International Diabetes Federation. International diabetes federation: IDF Atlas. Brussels: Belgium; 2017. Available from: http://diabetesatlas.org/resources/2017-atlas.html. Accessed 29 April 2019.
Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach JM, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993;43:817–24.
CAS
PubMed
Google Scholar
• Pop-Busui R, Boulton AJM, Feldman EJ, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:136–54 Recent position statement of Diabetic Neuropathy by the American Diabetes Association.
CAS
Google Scholar
• Tesfaye S, Chaturvedi N, Eaton SE, Ward JD, Manes C, Ionescu-Tirgoviste C, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352:341–50 Prospective epidemiological study showing that, apart from glycemic control, incident neuropathy is associated with modifiable cardiovascular risk factors.
CAS
PubMed
Google Scholar
• Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–93 Review by international panel of experts making recommendations in the clinical practice and research for DPN.
PubMed
PubMed Central
Google Scholar
Sadosky A, Mardekian J, Parsons B, Hopps M, Bienen EJ, Markman J. Healthcare utilization and costs in diabetes relative to the clinical spectrum of painful diabetic peripheral neuropathy. J Diabetes Complicat. 2015;29:212–7.
PubMed
Google Scholar
Narres M, Kvitkina T, Claessen H, Droste S, Schuster B, Morbach S, et al. Incidence of lower extremity amputations in diabetic compared with the non-diabetic population: a systematic review. PLoS One. 2017;12:e0182081. https://doi.org/10.1371/journal.pone.0182081.
CAS
Article
PubMed
PubMed Central
Google Scholar
Daousi C, MacFarlane IA, Woodward A, Nurmikko TJ, Bundred PE, Benbow SJ. Chronic painful peripheral neuropathy in an urban community: a controlled comparison of people with and without diabetes. Diabet Med. 2004;21:976–82.
CAS
PubMed
Google Scholar
Van Acker K, Bouhassira D, De Bacquer D, Weiss S, Matthys K, Raemen H, et al. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab. 2009;35:206–13.
PubMed
Google Scholar
Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A, KORA Study Group. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg surveys S2 and S3. Pain Med. 2009;10:393–400.
PubMed
Google Scholar
Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care. 2011;34:2220–4.
PubMed
PubMed Central
Google Scholar
• Alleman CJ, Westerhout KY, Hensen M, Chambers C, Stoker M, Long S, et al. Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: a review of the literature. Diabetes Res Clin Pract. 2015;109:215–25 Review article of the epidemiology, humanistic burden and increasing healthcare costs associated with painful-DPN.
PubMed
Google Scholar
Binns-Hall O, Selvarajah D, Sanger D, Walker J, Scott A, Tesfaye S. One-stop microvascular screening service: an effective model for the early detection of diabetic peripheral neuropathy and the high-risk foot. Diabet Med. 2018;35:887–94.
CAS
PubMed
PubMed Central
Google Scholar
Taylor-Stokes G, Pike J, Sadosky A, Chandran A, Toelle T. Association of patient-rated severity with other outcomes in patients with painful diabetic peripheral neuropathy. Diabetes Metab Syndr Obes. 2011;4:401–8.
PubMed
PubMed Central
Google Scholar
Lauria G, Lombardi R. Small fiber neuropathy: is skin biopsy the holy grail? Curr Diab Rep. 2012;12:384–92.16.
PubMed
Google Scholar
Jensen TS, Backonja MM, Hernández Jiménez S, Tesfaye S, Valensi P, Ziegler D. New perspectives on the management of diabetic peripheral neuropathic pain. Diab Vasc Dis Res. 2006;3:108–19.
PubMed
Google Scholar
Sloan G, Shillo P, Selvarajah D, Wu J, Wilkinson ID, Tracey I, et al. A new look at painful diabetic neuropathy. Diabetes Res Clin Pract. 2018;144:177–91.
PubMed
Google Scholar
• Andersen ST, Witte DR, Dalsgaard EM, Andersen H, Nawroth P, Fleming T, et al. Risk factors for incident diabetic polyneuropathy in a cohort with screen-detected type 2 diabetes followed for 13 years: ADDITION-Denmark. Diabetes Care. 2018;41:1068–75 Recent prospective study finding that cardiovascular risk factors are associated with incident DPN in T2DM.
CAS
PubMed
Google Scholar
Pop-Busui R, Lu J, Brooks MM, Albert S, Althouse AD, Escobedo J, et al. Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the bypass angioplasty revascularization investigation 2 diabetes (BARI 2D) cohort. Diabetes Care. 2013;36:3208–15.
