Skip to main content

Advertisement

Log in

Metabolic Abnormalities in the Pathogenesis of Type 1 Diabetes

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

A Correction to this article was published on 01 September 2018

Abstract

Clinical onset of type 1 diabetes (T1D) is thought to result from a combination of overt beta cell loss and beta cell dysfunction. However, our understanding of how beta cell metabolic abnormalities arise during the pathogenesis of disease remains incomplete. Despite extensive research on the autoimmune nature of T1D, questions remain regarding the time frame and nature of beta cell destruction and dysfunction. This review focuses on the characterizations of beta cell dysfunction in the prediabetic and T1D human and mouse model. Studies have shown evidence supporting progressive loss of beta cell mass and function prior to T1D onset, while other scientists argue beta cell destruction occurs later in the disease process. Determining the time frame of beta cell destruction and identifying metabolic mechanisms that drive beta cell dysfunction has high potential for successful interventions to maintain insulin secretion for individuals with established T1D as well as those with prediabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Miersch S, Bian X, Wallstrom G, Sibani S, Logvinenko T, Wasserfall CH, et al. Serological autoantibody profiling of type 1 diabetes by protein arrays. J Proteomics. 2013;94:486–96.

    Article  CAS  PubMed  Google Scholar 

  2. Stankov K, Benc D, Draskovic D. Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics. 2013;132:1112–22.

    Article  PubMed  Google Scholar 

  3. Anagandula M, Richardson SJ, Oberste MS, Sioofy-Khojine AB, Hyoty H, Morgan NG, et al. Infection of human islets of Langerhans with two strains of coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. J Med Virol. 2014;86(8):1402–11.

  4. Vanbuecken DE, Greenbaum CJ. Residual C-peptide in type 1 diabetes: what do we really know? Pediatr Diabetes. 2014;15:84–90.

    Article  CAS  PubMed  Google Scholar 

  5. Pietropaolo M. Persistent C-peptide: what does it mean? Curr Opin Endocrinol Diabetes Obes. 2013;20:279–84.

    Article  CAS  PubMed  Google Scholar 

  6. Schatz D, Cuthbertson D, