Skip to main content

Advertisement

Log in

Is Fenofibrate a Reasonable Treatment for Diabetic Microvascular Disease?

  • Pharmacologic Treatment of Type 2 Diabetes (HE Lebovitz and G Bahtiyar, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes is a pandemic disease, and its prevalence is increasing mainly due to an increase in obesity and life expectancy. Diabetic complications and their comorbidities constitute the most important economic cost of the disease and represent a significant economic burden for the healthcare systems of developed countries. Despite improving standards of care, people with diabetes remain at risk of the development and progression of microvascular diabetic complications. Therefore, the identification of novel therapeutic approaches is necessary. The aim of this article is to provide an overview of the clinical benefits of fenofibrate on microvascular diabetic complications, with special emphasis on diabetic retinopathy. In addition, the potential mechanisms of action will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: a systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7million participants. Lancet. 2011;378:31–40.

    Article  CAS  PubMed  Google Scholar 

  2. Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49.

    Article  CAS  PubMed  Google Scholar 

  3. Giorda CB, Manicardi V, Diago Cabezudo J. The impact of diabetes mellitus on healthcare costs in Italy. Expert Rev Pharmacoecon Outcomes Res. 2011;11:709–19.

    Article  PubMed  Google Scholar 

  4. Hex N, Bartlett C, Wright D, et al. Estimating the current and future costs of Type 1 and Type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabet Med. 2012;29:855–62.

    Article  CAS  PubMed  Google Scholar 

  5. Köster I, Huppertz E, Hauner H, et al. Costs of diabetes mellitus (CoDiM) in Germany, direct per-capita costs of managing hyperglycaemia and diabetes complications in 2010 compared to 2001. Exp Clin Endocrinol Diabetes. 2014;122:510–6.

    Article  PubMed  Google Scholar 

  6. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376:124–36.

    Article  PubMed  Google Scholar 

  7. Klein R, Klein BE, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol. 1984;102:527–32.

    Article  CAS  PubMed  Google Scholar 

  8. Yau JW, Rogers SL, Kawasaki R, Meta-Analysis for Eye Disease (META-EYE) Study Group, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–64.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lee LJ, Yu AP, Cahill KE, et al. Direct and indirect costs among employees with diabetic retinopathy in the United States. Curr Med Res Opin. 2008;24:1549–59.

    Article  PubMed  Google Scholar 

  10. Pelletier EM, Shim B, Ben-Joseph R, et al. Economic outcomes associated with microvascular complications of type 2 diabetes mellitus: results from a US claims data analysis. Pharmacoeconomics. 2009;27:479–90.

    Article  PubMed  Google Scholar 

  11. Heintz E, Wiréhn AB, Peebo BB, et al. Prevalence and healthcare costs of diabetic retinopathy: a population-based register study in Sweden. Diabetologia. 2010;53:2147–54.

    Article  CAS  PubMed  Google Scholar 

  12. Molitch ME, DeFronzo RA, Franz MJ, et al. Nephropathy in diabetes. Diabetes Care. 2004;27:S79–83.

    Article  PubMed  Google Scholar 

  13. National Kidney Foundation. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49:S12–154.

    Article  Google Scholar 

  14. US Renal Data System (USRDS) Annual data report: 2009. Atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2009. http://www.usrds.org/adr_2009.htm.

  15. Koro CE, Lee BH, Bowlin SJ. Antidiabetic medication use and prevalence of chronic kidney disease among patients with type 2 diabetes mellitus in the United States. Clin Ther. 2009;31:2608–17.

    Article  PubMed  Google Scholar 

  16. Bakris GL. Recognition, pathogenesis, and treatment of different stages of nephropathy in patients with type 2 diabetes mellitus. Mayo Clin Proc. 2011;86:444–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hunsicker LG. The consequences and costs of chronic kidney disease before ESRD. J Am Soc Nephrol. 2004;15:1363–4.

    Article  PubMed  Google Scholar 

  18. Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993;43:817.

    Article  CAS  PubMed  Google Scholar 

  19. Edwards JL, Vincent AM, Cheng HT, et al. Diabetic neuropathy: mechanisms to management. Pharmacol Ther. 2008;120:1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rosenson RS. Fenofibrate: treatment of hyperlipidemia and beyond. Expert Rev Cardiovasc Ther. 2008;6:1319–30.

    Article  CAS  PubMed  Google Scholar 

  21. Keech A, Simes RJ, Barter P, et al. Effect of long‐term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.

    Article  CAS  PubMed  Google Scholar 

  22. Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370:1687–97. This is the first clinical trial that provided evidence that fenofibrate is effective for diabetic retinopathy.