CAS
PubMed
PubMed Central
Google Scholar
Callaghan BC, Gao LL, Li Y, Zhou X, Reynolds E, Banerjee M, et al. Diabetes and obesity are the main metabolic drives of peripheral neuropathy. Ann Clin Transl Neurol. 2018;5:397–40521.
PubMed
PubMed Central
Google Scholar
•• Hébert HL, Veluchamy A, Torrance N, Smith BH. Risk factors for neuropathic pain in diabetes mellitus. Pain. 2017;158:560–8 Recent review of the risk factors for painful-DPN.
PubMed
Google Scholar
Elliott J. Female sex: an independent risk factor for the development of painful neuropathy? Diabetes. 2006;55(Supp 1) Abstract, number 794-P
•• Themistocleous AC, Ramirez JD, Shillo PR, Lees JG, Selvarajah D, Orengo C, et al. The pain in neuropathy study (PiNS): a cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain. 2016;157:1132–45 Detailed cross-sectional study showing that the hyposensitivity sensory phenotype and increased severity of neuropathy are associated with painful-DPN.
CAS
PubMed
PubMed Central
Google Scholar
Algeffari MA. Painful diabetic peripheral neuropathy among Saudi diabetic patients is common but under-recognized: multicenter cross-sectional study at primary health care setting. J Family Community Med. 2018;25:43–7.
PubMed
PubMed Central
Google Scholar
Ziegler D, Landgraf R, Lobmann R, Reiners K, Rett K, Schnell O, et al. Painful and painless neuropathies are distinct and largely undiagnosed entities in subjects participating in an educational initiative (PROTECT study). Diabetes Res Clin Pract. 2018;139:147–54.
PubMed
Google Scholar
Pai YW, Lin CH, Lee IT, Chang MH, et al. Prevalence and biochemical risk factors of diabetic peripheral neuropathy with or without neuropathic pain in Taiwanese adults with type 2 diabetes mellitus. Diabetol Metab Syndr. 2018;12:11–6.
Google Scholar
•• Raputova J, Srotova I, Vlckova E, Sommer C, Üçeyler N, Birklein F, et al. Sensory phenotype and risk factors for painful diabetic neuropathy: a cross-sectional observational study. Pain. 2017;158:2340–53 Another detailed cross-sectional study finding painful-DPN is associated with severity of neuropathy and thermal hyposensitivity.
PubMed
PubMed Central
Google Scholar
•• Truini A, Spallone V, Morganti R, Tamburin S, Zenette G, Schenone A, et al. A cross-sectional study investigating frequency and features of definitely diagnosed diabetic painful polyneuropathy. Pain. 2018;159:2658–66 Large cross-sectional epidemiological study identifying female gender as the only risk factor associated with painful-DPN.
PubMed
Google Scholar
Abraham A, Barnett C, Katzberg HD, Lovblom LE, Perkins BA, Bril V. Sex differences in neuropathic pain intensity in diabetes. J Neurol Sci. 2018;388:103–6.
PubMed
Google Scholar
Sorge RE, Strath LJ. Sex differences in pain responses. Curr Opin Physiol. 2018;6:75–81.
Google Scholar
Prabodha LBL, Sirisena ND, Dissanayake VHW. Susceptible and prognostic genetic factors associated with diabetic peripheral neuropathy: a comprehensive literature review. Int J Endocrinol. 2018;2018:8641942–9. https://doi.org/10.1155/2018/8641942.
CAS
Article
PubMed
PubMed Central
Google Scholar
Meng W, Deshmukh HA, Donnelly LA, Torrance N, Colhoun HM, Palmer CN, et al. A genome-wide association study provides evidence of sex-specific involvement of Chr1p35.1 (ZSCAN20-TLR12P) and Chr8p23.1 (HMGB1P46) with diabetic neuropathic pain. EBioMedicine. 2015;2:1386–93.
PubMed
PubMed Central
Google Scholar
Meng W, Deshmukh HA, van Zuydam NR, Liu Y, Donnelly LA, Zhou K, et al. A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur J Pain. 2015;19:392–9.
CAS
PubMed
PubMed Central
Google Scholar
Li QS, Cheng P, Favis R, Wickenden A, Romano G, Wang H. SCN9A variants may be implicated in neuropathic pain associated with diabetic peripheral neuropathy and pain severity. Clin J Pain. 2015;31:976–82.
CAS
PubMed
PubMed Central
Google Scholar
• Blesneac I, Themistocleous AC, Fratter C, Conrad LJ, Ramirez JD, Cox JJ, et al. Rare Nav1.7 variants associated with painful diabetic peripheral neuropathy. Pain. 2017;159:469–80 Study showing that rare sodium channel genetic variants contribute to neuropathic pain in some patients with DPN.
