Skip to main content

Advertisement

Log in

Developmental Programming of Body Composition: Update on Evidence and Mechanisms

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (M-E Patti, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A growing body of epidemiological and experimental data indicate that nutritional or environmental stressors during early development can induce long-term adaptations that increase risk of obesity, diabetes, cardiovascular disease, and other chronic conditions—a phenomenon termed “developmental programming.” A common phenotype in humans and animal models is altered body composition, with reduced muscle and bone mass, and increased fat mass. In this review, we summarize the recent literature linking prenatal factors to future body composition and explore contributing mechanisms.

Recent Findings

Many prenatal exposures, including intrauterine growth restriction, extremes of birth weight, maternal obesity, and maternal diabetes, are associated with increased fat mass, reduced muscle mass, and decreased bone density, with effects reported throughout infancy and childhood, and persisting into middle age. Mechanisms and mediators include maternal diet, breastmilk composition, metabolites, appetite regulation, genetic and epigenetic influences, stem cell commitment and function, and mitochondrial metabolism.

Summary

Differences in body composition are a common phenotype following disruptions to the prenatal environment, and may contribute to developmental programming of obesity and diabetes risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hanson M, Gluckman P. Developmental origins of noncommunicable disease: population and public health implications. Am J Clin Nutr. 2011;94(6 Suppl):1754S–8S.

    CAS  PubMed  Google Scholar 

  2. Taveras EM, Perkins M, Woo Baidal JA, et al. The impact of the first 1000 days on childhood obesity. Durham, NC: Robert Wood Johnson Foundation, Healthy Eating Research; 2016.

    Google Scholar 

  3. Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016;315(21):2292–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shepherd PR, Crowther NJ, Desai M, Hales CN, Ozanne SE. Altered adipocyte properties in the offspring of protein malnourished rats. Br J Nutr. 1997;78(1):121–9.

    CAS  PubMed  Google Scholar 

  7. Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118(6):2316–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Woodall SM, Breier BH, Johnston BM, Gluckman PD. A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotrophic axis and postnatal growth. J Endocrinol. 1996;150(2):231–42.

    CAS  PubMed  Google Scholar 

  9. Isganaitis E, Woo M, Ma H, Chen M, Kong W, Lytras A, et al. Developmental programming by maternal insulin resistance: hyperinsulinemia, glucose intolerance, and dysregulated lipid metabolism in male offspring of insulin-resistant mice. Diabetes. 2014;63(2):688–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jimenez-Chillaron JC, Hernandez-Valencia M, Reamer C, Fisher S, Joszi A, Hirshman M, et al. Beta-cell secretory dysfunction in the pathogenesis of low birth weight-associated diabetes: a murine model. Diabetes. 2005;54(3):702–11.

    CAS  PubMed  Google Scholar 

  11. Owens JA, Falconer J, Robinson JS. Glucose metabolism in pregnant sheep when placental growth is restricted. Am J Phys. 1989;257(2 Pt 2):R350–7.

    CAS  Google Scholar 

  12. Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018;391(10132):1842–52.

    PubMed  PubMed Central  Google Scholar 

  13. Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab. 2017;25(3):559–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Woo M, Patti ME. Diabetes risk begins in utero. Cell Metab. 2008;8(1):5–7.

    CAS  PubMed  Google Scholar 

  15. Gingras V, Hivert MF, Oken E. Early-life exposures and risk of diabetes mellitus and obesity. Curr Diab Rep. 2018;18(10):89.

    PubMed  Google Scholar 

  16. Stein Z, Susser M. The Dutch famine, 1944–1945, and the reproductive process. I. Effects on six indices at birth. Pediatr Res. 1975;9(2):70–6.

    CAS  PubMed  Google Scholar 

  17. Lumey LH, Stein AD. In utero exposure to famine and subsequent fertility: the Dutch famine birth cohort study. Am J Public Health. 1997;87(12):1962–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351(9097):173–7.

    CAS  PubMed  Google Scholar 

  19. de Rooij SR, Painter RC, Roseboom TJ, Phillips DI, Osmond C, Barker DJ, et al. Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia. 2006;49(4):637–43.

    CAS  PubMed  Google Scholar 

  20. Stein AD, Kahn HS, Rundle A, Zybert PA, Van der Pal-de Bruin K, Lumey LH. Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine. Am J Clin Nutr. 2007;85(3):869–76.

    CAS  PubMed  Google Scholar 

  21. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938–41.

    CAS  PubMed  Google Scholar 

  22. Zimmet P, Shi Z, El-Osta A, Ji L. Epidemic T2DM, early development and epigenetics: implications of the Chinese famine. Nat Rev Endocrinol. 2018;14(12):738–46.

    PubMed  Google Scholar 

  23. Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med. 1999;130(4 Pt 1):278–84.

    CAS  PubMed  Google Scholar 

  24. Xia Q, Cai H, Xiang YB, Zhou P, Li H, Yang G, et al. Prospective cohort studies of birth weight and risk of obesity, diabetes, and hypertension in adulthood among the Chinese population. J Diabetes. 2019;11(1):55–64.

    CAS  PubMed  Google Scholar 

  25. de Lauzon-Guillain B, Balkau B, Charles MA, Romieu I, Boutron-Ruault MC, Clavel-Chapelon F. Birth weight, body silhouette over the life course, and incident diabetes in 91,453 middle-aged women from the French etude Epidemiologique de femmes de la Mutuelle Generale de l'Education Nationale (E3N) cohort. Diabetes Care. 2010;33(2):298–303.

    PubMed  Google Scholar 

  26. Katanoda K, Noda M, Goto A, Mizunuma H, Lee JS, Hayashi K. Impact of birth weight on adult-onset diabetes mellitus in relation to current body mass index: The Japan Nurses’ Health Study. J Epidemiol. 2017;27(9):428–34.

    PubMed  PubMed Central  Google Scholar 

  27. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One. 2013;8(4):e61627.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Eriksson JG, Sandboge S, Salonen MK, Kajantie E, Osmond C. Long-term consequences of maternal overweight in pregnancy on offspring later health: findings from the Helsinki birth cohort study. Ann Med. 2014;46(6):434–8.

    PubMed  Google Scholar 

  29. Schoppa I, Lyass A, Heard-Costa N, de Ferranti SD, Fox C, Gillman MW, et al. Association of maternal prepregnancy weight with offspring adiposity throughout adulthood over 37 years of follow-up. Obesity (Silver Spring). 2019;27(1):137–44.

    Google Scholar 

  30. Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S, et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics. 2006;118(6):e1644–9.

    PubMed  Google Scholar 

  31. Bunt JC, Tataranni PA, Salbe AD. Intrauterine exposure to diabetes is a determinant of hemoglobin A(1)c and systolic blood pressure in pima Indian children. J Clin Endocrinol Metab. 2005;90(6):3225–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wright CS, Rifas-Shiman SL, Rich-Edwards JW, Taveras EM, Gillman MW, Oken E. Intrauterine exposure to gestational diabetes, child adiposity, and blood pressure. Am J Hypertens. 2009;22(2):215–20.

    PubMed  Google Scholar 

  33. Pettitt DJ, Lawrence JM, Beyer J, Hillier TA, Liese AD, Mayer-Davis B, et al. Association between maternal diabetes in utero and age at offspring’s diagnosis of type 2 diabetes. Diabetes Care. 2008;31(11):2126–30.

    PubMed  PubMed Central  Google Scholar 

  34. Regnault N, Gillman MW, Rifas-Shiman SL, Eggleston E, Oken E. Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care. 2013;36(10):3045–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawasaki M, Arata N, Miyazaki C, Mori R, Kikuchi T, Ogawa Y, et al. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: a systematic review and meta-analysis. PLoS One. 2018;13(1):e0190676.

    PubMed  PubMed Central  Google Scholar 

  36. Fleisch AF, Luttmann-Gibson H, Perng W, Rifas-Shiman SL, Coull BA, Kloog I, et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr Obes. 2017;12(1):48–57.

