadelphia, Pa). 2015;35(11):2364–70.

    Google Scholar 

  45. Alibhai AY, Moult EM, Shahzad R, Rebhun CB, Moreira-Neto C, McGowan M, et al. Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy. Ophthalmol Retina. 2018;2(5):418–27.

    Google Scholar 

  46. Ashraf M, Nesper PL, Jampol LM, Yu F, Fawzi AA. Statistical model of optical coherence tomography angiography parameters that correlate with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2018;59(10):4292–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. • Nesper PL, Roberts PK, Onishi AC, Chai H, Liu L, Jampol LM, et al. Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(6):BIO307–BIO15. Identifies correlation between OCTA parameters in each capillary plexuses with severity of DR.

    PubMed  PubMed Central  Google Scholar 

  48. Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT362–OCT70.

    PubMed  PubMed Central  Google Scholar 

  49. Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–6. https://doi.org/10.1001/jamaophthalmol.2017.0080.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Krawitz BD, Mo S, Geyman LS, Agemy SA, Scripsema NK, Garcia PM, et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vis Res. 2017;139:177–86.

    PubMed  Google Scholar 

  51. Fawzi AA. Consensus on optical coherence tomographic angiography nomenclature: do we need to develop and learn a new language? JAMA Ophthalmol. 2017;135(4):377–8.

    PubMed  PubMed Central  Google Scholar 

  52. Li X-X, Wu W, Zhou H, Deng J-J, Zhao M-Y, Qian T-W, et al. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol. 2018;11(11):1784.

    PubMed  PubMed Central  Google Scholar 

  53. Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PLoS One. 2017;12(5):e0177059.

    PubMed  PubMed Central  Google Scholar 

  54. De Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015;1(1). https://doi.org/10.1186/s40942-015-0005-8.

  55. Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence angiography. Retina (Philadelphia, Pa). 2015;35(11):2163.

    Google Scholar 

  56. Enders C, Lang GE, Dreyhaupt J, Loidl M, Lang GK, Werner JU. Quantity and quality of image artifacts in optical coherence tomography angiography. PLoS One. 2019;14(1):e0210505.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, et al. Projection-resolved optical coherence tomographic angiography. Biomed Opt Express. 2016;7(3):816–28.

    PubMed  PubMed Central  Google Scholar 

  58. Group DR. Diabetes control and complications trial (DCCT): update. Diabetes Care. 1990;13(4):427–33.

    Google Scholar 

  59. Stratton I, Kohner E, Aldington S, Turner R, Holman R, Manley S, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44(2):156–63.

    CAS  PubMed  Google Scholar 

  60. Chew EY, Davis MD, Danis RP, Lovato JF, Perdue LH, Greven C, et al. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Eye Study. Ophthalmology. 2014;121(12):2443–51.

    PubMed  Google Scholar 

  61. Ting DSW, Tan K-A, Phua V, Tan GSW, Wong CW, Wong TY. Biomarkers of diabetic retinopathy. Curr Diab Rep. 2016;16(12):125.

    PubMed  Google Scholar 

  62. Sasongko M, Wong T, Jenkins A, Nguyen T, Shaw J, Wang J. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabet Med. 2015;32(5):686–91.

    CAS  PubMed  Google Scholar 

  63. Song J, Chen S, Liu X, Duan H, Kong J, Li Z. Relationship between C-reactive protein level and diabetic retinopathy: a systematic review and meta-analysis. PLoS One. 2015;10(12):e0144406.

    PubMed  PubMed Central  Google Scholar 

  64. Simó-Servat O, Simó R, Hernández C. Circulating biomarkers of diabetic retinopathy: an overview based on physiopathology. J Diabetes Res. 2016;2016:1–13.

    Google Scholar 

  65. HIRATA K, KUBO K. Relationship between blood levels of N-carboxymethyl-lysine and pentosidine and the severity of microangiopathy in type 2 diabetes. Endocr J. 2004;51(6):537–44.

    CAS  PubMed  Google Scholar 

  66. McVicar CM, Ward M, Colhoun LM, Guduric-Fuchs J, Bierhaus A, Fleming T, et al. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia. 2015;58(5):1129–37. https://doi.org/10.1007/s00125-015-3523-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.