PubMed Central
Google Scholar
Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C, Choi JS, et al. Gain of function Naν1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71:26–39.
CAS
PubMed
Google Scholar
Galer BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract. 2000;47:123–8.
CAS
PubMed
Google Scholar
Gore M, Brandenburg NA, Dukes E, Hoffman DL, Tai KS, Stacey B. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep. J Pain Symptom Manag. 2005;30:374–85.
Google Scholar
Veves A, Young MJ, Manes C, Boulton AJ. Differences in peripheral and autonomic nerve function measurements in painful and painless neuropathy. A clinical study. Diabetes Care. 1994;17:1200–2.
CAS
PubMed
Google Scholar
Spallone V, Morganti R, D’Amato C, Cacciotti L, Fedele T, Maiello MR, et al. Clinical correlates of painful diabetic neuropathy and relationship of neuropathic pain with sensorimotor and autonomic nerve function. Eur J Pain. 2011;15:153–60.
PubMed
Google Scholar
Sorensen L, Molyneaux L, Yue DK. The level of small nerve fiber dysfunction dose not predict pain in diabetic neuropathy: a study using quantitative sensory testing. Clin J Pain. 2006;22:261–5.
PubMed
Google Scholar
Gandhi RA, Marques JL, Selvarajah D, Emery CJ, Tesfaye S. Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care. 2010;33:1585–90.
PubMed
PubMed Central
Google Scholar
D’Amato C, Morganti R, Di Gennaro F, Marfia GA, Spallone V. A novel association between nondipping and painful diabetic polyneuropathy. Diabetes Care. 2014;37:2640–2.
PubMed
Google Scholar
Young RJ, Zhou TQ, Rodriguez E, Prescott RJ, Ewing DJ, Clarke BF. Variable relationship between peripheral somatic and autonomic neuropathy in patients with different syndromes of diabetic polyneuropathy. Diabetes. 1986;35:192–7.45.
CAS
PubMed
Google Scholar
Krämer HH, Rolke R, Bickel A, Birklein F. Thermal thresholds predict painfulness of diabetic neuropathies. Diabetes Care. 2004;27:2386–91.
PubMed
Google Scholar
Terkelsen AJ, Karlsson P, Lauria G, Freeman R, Finnerup NB, Jensen TS. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol. 2017;16:934–44.
PubMed
Google Scholar
•• Smith SM, Dworkin RH, Turk DC, Baron R, Polydefkis M, Tracey I, et al. The potential role of sensory testing, skin biopsy, and functional brain imaging as biomarkers in chronic pain clinical trials: IMMPACT Considerations. J Pain. 2017;18:757–77 Review of the role of sensory testing, skin biopsy and brain imaging as diagnostic, prognostic, predictive and pharmacodynamic biomarkers in analgesic treatment trials.
PubMed
PubMed Central
Google Scholar
Üçeyler N, Vollert J, Broll B, Riediger N, Langjahr M, Saffer N, et al. Sensory profiles and skin innervation of patients with painful and painless neuropathies. Pain. 2018;159:1867–76.
PubMed
Google Scholar
Cheng HT, Dauch JR, Porzio MT, Yanik BM, Hsieh W, Smith AG, et al. Increased axonal regeneration and swellings in intraepidermal nerve fibers characterize painful phenotypes of diabetic neuropathy. J Pain. 2013;14:941–7.
PubMed
PubMed Central
Google Scholar
• Bönhof GJ, Strom A, Püttgen S, Ringel B, Brüggemann J, Bódis K, et al. Patterns of cutaneous nerve fibre loss and regeneration in type 2 diabetes with painful and painless polyneuropathy. Diabetologia. 2017;60:2495–503 Study demonstrating measures of cutaneous nerve fibre regeneration are enhanced in painful-DPN.
PubMed
Google Scholar
Galosi E, La Cesa S, Di Stefano G, Karlsson P, Fasolino A, Leone C, et al. A pain in the skin. Regenerating nerve sprouts are distinctly associated with ongoing burning pain in patients with diabetes. Eur J Pain. 2018;22:1727–34.
CAS
PubMed
Google Scholar
Scheytt S, Riediger N, Braunsdorf S, Sommer C, Üçeyler N. Increased gene expression of growth associated protein-43 in skin of patients with early-stage peripheral neuropathies. J Neurol Sci. 2015;355:131–7.
CAS
PubMed
Google Scholar
Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56:2148–54.
CAS
PubMed
Google Scholar
Cheung A, Podgomy P, Martinez JA, Chan C, Toth C. Epidermal axonal swellings in painful and painless diabetic peripheral neuropathy. Muscle Nerve. 2015;51:505–13.