    CAS  PubMed  Google Scholar 

  37. Fleisch AF, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, Melly S, et al. Prenatal exposure to traffic pollution: associations with reduced fetal growth and rapid infant weight gain. Epidemiology. 2015;26(1):43–50.

    PubMed  PubMed Central  Google Scholar 

  38. Chiu YM, Hsu HL, Wilson A, Coull BA, Pendo MP, Baccarelli A, et al. Prenatal particulate air pollution exposure and body composition in urban preschool children: examining sensitive windows and sex-specific associations. Environ Res. 2017;158:798–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Albers L, Sobotzki C, Kuss O, Ajslev T, Batista RF, Bettiol H, et al. Maternal smoking during pregnancy and offspring overweight: is there a dose–response relationship? An individual patient data meta-analysis. Int J Obes. 2018;42(7):1249–64.

    Google Scholar 

  40. Vafeiadi M, Roumeliotaki T, Myridakis A, Chalkiadaki G, Fthenou E, Dermitzaki E, et al. Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environ Res. 2016;146:379–87.

    CAS  PubMed  Google Scholar 

  41. Hoepner LA, Whyatt RM, Widen EM, Hassoun A, Oberfield SE, Mueller NT, et al. Bisphenol A and adiposity in an inner-city birth cohort. Environ Health Perspect. 2016;124(10):1644–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Harley KG, Berger K, Rauch S, Kogut K, Claus Henn B, Calafat AM, et al. Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity. Pediatr Res. 2017;82(3):405–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vafeiadi M, Georgiou V, Chalkiadaki G, Rantakokko P, Kiviranta H, Karachaliou M, et al. Association of prenatal exposure to persistent organic pollutants with obesity and cardiometabolic traits in early childhood: the Rhea mother–child cohort (Crete, Greece). Environ Health Perspect. 2015;123(10):1015–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Warner M, Ye M, Harley K, Kogut K, Bradman A, Eskenazi B. Prenatal DDT exposure and child adiposity at age 12: the CHAMACOS study. Environ Res. 2017;159:606–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Coker E, Chevrier J, Rauch S, Bradman A, Obida M, Crause M, et al. Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE south African birth cohort. Environ Int. 2018;113:122–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Saenz de Pipaon M, Dorronsoro I, Alvarez-Cuervo L, Butte NF, Madero R, Barrios V, et al. The impact of intrauterine and extrauterine weight gain in premature infants on later body composition. Pediatr Res. 2017;82(4):658–64.

    PubMed  Google Scholar 

  47. Wang X, Zhu J, Guo C, Shi H, Wu D, Sun F, et al. Growth of infants and young children born small for gestational age: growth restriction accompanied by overweight. J Int Med Res. 2018;46(9):3765–77.

    PubMed  PubMed Central  Google Scholar 

  48. Jabakhanji SB, Boland F, Ward M, Biesma R. Body mass index changes in early childhood. J Pediatr. 2018;202:106–14.

    PubMed  Google Scholar 

  49. Ibanez L, Suarez L, Lopez-Bermejo A, Diaz M, Valls C, de Zegher F. Early development of visceral fat excess after spontaneous catch-up growth in children with low birth weight. J Clin Endocrinol Metab. 2008;93(3):925–8.

    CAS  PubMed  Google Scholar 

  50. Sebastiani G, Diaz M, Bassols J, Aragones G, Lopez-Bermejo A, de Zegher F, et al. The sequence of prenatal growth restraint and post-natal catch-up growth leads to a thicker intima–media and more pre-peritoneal and hepatic fat by age 3–6 years. Pediatr Obes. 2016;11(4):251–7.

    CAS  PubMed  Google Scholar 

  51. Han DY, Murphy R, Morgan AR, Lam WJ, Thompson JM, Wall CR, et al. Reduced genetic influence on childhood obesity in small for gestational age children. BMC Med Genet. 2013;14:10.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lindberg J, Norman M, Westrup B, Ohrman T, Domellof M, Berglund SK. Overweight, obesity, and body composition in 3.5- and 7-year-old Swedish children born with marginally low birth weight. J Pediatr. 2015;167(6):1246–52 e3.

    PubMed  Google Scholar 

  53. Kapral N, Miller SE, Scharf RJ, Gurka MJ, DeBoer MD. Associations between birthweight and overweight and obesity in school-age children. Pediatr Obes. 2018;13(6):333–41.

    CAS  PubMed  Google Scholar 

  54. Kuhle S, Maguire B, Ata N, MacInnis N, Dodds L. Birth weight for gestational age, anthropometric measures, and cardiovascular disease markers in children. J Pediatr. 2017;182:99–106.

    PubMed  Google Scholar 

  55. Beukers F, Rotteveel J, van Weissenbruch MM, Ganzevoort W, van Goudoever JB, van Wassenaer-Leemhuis AG. Growth throughout childhood of children born growth restricted. Arch Dis Child. 2017;102(8):735–41.

    PubMed  Google Scholar 

  56. Li P, Yang F, Xiong F, Huo T, Tong Y, Yang S, et al. Nutritional status and risk factors of overweight and obesity for children aged 9–15 years in Chengdu, Southwest China. BMC Public Health. 2012;12:636.

    PubMed  PubMed Central  Google Scholar 

  57. Mullett MD, Cottrell L, Lilly C, Gadikota K, Dong L, Hobbs G, et al. Association between birth characteristics and coronary disease risk factors among fifth graders. J Pediatr. 2014;164(1):78–82.

    PubMed  Google Scholar 

  58. • Kramer MS, Zhang X, Dahhou M, Yang S, Martin RM, Oken E, et al. Does fetal growth restriction cause later obesity? Pitfalls in analyzing causal mediators as confounders. Am J Epidemiol. 2017;185(7):585–90. The authors apply different statistical approaches to adjusting for childhood BMI to the same dataset, and show that adjustment for current BMI can alter the observed effect of prenatal growth on childhood obesity.

    PubMed  PubMed Central  Google Scholar 

  59. Kramer MS, Martin RM, Bogdanovich N, Vilchuk K, Dahhou M, Oken E. Is restricted fetal growth associated with later adiposity? Observational analysis of a randomized trial. Am J Clin Nutr. 2014;100(1):176–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in early childhood and risk of sustained obesity. N Engl J Med. 2018;379(14):1303–12.

    PubMed  Google Scholar 

  61. Meas T, Deghmoun S, Armoogum P, Alberti C, Levy-Marchal C. Consequences of being born small for gestational age on body composition: an 8-year follow-up study. J Clin Endocrinol Metab. 2008;93(10):3804–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Melo AS, Bettiol H, Silva AA, Rosa-e-Silva AC, Cardoso VC, Reis RM, et al. Small for gestational age babies are not related to changes in markers of adipose tissue dysfunction during reproductive age. Early Hum Dev. 2014;90(5):231–5.

    PubMed  Google Scholar 

  63. Crane JD, Yellin SA, Ong FJ, Singh NP, Konyer N, Noseworthy MD, et al. ELBW survivors in early adulthood have higher hepatic, pancreatic and subcutaneous fat. Sci Rep. 2016;6:31560.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Morrison KM, Ramsingh L, Gunn E, Streiner D, Van Lieshout R, Boyle M, et al. Cardiometabolic health in adults Born premature with extremely low birth weight. Pediatrics. 2016;138(4):e20160515.

    PubMed  Google Scholar 

  65. Beltrand J, Verkauskiene R, Nicolescu R, Sibony O, Gaucherand P, Chevenne D, et al. Adaptive changes in neonatal hormonal and metabolic profiles induced by fetal growth restriction. J Clin Endocrinol Metab. 2008;93(10):4027–32.

    CAS  PubMed  Google Scholar 

  66. Carlsen EM, Renault KM, Norgaard K, Nilas L, Jensen JE, Hyldstrup L, et al. Newborn regional body composition is influenced by maternal obesity, gestational weight gain and the birthweight standard score. Acta Paediatr. 2014;103(9):939–45.