    CAS  PubMed  Google Scholar 

  68. Nicholson BP, Schachat AP. A review of clinical trials of anti-VEGF agents for diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2010;248(7):915–30.

    CAS  PubMed  Google Scholar 

  69. Adamiec-Mroczek J, Oficjalska-Młyńczak J, Misiuk-Hojło M. Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: analysis of vitreous samples. Cytokine. 2010;49(3):269–74.

    CAS  PubMed  Google Scholar 

  70. Chernykh V, Varvarinsky E, Smirnov E, Chernykh D, Trunov AN. Proliferative and inflammatory factors in the vitreous of patients with proliferative diabetic retinopathy. Indian J Ophthalmol. 2015;63(1):33–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Funatsu H, Noma H, Mimura T, Eguchi S, Hori S. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology. 2009;116(1):73–9.

    PubMed  Google Scholar 

  72. Praidou A, Klangas I, Papakonstantinou E, Androudi S, Georgiadis N, Karakiulakis G, et al. Vitreous and serum levels of platelet-derived growth factor and their correlation in patients with proliferative diabetic retinopathy. Curr Eye Res. 2009;34(2):152–61.

    CAS  PubMed  Google Scholar 

  73. Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol. 2011;55(3):256–63. https://doi.org/10.1007/s10384-011-0004-8.

    Article  CAS  PubMed  Google Scholar 

  74. Tsai T, Kuehn S, Tsiampalis N, Vu M-K, Kakkassery V, Stute G, et al. Anti-inflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS One. 2018;13(3):e0194603. https://doi.org/10.1371/journal.pone.0194603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou J, Wang S, Xia X. Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Curr Eye Res. 2012;37(5):416–20.

    CAS  PubMed  Google Scholar 

  76. • McAuley AK, Sanfilippo PG, Hewitt AW, Liang H, Lamoureux E, Wang JJ, et al. Vitreous biomarkers in diabetic retinopathy: a systematic review and meta-analysis. J Diabetes Complicat. 2014;28(3):419–25. Meta-analysis summarizing important biomarkers in DR.

    Google Scholar 

  77. Yokota T, Ma RC, Park J-Y, Isshiki K, Sotiropoulos KB, Rauniyar RK, et al. Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes. 2003;52(3):838–45.

    CAS  PubMed  Google Scholar 

  78. Jo N, Mailhos C, Ju M, Cheung E, Bradley J, Nishijima K, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol. 2006;168(6):2036–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Dong A, Seidel C, Snell D, Ekawardhani S, Ahlskog JK, Baumann M, et al. Antagonism of PDGF-BB suppresses subretinal neovascularization and enhances the effects of blocking VEGF-A. Angiogenesis. 2014;17(3):553–62.

    CAS  PubMed  Google Scholar 

  80. Dawson D, Volpert O, Gillis P, Crawford S, Xu H-J, Benedict W, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285(5425):245–8.

    CAS  PubMed  Google Scholar 

  81. Liu Y, Leo LF, McGregor C, Grivitishvili A, Barnstable CJ, Tombran-Tink J. Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and vascular leakage in diabetic retinopathy in Ins2 Akita mice. Mol Med. 2012;18(10):1387–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Park K, Jin J, Hu Y, Zhou K, Ma J-x. Overexpression of pigment epithelium–derived factor inhibits retinal inflammation and neovascularization. Am J Pathol. 2011;178(2):688–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang Q, Gorbey S, Pfister F, Höger S, Dorn-Beineke A, Krügel K, et al. Long-term treatment with suberythropoietic Epo is vaso-and neuroprotective in experimental diabetic retinopathy. Cell Physiol Biochem. 2011;27(6):769–82.

    PubMed  Google Scholar 

  84. Oh IK, Kim S-W, Oh J, Lee TS, Huh K. Inflammatory and angiogenic factors in the aqueous humor and the relationship to diabetic retinopathy. Curr Eye Res. 2010;35(12):1116–27.

    CAS  PubMed  Google Scholar 

  85. Funatsu H, Yamashita H, Noma H, Mimura T, Nakamura S, Sakata K, et al. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 2005;243(1):3–8.