PubMed
Google Scholar
Anand P, Terenghi G, Warner G, Kopelman P, Williams-Chestnut RE, Sinicropi DV. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med. 1996;2:703–7.
CAS
PubMed
Google Scholar
Shillo P, Selvarajah D, Greig M, Wilkinson I, Yiangou Y, Donatien P, et al. Nerve and vascular biomarkers in skin biopsies differentiate painful from painless advanced diabetic peripheral neuropathy. Diabet Med. 2017;34(Supp 1):31–3.
Google Scholar
Anand P, Bley K. Topical capsaicin for pain management: therapeutic potential and mechanism of action of the new high-concentration capsaicin 8% patch. Br J Anaesth. 2011;107:490–502.
CAS
PubMed
PubMed Central
Google Scholar
Obreja O, Rukwied R, Nagler L, Schmidt M, Schmelz M, Namer B. Nerve growth factor locally sensitizes nociceptors in human skin. Pain. 2018;159:416–26.
CAS
PubMed
Google Scholar
Alam U, Jeziorska M, Petropoulos IN, Asghar O, Fadavi H, Ponirakis G, et al. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS One. 2017;12:e0180175. https://doi.org/10.1371/journal.pone.0180175.
CAS
Article
PubMed
PubMed Central
Google Scholar
Malik RA, Kallinikos P, Abbott CA, van Schie CH, Morgan P, Efron N, et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia. 2003;46:683–8.
CAS
PubMed
Google Scholar
Jiang MS, Yuan Y, Gu ZX, Zhuang SL. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Opthalmol. 2016;100:9–14.
Google Scholar
• Marshall AG, Lee-Kubli C, Azmi S, Zhang M, Ferdousi M, Mixcoatl-Zecuatl T, et al. Spinal disinhibition in experimental and clinical painful diabetic neuropathy. Diabetes. 2017;66:1380–90 Experimental and clinical study showing spinal inhibitory dysfunction may contribute to the pathogenesis of painful-DPN.
CAS
PubMed
PubMed Central
Google Scholar
Kalteniece A, Ferdousi M, Petropoulos I, Azmi S, Adam S, Fadavi H, et al. Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful diabetic neuropathy. Sci Rep. 2018;8:3283. https://doi.org/10.1038/s41598-018-21643-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gasparotti R, Padua L, Briani C, Lauria G. New technologies for the assessment of neuropathies. Nat Rev Neurol. 2017;13:203–16.
PubMed
Google Scholar
Atherton DD, Facer P, Roberts KM, Misra VP, Chizh BA, Bountra C, et al. Use of the novel Contact Heat Evoked Potential Stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol. 2007;7:21. https://doi.org/10.1186/1471-2377-7-21.
Article
PubMed
PubMed Central
Google Scholar
Casanova-Molla J, Grau-Junyent JM, Morales M, Valls-Solé J. On the relationship between nociceptive evoked potentials and intraepidermal nerve fiber density in painful sensory polyneuropathies. Pain. 2011;152:410–8.
PubMed
Google Scholar
Chao CC, Tseng MT, Lin YJ, Yang WS, Hsieh SC, Lin YH, et al. Pathophysiology of neuropathic pain in type 2 diabetes: skin denervation and contact heat-evoked potentials. Hum Brain Mapp. 2013;34:2733–46.
PubMed
Google Scholar
Hansson P, Backonja M, Bouhassira D. Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain. 2007;129:256–9.
PubMed
Google Scholar
Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, et al. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur J Neurol. 2010;17:1010–8.
CAS
PubMed
Google Scholar
Tsigos C, White A, Young RJ. Discrimination between painful and painless diabetic neuropathy based on testing of large somatic nerve and sympathetic nerve function. Diabet Med. 1992;9:359–65.
CAS
PubMed
Google Scholar
Krishnan ST, Quattrini C, Jeziorska M, Malik RA, Rayman G. Abnormal LDIflare but normal quantitative sensory testing and dermal nerve fiber density in patients with painful diabetic neuropathy. Diabetes Care. 2009;32:451–5.
PubMed
PubMed Central
Google Scholar
Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain. 2006;10:77–88.
CAS
PubMed
Google Scholar
•• Rolke R, Baron R, Maier C, Tölle TR, Treede RD, Beyer A, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123:231–43 QST protocol for the characterization the somatosensory phenotype of patients with neuropathic pain.
CAS
PubMed
Google Scholar
Umapathi T, Tan WL, Loke SC, Soon PC, Tavintharan S, Chan YH. Intraepidermal nerve fiber density as a marker of early diabetic neuropathy. Muscle Nerve. 2007;35:591–8.