    CAS  PubMed  Google Scholar 

  67. Thurber KA, Dobbins T, Kirk M, Dance P, Banwell C. Early life predictors of increased body mass index among indigenous Australian children. PLoS One. 2015;10(6):e0130039.

    PubMed  PubMed Central  Google Scholar 

  68. Boscaini C, Pellanda LC. Birth weight, current anthropometric markers, and high sensitivity C-reactive protein in Brazilian school children. J Obes. 2015;2015:846376.

    PubMed  PubMed Central  Google Scholar 

  69. Prioreschi A, Munthali RJ, Kagura J, Said-Mohamed R, De Lucia Rolfe E, Micklesfield LK, et al. The associations between adult body composition and abdominal adiposity outcomes, and relative weight gain and linear growth from birth to age 22 in the birth to twenty plus cohort, South Africa. PLoS One. 2018;13(1):e0190483.

    PubMed  PubMed Central  Google Scholar 

  70. Rillamas-Sun E, Sowers MR, Harlow SD, Randolph JF Jr. The relationship of birth weight with longitudinal changes in body composition in adult women. Obesity (Silver Spring). 2012;20(2):463–5.

    Google Scholar 

  71. West J, Santorelli G, Whincup PH, Smith L, Sattar NA, Cameron N, et al. Association of maternal exposures with adiposity at age 4/5 years in white British and Pakistani children: findings from the Born in Bradford study. Diabetologia. 2018;61(1):242–52.

    PubMed  Google Scholar 

  72. Gademan MG, Vermeulen M, Oostvogels AJ, Roseboom TJ, Visscher TL, van Eijsden M, et al. Maternal prepregancy BMI and lipid profile during early pregnancy are independently associated with offspring’s body composition at age 5–6 years: the ABCD study. PLoS One. 2014;9(4):e94594.

    PubMed  PubMed Central  Google Scholar 

  73. Pirkola J, Pouta A, Bloigu A, Hartikainen AL, Laitinen J, Jarvelin MR, et al. Risks of overweight and abdominal obesity at age 16 years associated with prenatal exposures to maternal prepregnancy overweight and gestational diabetes mellitus. Diabetes Care. 2010;33(5):1115–21.

    PubMed  PubMed Central  Google Scholar 

  74. Eriksson JG, Sandboge S, Salonen M, Kajantie E, Osmond C. Maternal weight in pregnancy and offspring body composition in late adulthood: findings from the Helsinki Birth Cohort Study (HBCS). Ann Med. 2015;47(2):94–9.

    PubMed  Google Scholar 

  75. Zhu Y, Olsen SF, Mendola P, Yeung EH, Vaag A, Bowers K, et al. Growth and obesity through the first 7 y of life in association with levels of maternal glycemia during pregnancy: a prospective cohort study. Am J Clin Nutr. 2016;103(3):794–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Aris IM, Soh SE, Tint MT, Saw SM, Rajadurai VS, Godfrey KM, et al. Associations of gestational glycemia and prepregnancy adiposity with offspring growth and adiposity in an Asian population. Am J Clin Nutr. 2015;102(5):1104–12.

    CAS  PubMed  Google Scholar 

  77. Thaware PK, McKenna S, Patterson CC, Hadden DR, Pettitt DJ, McCance DR. Untreated mild hyperglycemia during pregnancy and anthropometric measures of obesity in offspring at age 5–7 years. Diabetes Care. 2015;38(9):1701–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lowe WL Jr, Lowe LP, Kuang A, Catalano PM, Nodzenski M, Talbot O, et al. Maternal glucose levels during pregnancy and childhood adiposity in the hyperglycemia and adverse pregnancy outcome follow-up study. Diabetologia. 2019;62(4):598–610.

    CAS  PubMed  Google Scholar 

  79. Carlsen EM, Renault KM, Norgaard K, Nilas L, Jensen JE, Hitz MF, et al. Glucose tolerance in obese pregnant women determines newborn fat mass. Acta Obstet Gynecol Scand. 2016;95(4):429–35.

    PubMed  Google Scholar 

  80. Kearney M, Perron J, Marc I, Weisnagel SJ, Tchernof A, Robitaille J. Association of prenatal exposure to gestational diabetes with offspring body composition and regional body fat distribution. Clin Obes. 2018;8(2):81–7.

    CAS  PubMed  Google Scholar 

  81. Grunnet LG, Hansen S, Hjort L, Madsen CM, Kampmann FB, Thuesen ACB, et al. Adiposity, dysmetabolic traits, and earlier onset of female puberty in adolescent offspring of women with gestational diabetes mellitus: a clinical study within the Danish National Birth Cohort. Diabetes Care. 2017;40(12):1746–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. •• Lowe WL Jr, Scholtens DM, Lowe LP, Kuang A, Nodzenski M, Talbot O, et al. Association of gestational diabetes with maternal disorders of glucose metabolism and childhood adiposity. JAMA. 2018;320(10):1005–16. This large multi-national cohort study shows a strong effect of maternal hyperglycemia on childhood adiposity. Strengths include the large and diverse study sample, and adjustment for numerous potential confounders.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lohse Z, Knorr S, Bytoft B, Clausen TD, Jensen RB, Oturai P, et al. Differential effects of age and sex on insulin sensitivity and body composition in adolescent offspring of women with type 1 diabetes: results from the EPICOM study. Diabetologia. 2018;61(1):210–9.

    CAS  PubMed  Google Scholar 

  84. Mughal MZ, Eelloo J, Roberts SA, Maresh M, Ward KA, Ashby R, et al. Body composition and bone status of children born to mothers with type 1 diabetes mellitus. Arch Dis Child. 2010;95(4):281–5.

    CAS  PubMed  Google Scholar 

  85. Biosca M, Rodriguez G, Ventura P, Samper MP, Labayen I, Collado MP, et al. Central adiposity in children born small and large for gestational age. Nutr Hosp. 2011;26(5):971–6.

    CAS  PubMed  Google Scholar 

  86. Rockenbach G, Luft VC, Mueller NT, Duncan BB, Stein MC, Vigo A, et al. Sex-specific associations of birth weight with measures of adiposity in mid-to-late adulthood: the Brazilian longitudinal study of adult health (ELSA-Brasil). Int J Obes. 2016;40(8):1286–91.

    CAS  Google Scholar 

  87. Araujo de Franca GV, De Lucia Rolfe E, Horta BL, Gigante DP, Yudkin JS, Ong KK, et al. Associations of birth weight, linear growth and relative weight gain throughout life with abdominal fat depots in adulthood: the 1982 Pelotas (Brazil) birth cohort study. Int J Obes. 2016;40(1):14–21.

    CAS  Google Scholar 

  88. Stansfield BK, Fain ME, Bhatia J, Gutin B, Nguyen JT, Pollock NK. Nonlinear relationship between birth weight and visceral fat in adolescents. J Pediatr. 2016;174:185–92.

    PubMed  PubMed Central  Google Scholar 

  89. Morgen CS, Andersen PK, Mortensen LH, Howe LD, Rasmussen M, Due P, et al. Socioeconomic disparities in birth weight and body mass index during infancy through age 7 years: a study within the Danish National Birth Cohort. BMJ Open. 2017;7(1):e011781.

    PubMed  PubMed Central  Google Scholar 

  90. Morgan AR, Thompson JM, Murphy R, Black PN, Lam WJ, Ferguson LR, et al. Obesity and diabetes genes are associated with being born small for gestational age: results from the Auckland Birthweight Collaborative study. BMC Med Genet. 2010;11:125.

    PubMed  PubMed Central  Google Scholar 

  91. Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538(7624):248–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jelenkovic A, Yokoyama Y, Sund R, Pietilainen KH, Hur YM, Willemsen G, et al. Association between birthweight and later body mass index: an individual-based pooled analysis of 27 twin cohorts participating in the CODATwins project. Int J Epidemiol. 2017;46(5):1488–98.

    PubMed  PubMed Central  Google Scholar 

  93. Kuhle S, Allen AC, Veugelers PJ. Prevention potential of risk factors for childhood overweight. Can J Public Health. 2010;101(5):365–8.

    PubMed  Google Scholar 

  94. Patro Golab B, Santos S, Voerman E, Lawlor DA, Jaddoe VWV, Gaillard R, et al. Influence of maternal obesity on the association between common pregnancy complications and risk of childhood obesity: an individual participant data meta-analysis. Lancet Child Adolesc Health. 2018;2(11):812–21.

    PubMed  Google Scholar 

  95. Voerman E, Santos S, Patro Golab B, Amiano P, Ballester F, Barros H, et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: an individual participant data meta-analysis. PLoS Med. 2019;16(2):e1002744.

    PubMed  PubMed Central  Google Scholar 

  96. McCloskey K, Ponsonby AL, Collier F, Allen K, Tang MLK, Carlin JB, et al. The association between higher maternal pre-pregnancy body mass index and increased birth weight, adiposity and inflammation in the newborn. Pediatr Obes. 2018;13(1):46–53.

    CAS  PubMed  Google Scholar 

  97. Zhang C, Hediger ML, Albert PS, Grewal J, Sciscione A, Grobman WA, et al. Association of maternal obesity with longitudinal ultrasonographic measures of fetal growth: findings from the NICHD fetal growth studies—singletons. JAMA Pediatr. 2018;172(1):24–31.

    PubMed  Google Scholar 

  98. Sewell MF, Huston-Presley L, Super DM, Catalano P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol. 2006;195(4):1100–3.

    PubMed  Google Scholar 

  99. Guenard F, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci U S A. 2013;110(28):11439–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tyrrell J, Richmond RC, Palmer TM, Feenstra B, Rangarajan J, Metrustry S, et al. Genetic evidence for causal relationships between maternal obesity-related traits and birth weight. JAMA. 2016;315(11):1129–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li A, Robiou-du-Pont S, Anand SS, Morrison KM, McDonald SD, Atkinson SA, et al. Parental and child genetic contributions to obesity traits in early life based on 83 loci validated in adults: the FAMILY study. Pediatr Obes. 2018;13(3):133–40.

    CAS  PubMed  Google Scholar 

  102. Richmond RC, Timpson NJ, Felix JF, Palmer T, Gaillard R, McMahon G, et al. Using genetic variation to explore the causal effect of maternal pregnancy adiposity on future offspring adiposity: a Mendelian randomisation study. PLoS Med. 2017;14(1):e1002221.

    PubMed  PubMed Central  Google Scholar 

  103. Group HSCR, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002.

    Google Scholar 

  104. Group HSCR. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: associations with neonatal anthropometrics. Diabetes. 2009;58(2):453–9.

    Google Scholar 

  105. Raghavan S, Zhang W, Yang IV, Lange LA, Lange EM, Fingerlin TE, et al. Association between gestational diabetes mellitus exposure and childhood adiposity is not substantially explained by offspring genetic risk of obesity. Diabet Med. 2017;34(12):1696–700.

    CAS  PubMed  Google Scholar 

  106. Burrows R, Correa-Burrows P, Reyes M, Blanco E, Albala C, Gahagan S. Low muscle mass is associated with cardiometabolic risk regardless of nutritional status in adolescents: a cross-sectional study in a Chilean birth cohort. Pediatr Diabetes. 2017;18(8):895–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wells JC, Chomtho S, Fewtrell MS. Programming of body composition by early growth and nutrition. Proc Nutr Soc. 2007;66(3):423–34.

    PubMed  Google Scholar 

  108. Barr JG, Veena SR, Kiran KN, Wills AK, Winder NR, Kehoe S, et al. The relationship of birthweight, muscle size at birth and post-natal growth to grip strength in 9-year-old Indian children: findings from the Mysore Parthenon study. J Dev Orig Health Dis. 2010;1(5):329–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sayer AA, Syddall HE, Gilbody HJ, Dennison EM, Cooper C. Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study. J Gerontol A Biol Sci Med Sci. 2004;59(9):M930–4.

    PubMed  Google Scholar 

  110. Bielemann RM, Gigante DP, Horta BL. Birth weight, intrauterine growth restriction and nutritional status in childhood in relation to grip strength in adults: from the 1982 Pelotas (Brazil) birth cohort. Nutrition. 2016;32(2):228–35.

    PubMed  PubMed Central  Google Scholar 

  111. Stutte S, Gohlke B, Peiler A, Schreiner F, Born M, Bartmann P, et al. Impact of early nutrition on body composition in children aged 9.5 years born with extremely low birth weight. Nutrients. 2017;9(2):E124.

    PubMed  Google Scholar 

  112. Callreus M, McGuigan F, Akesson K. Birth weight is more important for peak bone mineral content than for bone density: the PEAK-25 study of 1,061 young adult women. Osteoporos Int. 2013;24(4):1347–55.

    CAS  PubMed  Google Scholar 

  113. Kitazawa S, Itabashi K, Umeda Y, Inoue M, Nishioka T. Growth and bone mineralization in small-for-gestational-age preterm infants. Pediatr Int. 2014;56(1):67–71.

    PubMed  Google Scholar 

  114. Sepulveda C, Urquidi C, Pittaluga E, Iniguez G, Avila A, Carrasco F, et al. Differences in body composition and resting energy expenditure in childhood in preterm children born with very low birth weight. Horm Res Paediatr. 2013;79(6):347–55.

    CAS  PubMed  Google Scholar 

  115. Bann D, Wills A, Cooper R, Hardy R, Aihie Sayer A, Adams J, et al. Birth weight and growth from infancy to late adolescence in relation to fat and lean mass in early old age: findings from the MRC National Survey of health and development. Int J Obes. 2014;38(1):69–75.

    Google Scholar 

  116. Dulloo AG, Jacquet J, Seydoux J, Montani JP. The thrifty ‘catch-up fat’ phenotype: its impact on insulin sensitivity during growth trajectories to obesity and metabolic syndrome. Int J Obes. 2006;30(Suppl 4):S23–35.

    CAS  Google Scholar 

  117. Beltrand J, Nicolescu R, Kaguelidou F, Verkauskiene R, Sibony O, Chevenne D, et al. Catch-up growth following fetal growth restriction promotes rapid restoration of fat mass but without metabolic consequences at one year of age. PLoS One. 2009;4(4):e5343.

    PubMed  PubMed Central  Google Scholar 

  118. Leunissen RW, Stijnen T, Hokken-Koelega AC. Influence of birth size on body composition in early adulthood: the programming factors for growth and metabolism (PROGRAM)-study. Clin Endocrinol. 2009;70(2):245–51.

    CAS  Google Scholar 

  119. de Zegher F, Perez-Cruz M, Diaz M, Gomez-Roig MD, Lopez-Bermejo A, Ibanez L. Less myostatin and more lean mass in large-born infants from nondiabetic mothers. J Clin Endocrinol Metab. 2014;99(11):E2367–71.

    PubMed  Google Scholar 

  120. Zou T, He D, Yu B, Yu J, Mao X, Zheng P, et al. Moderately increased maternal dietary energy intake delays foetal skeletal muscle differentiation and maturity in pigs. Eur J Nutr. 2016;55(4):1777–87.

    CAS  PubMed  Google Scholar 

  121. Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, et al. Bone marrow adipocytes. Adipocyte. 2017;6(3):193–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15(2):154–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771–84 e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wood CL, Stenson C, Embleton N. The developmental origins of osteoporosis. Curr Genomics. 2015;16(6):411–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Christoffersen T, Ahmed LA, Daltveit AK, Dennison EM, Evensen EK, Furberg AS, et al. The influence of birth weight and length on bone mineral density and content in adolescence: the Tromso study, fit futures. Arch Osteoporos. 2017;12(1):54.