    CAS  PubMed  Google Scholar 

  86. Chen H, Zhang X, Liao N, Wen F. Assessment of biomarkers using multiplex assays in aqueous humor of patients with diabetic retinopathy. BMC Ophthalmol. 2017;17(1):176.

    PubMed  PubMed Central  Google Scholar 

  87. Vujosevic S, Micera A, Bini S, Berton M, Esposito G, Midena E. Aqueous humor biomarkers of Müller cell activation in diabetic eyes. Invest Ophthalmol Vis Sci. 2015;56(6):3913–8.

    CAS  PubMed  Google Scholar 

  88. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227–39. https://doi.org/10.1056/nejmra1005073.

    Article  CAS  PubMed  Google Scholar 

  89. Hillier RJ, Ojaimi E, Wong DT, Mak MY, Berger AR, Kohly RP, et al. Aqueous humor cytokine levels as biomarkers of disease severity in diabetic macular edema. Retina (Philadelphia, Pa). 2017;37(4):761–9.

    CAS  Google Scholar 

  90. Hillier RJ, Ojaimi E, Wong DT, Mak MYK, Berger AR, Kohly RP, et al. Aqueous humor cytokine levels and anatomic response to intravitreal ranibizumab in diabetic macular edema. JAMA Ophthalmol. 2018;136(4):382–8. https://doi.org/10.1001/jamaophthalmol.2018.0179.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci. 2008;49(9):3839–45.

    PubMed  Google Scholar 

  92. Hietala K, Forsblom C, Summanen P, Groop P-H. Heritability of proliferative diabetic retinopathy. Diabetes. 2008;57(8):2176–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Burdon KP, Fogarty RD, Shen W, Abhary S, Kaidonis G, Appukuttan B, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia. 2015;58(10):2288–97.

    CAS  PubMed  Google Scholar 

  94. Abhary S, Burdon KP, Laurie KJ, Thorpe S, Landers J, Goold L, et al. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility. Diabetes Care. 2010;33(8):1834–6.

    PubMed  PubMed Central  Google Scholar 

  95. Awata T, Inoue K, Kurihara S, Ohkubo T, Watanabe M, Inukai K, et al. A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002;51(5):1635–9.

    CAS  PubMed  Google Scholar 

  96. Perrone L, Matrone C, Singh LP. Epigenetic modifications and potential new treatment targets in diabetic retinopathy. J Ophthalmol. 2014;2014:1–10. https://doi.org/10.1155/2014/789120.

    Article  CAS  Google Scholar 

  97. Perrone L, Devi TS, Ki H, Terasaki T, Singh LP. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol. 2009;221(1):262–72.

    CAS  PubMed  Google Scholar 

  98. Devi TS, Somayajulu M, Kowluru RA, Singh LP. TXNIP regulates mitophagy in retinal Müller cells under high-glucose conditions: implications for diabetic retinopathy. Cell Death Dis. 2017;8(5):e2777.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Perrone L, Devi T, Hosoya K, Terasaki T, Singh L. Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis. 2010;1(8):e65.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kadiyala CSR, Zheng L, Du Y, Yohannes E, Kao H-Y, Miyagi M, et al. Acetylation of retinal histones in diabetes increases inflammatory proteins effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem. 2012;287(31):25869–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Malik AN, Parsade CK, Ajaz S, Crosby-Nwaobi R, Gnudi L, Czajka A, et al. Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2015;110(3):257–65.

    CAS  PubMed  Google Scholar 

  102. Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal. 2010;13(6):797–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mishra M, Lillvis J, Seyoum B, Kowluru RA. Peripheral blood mitochondrial DNA damage as a potential noninvasive biomarker of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57(10):4035–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zampetaki A, Willeit P, Burr S, Yin X, Langley SR, Kiechl S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes. Diabetes. 2016;65(1):216–27.

    CAS  PubMed  Google Scholar 

  105. Qing S, Yuan S, Yun C, Hui H, Mao P, Wen F, et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem. 2014;34(5):1733–40.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani A. Fawzi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwan, C.C., Fawzi, A.A. Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy. Curr Diab Rep 19, 95 (2019). https://doi.org/10.1007/s11892-019-1226-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1226-2

Keywords

Navigation