CAS
PubMed
Google Scholar
Løseth S, Stålberg E, Jorde R, Mellgren SI. Early diabetic neuropathy: thermal thresholds and intraepidermal nerve fibre density in patients with normal nerve conduction studies. J Neurol. 2008;255:1197–202.
PubMed
Google Scholar
Ragé M, Van Acker N, Knaapen MW, Timmers M, Streffer J, Hermans MP, et al. Asymptomatic small fiber neuropathy in diabetes mellitus: investigations with intraepidermal nerve fiber density, quantitative sensory testing and laser-evoked potentials. J Neurol. 2011;258:1852–64.
PubMed
Google Scholar
Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;44:1973–88.
CAS
PubMed
Google Scholar
Tesfaye S, Harris ND, Wilson RM, Ward JD. Exercise-induced conduction velocity increment: a marker of impaired peripheral nerve blood flow in diabetic neuropathy. Diabetologia. 1992;35:155–9.
CAS
PubMed
Google Scholar
Tesfaye S, Harris N, Jakubowski JJ, Mody C, Wilson RM, Rennie IG, et al. Impaired blood flow and arterio-venous shunting in human diabetic neuropathy: a novel technique of nerve photography and fluorescein angiography. Diabetologia. 1993;36:1266–74.
CAS
PubMed
Google Scholar
Tesfaye S, Malik R, Harris N, Jakubowski JJ, Mody C, Rennie IG, et al. Arterio-venous shunting and proliferating new vessels in acute painful neuropathy of rapid glycaemic control (insulin neuritis). Diabetologia. 1996;39:329–35.
CAS
PubMed
Google Scholar
Archer AG, Roberts VC, Watkins PJ. Blood flow patterns in painful diabetic neuropathy. Diabetologia. 1984;27:563–7.
CAS
PubMed
Google Scholar
Eaton SE, Harris ND, Ibrahim S, Patel KA, Selmi F, Radatz M, et al. Increased sural nerve epineurial blood flow in human subjects with painful diabetic neuropathy. Diabetologia. 2003;46:934–9.
CAS
PubMed
Google Scholar
Tsigos C, Reed P, Weinkove C, White A, Young RJ. Plasma norepinephrine in sensory diabetic polyneuropathy. Diabetes Care. 1993;16:722–7.
CAS
PubMed
Google Scholar
Tack CJ, van Gurp PJ, Holmes C, Goldstein DS. Local sympathetic denervation in painful diabetic neuropathy. Diabetes. 2002;51:3545–53.
CAS
PubMed
Google Scholar
Quattrini C, Harris ND, Malik RA, Tesfaye S. Impaired skin microvascular reactivity in painful diabetic neuropathy. Diabetes Care. 2007;30:655–9.
PubMed
Google Scholar
Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A. Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab. 2009;94:2157–63.
CAS
PubMed
PubMed Central
Google Scholar
Vas PR, Sharma S, Rayman G. Distal sensorimotor neuropathy: improvements in diagnosis. Rev Diabet Stud. 2015;12:29–47.
PubMed
PubMed Central
Google Scholar
• Herder C, Kannenberg JM, Huth C, Carstensen-Kirbgerg M, Rathmann W, Koening W, et al. Proinflammatory cytokines predict the incidence and progression of distal sensorimotor polyneuropathy: KORA F4/FF4 Study. Diabetes Care. 2017;40:569–76 Prospective study finding IL-6 and TNF -α are associated with incident DPN.
CAS
PubMed
Google Scholar
Deguchi T, Hashiguchi T, Horinouchi S, Uto T, Oku H, Kimura K, et al. Serum VEGF increases in diabetic polyneuropathy, particularly in the neurologically active symptomatic stage. Diabet Med. 2009;26:247–52.
CAS
PubMed
Google Scholar
Quattrini C, Jeziorska M, Boulton AJ, Malik RA. Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care. 2008;31:140–5.
PubMed
Google Scholar
Yuen KC, Baker NR, Rayman G. Treatment of chronic painful diabetic neuropathy with isosorbide dinitrate spray: a double-blind placebo-controlled cross-over study. Diabetes Care. 2002;25:1699–703.
CAS
PubMed
Google Scholar
Rayman G, Baker NR, Krishnan ST. Glyceryl trinitrate patches as an alternative to isosorbide dinitrate spray in the treatment of chronic painful diabetic neuropathy. Diabetes Care. 2003;26:2697–8.
PubMed
Google Scholar
Obrosova IG. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics. 2009;6(4):638–47.
CAS
PubMed
PubMed Central
Google Scholar
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol. 2018;833:472–523.