    PubMed  Google Scholar 

  126. Balasuriya CND, Evensen KAI, Mosti MP, Brubakk AM, Jacobsen GW, Indredavik MS, et al. Peak bone mass and bone microarchitecture in adults born with low birth weight preterm or at term: a cohort study. J Clin Endocrinol Metab. 2017;102(7):2491–500.

    PubMed  Google Scholar 

  127. Fricke O, Semler O, Stabrey A, Tutlewski B, Remer T, Herkenrath P, et al. High and low birth weight and its implication for growth and bone development in childhood and adolescence. J Pediatr Endocrinol Metab. 2009;22(1):19–30.

    PubMed  Google Scholar 

  128. Heppe DH, Medina-Gomez C, de Jongste JC, Raat H, Steegers EA, Hofman A, et al. Fetal and childhood growth patterns associated with bone mass in school-age children: the generation R study. J Bone Miner Res. 2014;29(12):2584–93.

    PubMed  Google Scholar 

  129. Longhi S, Mercolini F, Carloni L, Nguyen L, Fanolla A, Radetti G. Prematurity and low birth weight lead to altered bone geometry, strength, and quality in children. J Endocrinol Investig. 2015;38(5):563–8.

    CAS  Google Scholar 

  130. Schushan-Eisen I, Cohen M, Leibovitch L, Maayan-Metzger A, Strauss T. Bone density among infants of gestational diabetic mothers and macrosomic neonates. Matern Child Health J. 2015;19(3):578–82.

    PubMed  Google Scholar 

  131. Macdonald-Wallis C, Tobias JH, Smith GD, Lawlor DA. Relation of maternal prepregnancy body mass index with offspring bone mass in childhood: is there evidence for an intrauterine effect? Am J Clin Nutr. 2010;92(4):872–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Regev RH, Dolfin T, Eliakim A, Arnon S, Bauer S, Nemet D, et al. Bone speed of sound in infants of mothers with gestational diabetes mellitus. J Pediatr Endocrinol Metab. 2004;17(8):1083–8.

    PubMed  Google Scholar 

  133. Lapillonne A, Guerin S, Braillon P, Claris O, Delmas PD, Salle BL. Diabetes during pregnancy does not alter whole body bone mineral content in infants. J Clin Endocrinol Metab. 1997;82(12):3993–7.

    CAS  PubMed  Google Scholar 

  134. Akcakus M, Koklu E, Kurtoglu S, Kula M, Koklu SS. The relationship among intrauterine growth, insulinlike growth factor I (IGF-I), IGF-binding protein-3, and bone mineral status in newborn infants. Am J Perinatol. 2006;23(8):473–80.

    PubMed  Google Scholar 

  135. Harvey NC, Mahon PA, Robinson SM, Nisbet CE, Javaid MK, Crozier SR, et al. Different indices of fetal growth predict bone size and volumetric density at 4 years of age. J Bone Miner Res. 2010;25(4):920–7.

    PubMed  PubMed Central  Google Scholar 

  136. Devlin MJ, Bouxsein ML. Influence of pre- and peri-natal nutrition on skeletal acquisition and maintenance. Bone. 2012;50(2):444–51.

    CAS  PubMed  Google Scholar 

  137. Martinez-Mesa J, Restrepo-Mendez MC, Gonzalez DA, Wehrmeister FC, Horta BL, Domingues MR, et al. Life-course evidence of birth weight effects on bone mass: systematic review and meta-analysis. Osteoporos Int. 2013;24(1):7–18.

    CAS  PubMed  Google Scholar 

  138. Hovi P, Andersson S, Jarvenpaa AL, Eriksson JG, Strang-Karlsson S, Kajantie E, et al. Decreased bone mineral density in adults born with very low birth weight: a cohort study. PLoS Med. 2009;6(8):e1000135.

    PubMed  PubMed Central  Google Scholar 

  139. Wallace JM, Milne JS, Aitken RP, Horgan GW, Adam CL. Ovine prenatal growth restriction impacts glucose metabolism and body composition throughout life in both sexes. Reproduction. 2018;156(2):103–19.

    CAS  PubMed  Google Scholar 

  140. Devlin MJ, Grasemann C, Cloutier AM, Louis L, Alm C, Palmert MR, et al. Maternal perinatal diet induces developmental programming of bone architecture. J Endocrinol. 2013;217(1):69–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Namgung R, Tsang RC. Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization. Proc Nutr Soc. 2000;59(1):55–63.

    CAS  PubMed  Google Scholar 

  142. Renault KM, Carlsen EM, Norgaard K, Nilas L, Pryds O, Secher NJ, et al. Intake of carbohydrates during pregnancy in obese women is associated with fat mass in the newborn offspring. Am J Clin Nutr. 2015;102(6):1475–81.

    CAS  PubMed  Google Scholar 

  143. Chen LW, Tint MT, Fortier MV, Aris IM, Bernard JY, Colega M, et al. Maternal macronutrient intake during pregnancy is associated with neonatal abdominal adiposity: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study. J Nutr. 2016;146(8):1571–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Fernandez-Barres S, Romaguera D, Valvi D, Martinez D, Vioque J, Navarrete-Munoz EM, et al. Mediterranean dietary pattern in pregnant women and offspring risk of overweight and abdominal obesity in early childhood: the INMA birth cohort study. Pediatr Obes. 2016;11(6):491–9.

    CAS  PubMed  Google Scholar 

  145. Moore BF, Sauder KA, Starling AP, Hebert JR, Shivappa N, Ringham BM, et al. Proinflammatory diets during pregnancy and neonatal adiposity in the Healthy Start Study. J Pediatr. 2018;195:121–7 e2.

    PubMed  Google Scholar 

  146. Shapiro AL, Kaar JL, Crume TL, Starling AP, Siega-Riz AM, Ringham BM, et al. Maternal diet quality in pregnancy and neonatal adiposity: the Healthy Start Study. Int J Obes. 2016;40(7):1056–62.

    CAS  Google Scholar 

  147. Crozier SR, Harvey NC, Inskip HM, Godfrey KM, Cooper C, Robinson SM, et al. Maternal vitamin D status in pregnancy is associated with adiposity in the offspring: findings from the Southampton Women’s Survey. Am J Clin Nutr. 2012;96(1):57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Morales E, Rodriguez A, Valvi D, Iniguez C, Esplugues A, Vioque J, et al. Deficit of vitamin D in pregnancy and growth and overweight in the offspring. Int J Obes. 2015;39(1):61–8.

    CAS  Google Scholar 

  149. Ong YL, Quah PL, Tint MT, Aris IM, Chen LW, van Dam RM, et al. The association of maternal vitamin D status with infant birth outcomes, postnatal growth and adiposity in the first 2 years of life in a multi-ethnic Asian population: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study. Br J Nutr. 2016;116(4):621–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Santamaria C, Bi WG, Leduc L, Tabatabaei N, Jantchou P, Luo ZC, et al. Prenatal vitamin D status and offspring’s growth, adiposity and metabolic health: a systematic review and meta-analysis. Br J Nutr. 2018;119(3):310–9.

    CAS  PubMed  Google Scholar 

  151. Prentice KJ, Luu L, Allister EM, Liu Y, Jun LS, Sloop KW, et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces beta cell dysfunction. Cell Metab. 2014;19(4):653–66.

    CAS  PubMed  Google Scholar 

  152. Donahue SM, Rifas-Shiman SL, Gold DR, Jouni ZE, Gillman MW, Oken E. Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am J Clin Nutr. 2011;93(4):780–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Isganaitis E, Rifas-Shiman SL, Oken E, Dreyfuss JM, Gall W, Gillman MW, et al. Associations of cord blood metabolites with early childhood obesity risk. Int J Obes. 2015;39(7):1041–8.

    CAS  Google Scholar 

  154. van Lee L, Tint MT, Aris IM, Quah PL, Fortier MV, Lee YS, et al. Prospective associations of maternal betaine status with offspring weight and body composition at birth: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study. Am J Clin Nutr. 2016;104(5):1327–33.