    Article  CAS  PubMed  Google Scholar 

  23. Chew EY, Ambrosius WT, Davis MD, ACCORD Study Group; ACCORD Eye Study Group, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363:233–44. This is an important trial that provided evidence that fenofibrate is effective for diabetic retinopathy.

    Article  PubMed  Google Scholar 

  24. Simó R, Hernández C. Fenofibrate for diabetic retinopathy. Lancet. 2007;370:1667–8.

    Article  PubMed  Google Scholar 

  25. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  Google Scholar 

  26. ACCORD Study Group, Ginsberg HN, Elam MB, Lovato LC, et al. Effect of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.

    Article  Google Scholar 

  27. Cushman WC, Evans GW, Byington RP, ACCORD Study Group, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  PubMed  Google Scholar 

  28. Massin P, Peto T, Ansquer JC, et al. Effects of fenofibric acid on diabetic macular edema: the MacuFen study. Ophthalmic Epidemiol. 2014;21:307–17.

    Article  PubMed  Google Scholar 

  29. Diabetes Atherosclerosis Intervention Study Investigators. Effect of fenofibrate on progression of coronary-artey disease in type 2 diabetes: the diabetes atherosclerosis intervention study, a randomised study. Lancet. 2001;357:905–10.

    Article  Google Scholar 

  30. Ansquer JC, Foucher C, Rattier S, et al. Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS). Am J Kidney Dis. 2005;45:485–93.

    Article  CAS  PubMed  Google Scholar 

  31. Davis TM, Ting R, Best JD, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia. 2011;54:280–90. This study shows that fenofibrate reduces the progression of albuminuria.

    Article  CAS  PubMed  Google Scholar 

  32. Sacks FM, Hermans MP, Fioretto P, et al. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation. 2014;129:999–1008.

    Article  CAS  PubMed  Google Scholar 

  33. Forsblom C, Hiukka A, Leinonen ES, et al. Effects of long-term fenofibrate treatment on markers of renal function in type 2 diabetes: the FIELD Helsinki substudy. Diabetes Care. 2010;33:215–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mychaleckyj JC, Craven T, Nayak U, et al. Reversibility of fenofibrate therapy-induced renal function impairment in ACCORD type 2 diabetic participants. Diabetes Care. 2012;35:1008–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bonds DE, Craven TE, Buse J, et al. Fenofibrate-associated changes in renal function and relationship to clinical outcomes among individuals with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) experience. Diabetologia. 2012;55:1641–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hottelart C, El Esper N, Rose F, et al. Fenofibrate increases creatininemia by increasing metabolic production of creatinine. Nephron. 2002;92:536–41.

    Article  CAS  PubMed  Google Scholar 

  37. Ansquer JC, Dalton RN, Caussé E, et al. Effect of fenofibrate on kidney function: a 6-week randomized crossover trial in healthy people. Am J Kidney Dis. 2008;51:904–13.

    Article  CAS  PubMed  Google Scholar 

  38. Davis TM, Yeap BB, Davis WA, Bruce DG. Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia. 2008;51:562–6.

    Article  CAS  PubMed  Google Scholar 

  39. Rajamani K1, Colman PG, Li LP, et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet. 2009;373:1780–8. This is the first trial that provided evidence that fenofibrate is effective in preventing minor amputations.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ciudin A, Hernández C, Simó R. Molecular implications of the PPARs in the diabetic eye. PPAR Res 2013;686525.

  41. Hu Y, Chen Y, Ding L, et al. Pathogenic role of diabetes-induced PPAR-α down-regulation in microvascular dysfunction. Proc Natl Acad Sci U S A. 2013;110:15401–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Simó R, Roy S, Behar-Cohen F, et al. Fenofibrate: a new treatment for diabetic retinopathy. Molecular mechanisms and future perspectives. Curr Med Chem. 2013;20:3258–66. A useful review of the mechanisms of action of fenofibrate in diabetic retinopathy.

    Article  PubMed  Google Scholar 

  43. Kim J, Ahn JH, Kim JH, et al. Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway. Exp Eye Res. 2007;84:886–93.

    Article  CAS  PubMed  Google Scholar 

  44. Villarroel M, Garcia-Ramírez M, Corraliza L, et al. Fenofibric acid prevents retinal pigment epithelium disruption induced by interleukin-1β by suppressing AMP-activated protein kinase (AMPK) activation. Diabetologia. 2011;54:1543–53.