CAS
PubMed
Google Scholar
Shamsaldeen YA, Mackenzie LS, Lione LA, Benham CD. Methylglyoxal, a metabolite increased in diabetes is associated with insulin resistance, vascular dysfunction and neuropathies. Curr Drug Metab. 2016;17:359–67.
CAS
PubMed
Google Scholar
Huang Q, Chen Y, Gong N, Wang YX. Methylglyoxal mediates streptozotocin-induced diabetic neuropathic pain via activation of the peripheral TRPA1 and Nav1.8 channels. Metabolism. 2016;65:463–74.
CAS
PubMed
Google Scholar
Bierhaus A, Fleming T, Stoyanov S, Leffler A, Babes A, Neacsu C, et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med. 2012;18:926–33.
CAS
PubMed
Google Scholar
Hansen CS, Jensen TM, Jensen JS, Nawroth P, Fleming T, Witte DR, et al. The role of serum methylglyoxal on diabetic peripheral and cardiovascular autonomic neuropathy: the ADDITION Denmark study. Diabetes Metab. 2015;32:778–85.
CAS
Google Scholar
Zhou J, Zhou S. Inflammation: therapeutic targets for diabetic neuropathy. Mol Neurobiol. 2014;49:536–46.
CAS
PubMed
Google Scholar
Çakici N, Fakkel TM, van Neck JW, Verhagen AP, Coert JH. Systematic review of treatments for diabetic peripheral neuropathy. Diabet Med. 2016;33:1466–76.
PubMed
Google Scholar
Holick MF, Vitamin D. Deficiency. N Engl J Med. 2007;357:266–81.
CAS
PubMed
Google Scholar
Powanda MC. Is there a role for vitamin D in the treatment of chronic pain? Inflammopharmacology. 2014;22:327–32.
CAS
PubMed
Google Scholar
Danescu LG, Levy S, Levy J. Vitamin D and diabetes mellitus. Endocrine. 2009;35:11–7.
CAS
PubMed
Google Scholar
Mathieu C. Vitamin D and diabetes: where do we stand? Diabetes Res Clin Pract. 2015;108:201–9.
CAS
PubMed
Google Scholar
Fukuoka M, Sakurai K, Ohta T, Kiyoki M, Katayama I. Tacalcitol, an active vitamin D3, induces nerve growth factor production in human epidermal keratinocytes. Skin Pharmacol Appl Ski Physiol. 2001;14:226–33.
CAS
Google Scholar
Riaz S, Malcangio M, Miller M, Tomlinson DR. A vitamin D(3) derivative (CB1093) induces nerve growth factor and prevents neurotrophic deficits in streptozotocin-diabetic rats. Diabetologia. 1999;42:1308–13.
CAS
PubMed
Google Scholar
Tague SE, Smith PG. Vitamin D receptor and enzyme expression in dorsal root ganglia of adult female rats: modulation by ovarian hormones. J Chem Neuroanat. 2011;41:1–12.
CAS
PubMed
Google Scholar
Tague SE, Clarke GL, Winter MK, McCarson KE, Wright DE, Smith PG. Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation. J Neurosci. 2011;31:13728–38.
CAS
PubMed
PubMed Central
Google Scholar
Esteghamati A, Fotouhi A, Faghihi-Kashani S, Hafezi-Nejad N, Heidari B, Sheikhbahaei S, et al. Non-linear contribution of serum vitamin D to symptomatic diabetic neuropathy: a case-control study. Diabetes Res Clin Pract. 2016;111:44–50.
CAS
PubMed
Google Scholar
• Shillo P, Selvarajah D, Greig M, Gandhi R, Rao G, Wilkinson ID, et al. Reduced vitamin D levels in painful diabetic peripheral neuropathy. Diabet Med. 2018;36:44–51. https://doi.org/10.1111/dme.13798. Cross-sectional study demonstrating that reduced serum 25-hydroxyvitamin D levels are associated with painful-DPN.
CAS
Article
PubMed
Google Scholar
Lee P, Chen R. Vitamin D as an analgesic for patients with type 2 diabetes and neuropathic pain. Arch Intern Med. 2008;168:771–2.
PubMed
Google Scholar
Shehab D, Al-Jarallah K, Abdella N, Mojiminiyi OA, Al Mohamedy H. Prospective evaluation of the effect of short-term oral vitamin d supplementation on peripheral neuropathy in type 2 diabetes mellitus. Med Princ Pract. 2015;24:250–6.
CAS
PubMed
PubMed Central
Google Scholar
Basit A, Basit KA, Fawwad A, Shaheen F, Fatima N, Petropoulos IN, et al. Vitamin D for the treatment of painful diabetic neuropathy. BMJ Open Diabetes Res Care. 2016;4:e000148. https://doi.org/10.1136/bmjdrc-2015-000148.