    PubMed  Google Scholar 

  155. Brei C, Stecher L, Much D, Karla MT, Amann-Gassner U, Shen J, et al. Reduction of the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on offspring body composition: follow-up results from a randomized controlled trial up to 5 y of age. Am J Clin Nutr. 2016;103(6):1472–81.

    CAS  PubMed  Google Scholar 

  156. Foster BA, Escaname E, Powell TL, Larsen B, Siddiqui SK, Menchaca J, et al. Randomized controlled trial of DHA supplementation during pregnancy: child adiposity outcomes. Nutrients. 2017;9(6):E566.

    PubMed  Google Scholar 

  157. Temples HS, Willoughby D, Holaday B, Rogers CR, Wueste D, Bridges W, et al. Breastfeeding and growth of children in the peri/postnatal epigenetic twins study (PETS): theoretical epigenetic mechanisms. J Hum Lact. 2016;32(3):481–8.

    PubMed  Google Scholar 

  158. Bell KA, Wagner CL, Feldman HA, Shypailo RJ, Belfort MB. Associations of infant feeding with trajectories of body composition and growth. Am J Clin Nutr. 2017;106(2):491–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Li C, Kaur H, Choi WS, Huang TT, Lee RE, Ahluwalia JS. Additive interactions of maternal prepregnancy BMI and breast-feeding on childhood overweight. Obes Res. 2005;13(2):362–71.

    PubMed  Google Scholar 

  160. Fields DA, Schneider CR, Pavela G. A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity (Silver Spring). 2016;24(6):1213–21.

    Google Scholar 

  161. Andreas NJ, Hyde MJ, Gale C, Parkinson JR, Jeffries S, Holmes E, et al. Effect of maternal body mass index on hormones in breast milk: a systematic review. PLoS One. 2014;9(12):e115043.

    PubMed  PubMed Central  Google Scholar 

  162. Goran MI, Martin AA, Alderete TL, Fujiwara H, Fields DA. Fructose in breast milk is positively associated with infant body composition at 6 months of age. Nutrients. 2017;9(2):E146.

    PubMed  Google Scholar 

  163. Alderete TL, Autran C, Brekke BE, Knight R, Bode L, Goran MI, et al. Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. Am J Clin Nutr. 2015;102(6):1381–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Isganaitis E, Venditti S, Matthews TJ, Lerin C, Demerath EW, Fields DA. Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. Am J Clin Nutr. 2019.

  165. Oben JA, Mouralidarane A, Samuelsson AM, Matthews PJ, Morgan ML, McKee C, et al. Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol. 2010;52(6):913–20.

    CAS  PubMed  Google Scholar 

  166. de Los Rios EA, Ruiz-Herrera X, Tinoco-Pantoja V, Lopez-Barrera F, de la Martinez Escalera G, Clapp C, et al. Impaired prolactin actions mediate altered offspring metabolism induced by maternal high-fat feeding during lactation. FASEB J. 2018;32(6):3457–70.

    PubMed  Google Scholar 

  167. Thomas N, Grunnet LG, Poulsen P, Christopher S, Spurgeon R, Inbakumari M, et al. Born with low birth weight in rural southern India: what are the metabolic consequences 20 years later? Eur J Endocrinol. 2012;166(4):647–55.

    CAS  PubMed  Google Scholar 

  168. Ester WA, Jansen PW, Hoek HW, Verhulst FC, Jaddoe VW, Marques AH, et al. Fetal size and eating behaviour in childhood: a prospective cohort study. Int J Epidemiol. 2018;48:124–33.

    Google Scholar 

  169. Derks IPM, Hivert MF, Rifas-Shiman SL, Gingras V, Young JG, Jansen PW, et al. Associations of prenatal exposure to impaired glucose tolerance with eating in the absence of hunger in early adolescence. Int J Obes 2019.

  170. Shapiro ALB, Sauder KA, Tregellas JR, Legget KT, Gravitz SL, Ringham BM, et al. Exposure to maternal diabetes in utero and offspring eating behavior: the EPOCH study. Appetite. 2017;116:610–5.

    PubMed  PubMed Central  Google Scholar 

  171. Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell. 2014;156(3):495–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Melo AM, Benatti RO, Ignacio-Souza LM, Okino C, Torsoni AS, Milanski M, et al. Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Metabolism. 2014;63(5):682–92.

    CAS  PubMed  Google Scholar 

  173. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146(10):4211–6.

    CAS  PubMed  Google Scholar 

  174. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. 2004;304(5667):108–10.

    CAS  PubMed  Google Scholar 

  175. Kajantie E, Strang-Karlsson S, Hovi P, Raikkonen K, Pesonen AK, Heinonen K, et al. Adults born at very low birth weight exercise less than their peers born at term. J Pediatr. 2010;157(4):610–6, 6 e1.

    PubMed  Google Scholar 

  176. Kaseva N, Wehkalampi K, Strang-Karlsson S, Salonen M, Pesonen AK, Raikkonen K, et al. Lower conditioning leisure-time physical activity in young adults born preterm at very low birth weight. PLoS One. 2012;7(2):e32430.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Cadenas-Sanchez C, Henriksson P, Henriksson H, Delisle Nystrom C, Pomeroy J, Ruiz JR, et al. Parental body mass index and its association with body composition, physical fitness and lifestyle factors in their 4-year-old children: results from the MINISTOP trial. Eur J Clin Nutr. 2017;71(10):1200–5.

    CAS  PubMed  Google Scholar 

  178. Ortega FB, Ruiz JR, Hurtig-Wennlof A, Meirhaeghe A, Gonzalez-Gross M, Moreno LA, et al. Physical activity attenuates the effect of low birth weight on insulin resistance in adolescents: findings from two observational studies. Diabetes. 2011;60(9):2295–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Li LJ, Rifas-Shiman SL, Aris IM, Young JG, Mantzoros C, Hivert MF, et al. Associations of maternal and cord blood adipokines with offspring adiposity in Project Viva: is there an interaction with child age? Int J Obes. 2018;42(4):608–17.

    CAS  Google Scholar 

  180. Castro NP, Euclydes VV, Simoes FA, Vaz-de-Lima LR, De Brito CA, Luzia LA, et al. The relationship between maternal plasma leptin and adiponectin concentrations and newborn adiposity. Nutrients. 2017;9(3):E182.

    PubMed  Google Scholar 

  181. Englich B, Herberth G, Rolle-Kampczyk U, Trump S, Roder S, Borte M, et al. Maternal cytokine status may prime the metabolic profile and increase risk of obesity in children. Int J Obes. 2017;41(9):1440–6.

    CAS  Google Scholar 

  182. Hernandez MI, Rossel K, Pena V, Cavada G, Avila A, Iniguez G, et al. Leptin and IGF-I/II during the first weeks of life determine body composition at 2 years in infants born with very low birth weight. J Pediatr Endocrinol Metab. 2012;25(9–10):951–5.

    CAS  PubMed  Google Scholar 

  183. de Kort SW, Willemsen RH, van der Kaay DC, Hokken-Koelega AC. The effect of growth hormone treatment on metabolic and cardiovascular risk factors is similar in preterm and term short, small for gestational age children. Clin Endocrinol. 2009;71(1):65–73.

    Google Scholar 

  184. Ibanez L, Lopez-Bermejo A, Diaz M, Jaramillo A, Marin S, de Zegher F. Growth hormone therapy in short children born small for gestational age: effects on abdominal fat partitioning and circulating follistatin and high-molecular-weight adiponectin. J Clin Endocrinol Metab. 2010;95(5):2234–9.

    CAS  PubMed  Google Scholar 

  185. Lem AJ, van der Kaay DC, Hokken-Koelega AC. Bone mineral density and body composition in short children born SGA during growth hormone and gonadotropin releasing hormone analog treatment. J Clin Endocrinol Metab. 2013;98(1):77–86.