    Article  CAS  PubMed  Google Scholar 

  45. Trudeau K, Roy S, Guo W, et al. Fenofibric acid reduces fibronectin and collagen type IV overexpression in human retinal pigment epithelial cells grown in conditions mimicking the diabetic milieu: functional implications in retinal permeability. Invest Ophthalmol Vis Sci. 2011;52:6348–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Miranda S, González-Rodríguez A, García-Ramírez M, et al. Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions. J Cell Physiol. 2012;227:2352–62.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Hu Y, Lin M, et al. Therapeutic effects of PPARα agonists on diabetic retinopathy in type 1 diabetes models. Diabetes. 2013;62:261–72. Important experimental research showing the antiinflammatory and antiangiogenic action of fenofibrate.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ding L, Cheng R, Hu Y, et al. Peroxisome proliferator-activated receptor α protects capillary pericytes in the retina. Am J Pathol. 2014;184:2709–20.

    Article  CAS  PubMed  Google Scholar 

  49. Simó R, Hernández C. European consortium for the early treatment of diabetic retinopathy (EUROCONDOR): neurodegeneration is an early event in diabetic retinopathy: therapeutic implications. Br J Ophthalmol. 2012;96:1285–90.

    Article  PubMed  Google Scholar 

  50. Simó R, Hernández C. European consortium for the early treatment of diabetic retinopathy (EUROCONDOR): neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25:23–33.

    Article  PubMed  Google Scholar 

  51. Bogdanov P, Hernández C, Corraliza L, et al. Effect of fenofibrate on retinal neurodegeneration in an experimental model of type 2 diabetes. Acta Diabetol. 2014;17.

  52. Bogdanov P, Corraliza L, Villena JA, et al. The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration. PLoS One. 2014;9:e97302.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Cho YR, Lim JH, Kim MY, et al. Therapeutic effects of fenofibrate on diabetic peripheral neuropathy by improving endothelial and neural survival in db/db mice. PLoS One. 2014;9:e83204.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Park CW, Kim HW, Ko SH, et al. Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha. Diabetes. 2006;885-93.

  55. Park CW, Zhang Y, Zhang X, et al. PPARα agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int. 2006;69:1511–7.

    Article  CAS  PubMed  Google Scholar 

  56. Kadian S, Mahadevan N, Balakumar P. Differential effects of low-dose fenofibrate treatment in diabetic rats with early onset nephropathy and established nephropathy. Eur J Pharmacol. 2013;698:388–96.

    Article  CAS  PubMed  Google Scholar 

  57. Li L, Emmett N, Mann D, Zhao X. Fenofibrate atternuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-κβ and transforming growth factor-β1/Smad3 in diabetic nephropathy. Exp Biol Med (Maywood). 2010;235:383–91.

    Article  CAS  Google Scholar 

  58. Hong YA, Lim JH, Kim MY, et al. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice. PLoS One. 2014;9:e96147.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Bordet R, Ouk T, Petrault O, et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans. 2006;34(Pt 6):1341–6.

    CAS  PubMed  Google Scholar 

  60. Deplanque D, Gelé P, Pétrault O, et al. Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J Neurosci. 2003;23:6264–71.

    CAS  PubMed  Google Scholar 

  61. Ouk T, Gautier S, Pétrault M, et al. Effects of the PPAR-α agonist fenofibrate on acute and short-term consequences of brain ischemia. J Cereb Blood Flow Metab. 2014;34:542–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jones PH1, Davidson MH. Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Am J Cardiol. 2005;95:120–2.

    Article  CAS  PubMed  Google Scholar 

  63. Guo J, Meng F, Ma N, et al. Meta-analysis of safety of the coadministration of statin with fenofibrate in patients with combined hyperlipidemia. Am J Cardiol. 2012;110:1296–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministerio de Ciencia e Innovación (SAF2012-35562) and the Generalitat de Catalunya (2014-SGR-270).

Compliance with Ethics Guidelines

Conflict of Interest

Rafael Simó, Olga Simó-Servat, and Cristina Hernández declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Simó.

Additional information

This article is part of the Topical Collection on Pharmacologic Treatment of Type 2 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simó, R., Simó-Servat, O. & Hernández, C. Is Fenofibrate a Reasonable Treatment for Diabetic Microvascular Disease?. Curr Diab Rep 15, 24 (2015). https://doi.org/10.1007/s11892-015-0599-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0599-0

Keywords

Navigation