Article
PubMed
PubMed Central
Google Scholar
Pop-Busui R, Ang L, Holmes C, Gallgher K, Feldman E. Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep. 2016;16(3):29. https://doi.org/10.1007/s11892-016-0727-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jin HY, Park TS. Role of inflammatory biomarkers in diabetic peripheral neuropathy. J Diabetes Investig. 2018;9:1016–8.
PubMed
PubMed Central
Google Scholar
• Feldman EL, Nave KA, Jensen TS, Bennett DL. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron. 2017;93:1296–313 Review of the recent discoveries into the pathogenesis of DPN and painful-DPN.
CAS
PubMed
PubMed Central
Google Scholar
• Herder C, Bongaerts BW, Rathmann W, Heier M, Kowall B, Koenig W, et al. Differential association between biomarkers of subclinical inflammation and painful polyneuropathy: results from the KORA F4 study. Diabetes Care. 2015;38:91–6 Study showing that biomarkers of subclinical and vascular inflammation are associated with painful-DPN.
CAS
PubMed
Google Scholar
• Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr Rev. 2018;40:153–92. https://doi.org/10.1210/er.2018-00107. Detailed review of the biomarkers and treatments for DPN.
Article
Google Scholar
Zhang C, Ward J, Dauch JR, Tanzi RE, Cheng HT. Cytokine-mediated inflammation mediates painful neuropathy from metabolic syndrome. PLoS One. 2018;13:e0192333. https://doi.org/10.1371/journal.pone.0192333.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheng HT, Dauch JR, Oh SS, Hayes JM, Hong Y, Feldman EL. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes. Mol Pain. 2010;6:28. https://doi.org/10.1186/1744-8069-6-28.
CAS
Article
PubMed
PubMed Central
Google Scholar
Purwata TE. High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res. 2011;4:169–75.
CAS
PubMed
PubMed Central
Google Scholar
Uçeyler N, Rogausch JP, Toyka KV, Sommer C. Differential expression of cytokines in painful and painless neuropathies. Neurology. 2007;69:42–9.
PubMed
Google Scholar
Üçeyler N, Riediger N, Kafke W, Sommer C. Differential gene expression of cytokines and neurotrophic factors in nerve and skin of patients with peripheral neuropathies. J Neurol. 2015;262:203–12.
PubMed
Google Scholar
Empl M, Renaud S, Erne B, Fuhr P, Straube A, Schaeren-Wiemers N, et al. TNF-alpha expression in painful and nonpainful neuropathies. Neurology. 2001;56:1371–7.
CAS
PubMed
Google Scholar
Selvarajah D, Wilkinson ID, Emery CJ, Harris ND, Shaw PJ, Witte DR, et al. Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care. 2006;29:2664–9.
PubMed
Google Scholar
Lee-Kubli C, Marshall AG, Malik RA, Calcutt NA. The H-reflex as a biomarker for spinal disinhibition in painful diabetic neuropathy. Curr Diab Rep. 2018;18:1. https://doi.org/10.1007/s11892-018-0969-5.
Article
PubMed
Google Scholar
Lee-Kubli CA, Calcutt NA. Altered rate-dependent depression of the spinal H-reflex as an indicator of spinal disinhibition in models of neuropathic pain. Pain. 2014;155:250–60.
PubMed
Google Scholar
Fomberstein K, Qadri S, Ramani R. Functional MRI and pain. Curr Opin Anaesthesiol. 2013;26:588–93.
PubMed
Google Scholar
Tracey I. Imaging pain. Br J Anaesth. 2008;101:32–9.
CAS
PubMed
Google Scholar
Wager T, Atlas L, Lindquist M, Roy M, Woo C, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013;368:1388–97.
CAS
PubMed
PubMed Central
Google Scholar
Buonocore MH, Maddock RJ. Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods. Rev Neurosci. 2015;26:609–32.
PubMed
Google Scholar
Selvarajah D, Wilkinson ID, Emery CJ, Shaw PJ, Griffiths PD, Gandhi R, et al. Thalamic neuronal dysfunction and chronic sensorimotor distal symmetrical polyneuropathy in patients with type 1 diabetes mellitus. Diabetologia. 2008;51:2088–92.
CAS
PubMed
Google Scholar
Fischer TZ, Tan AM, Waxman SG. Thalamic neuron hyperexcitability and enlarged receptive fields in the STZ model of diabetic pain. Brain Res. 2009;1268:154–61.
CAS
PubMed
Google Scholar
Freeman OJ, Evans MH, Cooper GJ, Petersen RS, Gardiner NJ. Thalamic amplification of sensory input in experimental diabetes. Eur J Neurosci. 2016;44:1779–86.