    CAS  PubMed  Google Scholar 

  186. Breukhoven PE, Kerkhof GF, van Dijk M, Hokken-Koelega AC. Long-term impact of GH treatment during childhood on body composition and fat distribution in young adults born SGA. J Clin Endocrinol Metab. 2011;96(12):3710–6.

    CAS  PubMed  Google Scholar 

  187. Sanchez-Infantes D, Gallego-Escuredo JM, Diaz M, Aragones G, Sebastiani G, Lopez-Bermejo A, et al. Circulating FGF19 and FGF21 surge in early infancy from infra- to supra-adult concentrations. Int J Obes. 2015;39(5):742–6.

    CAS  Google Scholar 

  188. Diaz M, Bassols J, Aragones G, Mazarico E, Lopez-Bermejo A, Ibanez L. Decreased placental expression of pre-adipocyte factor-1 in children born small-for-gestational-age: association to early postnatal weight gain. Placenta. 2013;34(4):331–4.

    CAS  PubMed  Google Scholar 

  189. Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T, Faucette RR, et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes. 2009;58(2):460–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Lecoutre S, Deracinois B, Laborie C, Eberle D, Guinez C, Panchenko PE, et al. Depot- and sex-specific effects of maternal obesity in offspring’s adipose tissue. J Endocrinol. 2016;230(1):39–53.

    CAS  PubMed  Google Scholar 

  191. Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM, et al. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology. 2013;154(11):4113–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81–6.

    CAS  PubMed  Google Scholar 

  193. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA, Project M. DNA methylation signatures at endoplasmic reticulum stress genes are associated with adiposity and insulin resistance. Mol Genet Metab. 2018;123(1):50–8.

    CAS  PubMed  Google Scholar 

  194. Livshits G, Gao F, Malkin I, Needhamsen M, Xia Y, Yuan W, et al. Contribution of heritability and epigenetic factors to skeletal muscle mass variation in United Kingdom twins. J Clin Endocrinol Metab. 2016;101(6):2450–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. van Dijk SJ, Peters TJ, Buckley M, Zhou J, Jones PA, Gibson RA, et al. DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int J Obes. 2018;42(1):28–35.

    Google Scholar 

  196. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60(5):1528–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Harvey NC, Lillycrop KA, Garratt E, Sheppard A, McLean C, Burdge G, et al. Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content. Calcif Tissue Int. 2012;90(2):120–7.

    CAS  PubMed  Google Scholar 

  198. Harvey NC, Sheppard A, Godfrey KM, McLean C, Garratt E, Ntani G, et al. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res. 2014;29(3):600–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Rzehak P, Covic M, Saffery R, Reischl E, Wahl S, Grote V, et al. DNA-methylation and body composition in preschool children: epigenome-wide-analysis in the European Childhood Obesity Project (CHOP)-Study. Sci Rep. 2017;7(1):14349.

    PubMed  PubMed Central  Google Scholar 

  200. Kresovich JK, Zheng Y, Cardenas A, Joyce BT, Rifas-Shiman SL, Oken E, et al. Cord blood DNA methylation and adiposity measures in early and mid-childhood. Clin Epigenetics. 2017;9:86.

    PubMed  PubMed Central  Google Scholar 

  201. Diaz M, Garcia C, Sebastiani G, de Zegher F, Lopez-Bermejo A, Ibanez L. Placental and cord blood methylation of genes involved in energy homeostasis: association with fetal growth and neonatal body composition. Diabetes. 2017;66(3):779–84.

    CAS  PubMed  Google Scholar 

  202. Lin X, Lim IY, Wu Y, Teh AL, Chen L, Aris IM, et al. Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. BMC Med. 2017;15(1):50.

    PubMed  PubMed Central  Google Scholar 

  203. Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman M, et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2015;44(4):1288–304.

    PubMed  PubMed Central  Google Scholar 

  204. Lillycrop KA, Garratt ES, Titcombe P, Melton PE, Murray RJS, Barton SJ, et al. Differential SLC6A4 methylation: a predictive epigenetic marker of adiposity from birth to adulthood. Int J Obes. 2019.

  205. Finer S, Mathews C, Lowe R, Smart M, Hillman S, Foo L, et al. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet. 2015;24(11):3021–9.

    CAS  PubMed  Google Scholar 

  206. Yang IV, Zhang W, Davidson EJ, Fingerlin TE, Kechris K, Dabelea D. Epigenetic marks of in utero exposure to gestational diabetes and childhood adiposity outcomes: the EPOCH study. Diabet Med. 2018;35(5):612–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Houde AA, St-Pierre J, Hivert MF, Baillargeon JP, Perron P, Gaudet D, et al. Placental lipoprotein lipase DNA methylation levels are associated with gestational diabetes mellitus and maternal and cord blood lipid profiles. J Dev Orig Health Dis. 2014;5(2):132–41.

    CAS  PubMed  Google Scholar 

  208. Quilter CR, Cooper WN, Cliffe KM, Skinner BM, Prentice PM, Nelson L, et al. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J. 2014;28(11):4868–79.

    CAS  PubMed  Google Scholar 

  209. Cianfarani S. Foetal origins of adult diseases: just a matter of stem cell number? Med Hypotheses. 2003;61(3):401–4.

    CAS  PubMed  Google Scholar 

  210. Hemberger M, Dean W, Reik W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol. 2009;10(8):526–37.

    CAS  PubMed  Google Scholar 

  211. Woo M, Isganaitis E, Cerletti M, Fitzpatrick C, Wagers AJ, Jimenez-Chillaron J, et al. Early life nutrition modulates muscle stem cell number: implications for muscle mass and repair. Stem Cells Dev. 2011;20(10):1763–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Broholm C, Olsson AH, Perfilyev A, Hansen NS, Schrolkamp M, Strasko KS, et al. Epigenetic programming of adipose-derived stem cells in low birthweight individuals. Diabetologia. 2016;59(12):2664–73.

    PubMed  Google Scholar 

  213. Bossolasco P, Montemurro T, Cova L, Zangrossi S, Calzarossa C, Buiatiotis S, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res. 2006;16(4):329–36.

    CAS  PubMed  Google Scholar 

  214. Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26(3):591–9.

    PubMed  Google Scholar 

  215. Seshareddy K, Troyer D, Weiss ML. Method to isolate mesenchymal-like cells from Wharton’s jelly of umbilical cord. Methods Cell Biol. 2008;86:101–19.

    CAS  PubMed  Google Scholar 

  216. Sukarieh R, Joseph R, Leow SC, Li Y, Loffler M, Aris IM, et al. Molecular pathways reflecting poor intrauterine growth are found in Wharton’s jelly-derived mesenchymal stem cells. Hum Reprod. 2014;29(10):2287–301.

    CAS  PubMed  Google Scholar 

  217. Tan PY, Chang CW, Duan K, Poidinger M, Ng KL, Chong YS, et al. E2F1 orchestrates transcriptomics and oxidative metabolism in Wharton’s jelly-derived mesenchymal stem cells from growth-restricted infants. PLoS One. 2016;11(9):e0163035.

    PubMed  PubMed Central  Google Scholar 

  218. Joseph R, Poschmann J, Sukarieh R, Too PG, Julien SG, Xu F, et al. ACSL1 is associated with fetal programming of insulin sensitivity and cellular lipid content. Mol Endocrinol. 2015;29(6):909–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Iaffaldano L, Nardelli C, Raia M, Mariotti E, Ferrigno M, Quaglia F, et al. High aminopeptidase N/CD13 levels characterize human amniotic mesenchymal stem cells and drive their increased adipogenic potential in obese women. Stem Cells Dev. 2013;22(16):2287–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. •• Baker PR 2nd, Patinkin Z, Shapiro AL, De La Houssaye BA, Woontner M, Boyle KE, et al. Maternal obesity and increased neonatal adiposity correspond with altered infant mesenchymal stem cell metabolism. JCI Insight. 2017;2(21):94200. In this translational study, the authors identify perturbations in mesenchymal stem cell metabolism and function in infants of obese mothers, suggesting a stem-cell dependent mechanism for mother–child transmission of obesity.

    PubMed  Google Scholar 

  221. Baker PR 2nd, Patinkin ZW, Shapiro ALB, de la Houssaye BA, Janssen RC, Vanderlinden LA, et al. Altered gene expression and metabolism in fetal umbilical cord mesenchymal stem cells correspond with differences in 5-month-old infant adiposity gain. Sci Rep. 2017;7(1):18095.

    PubMed  PubMed Central  Google Scholar 

  222. Boyle KE, Patinkin ZW, Shapiro ALB, Bader C, Vanderlinden L, Kechris K, et al. Maternal obesity alters fatty acid oxidation, AMPK activity, and associated DNA methylation in mesenchymal stem cells from human infants. Mol Metab. 2017;6(11):1503–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Shapiro AL, Boyle KE, Dabelea D, Patinkin ZW, De la Houssaye B, Ringham BM, et al. Nicotinamide promotes adipogenesis in umbilical cord-derived mesenchymal stem cells and is associated with neonatal adiposity: the Healthy Start BabyBUMP Project. PLoS One. 2016;11(7):e0159575.

    PubMed  PubMed Central  Google Scholar 

  224. Beauchamp B, Ghosh S, Dysart MW, Kanaan GN, Chu A, Blais A, et al. Low birth weight is associated with adiposity, impaired skeletal muscle energetics and weight loss resistance in mice. Int J Obes. 2015;39(4):702–11.

    CAS  Google Scholar 

  225. Beauchamp B, Thrush AB, Quizi J, Antoun G, McIntosh N, Al-Dirbashi OY, et al. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring. Biosci Rep. 2015;35(3):e00200.

    PubMed  PubMed Central  Google Scholar 

  226. Isganaitis E, Jimenez-Chillaron J, Woo M, Chow A, DeCoste J, Vokes M, et al. Accelerated postnatal growth increases lipogenic gene expression and adipocyte size in low-birth weight mice. Diabetes. 2009;58(5):1192–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Gillberg L, Jacobsen SC, Ronn T, Brons C, Vaag A. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects—impact of 5 days of high-fat overfeeding. Metabolism. 2014;63(2):263–71.

    CAS  PubMed  Google Scholar 

  228. Brons C, Jensen CB, Storgaard H, Alibegovic A, Jacobsen S, Nilsson E, et al. Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J Clin Endocrinol Metab. 2008;93(10):3885–92.

    PubMed  Google Scholar 

  229. Jousse C, Muranishi Y, Parry L, Montaurier C, Even P, Launay JM, et al. Perinatal protein malnutrition affects mitochondrial function in adult and results in a resistance to high fat diet-induced obesity. PLoS One. 2014;9(8):e104896.

    PubMed  PubMed Central  Google Scholar 

  230. Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Neergheen V, Aiken CE, et al. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats. Dis Model Mech. 2016;9(10):1221–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Mele J, Muralimanoharan S, Maloyan A, Myatt L. Impaired mitochondrial function in human placenta with increased maternal adiposity. Am J Physiol Endocrinol Metab. 2014;307(5):E419–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Costa SM, Isganaitis E, Matthews TJ, Hughes K, Daher G, Dreyfuss JM, et al. Maternal obesity programs mitochondrial and lipid metabolism gene expression in infant umbilical vein endothelial cells. Int J Obes. 2016;40(11):1627–34.

    CAS  Google Scholar 

  233. Abraham M, Collins CA, Flewelling S, Camazine M, Cahill A, Cade WT, et al. Mitochondrial inefficiency in infants born to overweight African-American mothers. Int J Obes. 2018;42(7):1306–16.

    CAS  Google Scholar 

  234. Wu LL, Russell DL, Wong SL, Chen M, Tsai TS, St John JC, et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development. 2015;142(4):681–91.

    CAS  PubMed  Google Scholar 

  235. Saben JL, Boudoures AL, Asghar Z, Thompson A, Drury A, Zhang W, et al. Maternal metabolic syndrome programs mitochondrial dysfunction via germline changes across three generations. Cell Rep. 2016;16(1):1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Aiken CE, Tarry-Adkins JL, Penfold NC, Dearden L, Ozanne SE. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. FASEB J. 2016;30(4):1548–56.

    CAS  PubMed  Google Scholar 

  237. Boudoures AL, Saben J, Drury A, Scheaffer S, Modi Z, Zhang W, et al. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. Dev Biol. 2017;426(1):126–38.

    CAS  PubMed  Google Scholar 

  238. Borengasser SJ, Faske J, Kang P, Blackburn ML, Badger TM, Shankar K. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring. Physiol Genomics. 2014;46(23):841–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Pileggi CA, Hedges CP, Segovia SA, Markworth JF, Durainayagam BR, Gray C, et al. Maternal high fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring. Front Physiol. 2016;7:546.

    PubMed  PubMed Central  Google Scholar 

  240. McCurdy CE, Schenk S, Hetrick B, Houck J, Drew BG, Kaye S, et al. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques. JCI Insight. 2016;1(16):e86612.

    PubMed  PubMed Central  Google Scholar 

  241. Mdaki KS, Larsen TD, Wachal AL, Schimelpfenig MD, Weaver LJ, Dooyema SD, et al. Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol. 2016;310(6):H681–92.

    PubMed  PubMed Central  Google Scholar 

  242. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC, et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology. 2009;50(6):1796–808.

    CAS  PubMed  Google Scholar 

  243. Cardenas-Perez RE, Fuentes-Mera L, de la Garza AL, Torre-Villalvazo I, Reyes-Castro LA, Rodriguez-Rocha H, et al. Maternal overnutrition by hypercaloric diets programs hypothalamic mitochondrial fusion and metabolic dysfunction in rat male offspring. Nutr Metab (Lond). 2018;15:38.

    Google Scholar 

  244. Malpique R, Gallego-Escuredo JM, Sebastiani G, Villarroya J, Lopez-Bermejo A, de Zegher F, et al. Brown adipose tissue in prepubertal children: associations with sex, birthweight, and metabolic profile. Int J Obes. 2019;43(2):384–91.

    Google Scholar 

  245. Ortega FB, Ruiz JR, Alkorta MP, Larrarte E, Simon E, Ares R, et al. The effect of birth weight on low-energy diet-induced changes in body composition and substrate-energy metabolism in obese women. J Am Coll Nutr. 2011;30(2):134–40.

    PubMed  Google Scholar 

  246. Sipola-Leppanen M, Hovi P, Andersson S, Wehkalampi K, Vaarasmaki M, Strang-Karlsson S, et al. Resting energy expenditure in young adults born preterm--the Helsinki study of very low birth weight adults. PLoS One. 2011;6(3):e17700.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Brons C, Lilleore SK, Astrup A, Vaag A. Disproportionately increased 24-h energy expenditure and fat oxidation in young men with low birth weight during a high-fat overfeeding challenge. Eur J Nutr. 2016;55(6):2045–52.

    PubMed  Google Scholar 

  248. de Zegher F, Diaz M, Lopez-Bermejo A, Ibanez L. Recognition of a sequence: more growth before birth, longer telomeres at birth, more lean mass after birth. Pediatr Obes. 2017;12(4):274–9.

    PubMed  Google Scholar 

  249. Hjort L, Vryer R, Grunnet LG, Burgner D, Olsen SF, Saffery R, et al. Telomere length is reduced in 9- to 16-year-old girls exposed to gestational diabetes in utero. Diabetologia. 2018;61(4):870–80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mikayla Kass and Ming Fang contributed to the literature review. The drawing of a human infant in Fig. 1 is by Charlie Aoun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Isganaitis.

Ethics declarations

Conflict of Interest

E.I. declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isganaitis, E. Developmental Programming of Body Composition: Update on Evidence and Mechanisms. Curr Diab Rep 19, 60 (2019). https://doi.org/10.1007/s11892-019-1170-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1170-1

Keywords

Navigation