PubMed
PubMed Central
Google Scholar
Gandhi R, Selvarajah D, Wilkinson I, Emery C, Shaw PJ, Griffiths P, et al. Preservation of thalamic neuronal function may be a prerequisite for pain perception in diabetic neuropathy. Diabetologia. 2006;49(Supp 1):2088–92.
Google Scholar
Shillo P, Selvarajah D, Greig M, Rao D, Edden R, Wilkinson I, et al. Painless diabetic peripheral neuropathy is characterised by reduced thalamic gamma-aminobutyric acid (GABA). Diabet Med. 2016;33(Supp 1):162.
Google Scholar
• Selvarajah D, Wilkinson ID, Gandhi R, Griffiths PD, Tesfaye S. Microvascular perfusion abnormalities of the thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes. Diabetes Care. 2011;34:718–20 Study demonstrating increased microvascular perfusion within the thalamus is associated with painful-DPN.
PubMed
PubMed Central
Google Scholar
Cauda F, Sacco K, D'Agata F, Duca S, Cocito D, Geminiani G, et al. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci. 2009;10:138. https://doi.org/10.1186/1471-2202-10-138.
Article
PubMed
PubMed Central
Google Scholar
Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care. 2014;8:143–51.
PubMed
PubMed Central
Google Scholar
Silva M, Amorim D, Almeida A, Tavares I, Pinto-Ribeiro F, Morgado C. Pronociceptive changes in the activity of rostroventromedial medulla (RVM) pain modulatory cells in the streptozotocin-diabetic rat. Brain Res Bull. 2013;96:39–44.
CAS
PubMed
Google Scholar
Morgado C, Terra PP, Tavares I. Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: effects of gabapentin. Eur J Pain. 2010;14:693–9.
CAS
PubMed
Google Scholar
Greig M, Wilkinson ID, Shillo P, Selvarajah D, Gandhi R, Tesfaye S. Impaired hemodynamic response to thermal pain in patients with painful diabetic neuropathy. Diabetes. 2018;67(Supp 1):568–P. https://doi.org/10.2337/db18-568-P.
Article
Google Scholar
• Segerdahl AR, Themistocleous AC, Fido D, Bennett DL, Tracey I. A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy. Brain. 2018;141:357–64 Study finding vlPAG altered function may contribute to neuropathic pain in painful-DPN.
PubMed
PubMed Central
Google Scholar
Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11:805–21.
CAS
PubMed
Google Scholar
Selvarajah D, Wilkinson ID, Maxwell M, Davies J, Sankar A, Boland E, et al. Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy. Diabetes Care. 2014;37:1681–8.
PubMed
Google Scholar
Selvarajah D, Heiberg-Gibbons F, Wilkinson ID, Gandhi R, Tesfaye S. A magnetic resonance imaging volumetry study of regional brain atrophy in diabetic peripheral neuropathy. Diabetes. 2018;67(Supp 1):550–P. https://doi.org/10.2337/db18-550-P.
Article
Google Scholar
Selvarajah D, Awadh M, Gandhi R, Wilkinson ID, Tesfaye S. Alterations in somatomotor network functional connectivity in painful diabetic neuropathy—a resting state functional magnetic resonance imaging study. Diabetes. 2018;67(Supp 1):61–OR. https://doi.org/10.2337/db18-61-OR.
Article
Google Scholar
Watanabe K, Hirano S, Kojima K, Nagashima K, Mukai H, Sato T, et al. Altered cerebral blood flow in the anterior cingulate cortex is associated with neuropathic pain. J Neurol Neurosurg Psychiatry. 2018;89:1082–7.
PubMed
Google Scholar
Selvarajah D, Gandhi R, Hunter M, Emery C, Griffiths P, Tesfaye S, et al. A functional magnetic resonance imaging study demonstrating alterations in brain responses to acute pain stimulation in diabetic neuropathy. Diabetologia. 2007;50(Supp 1):448–S9.
Google Scholar
Tseng MT, Chiang MC, Chao CC, Tseng WY, Hsieh ST. fMRI evidence of degeneration-induced neuropathic pain in diabetes: enhanced limbic and striatal activations. Hum Brain Mapp. 2013;34:2733–46.
PubMed
Google Scholar
•• Tesfaye S, Selvarajah D, Gandhi R, Greig M, Shillo P, Fang F, et al. Diabetic peripheral neuropathy may not be as its name suggests: evidence from magnetic resonance imaging. Pain. 2016;157(Supp 1):S72–80 Review of the MRI studies into painful-DPN.
PubMed
Google Scholar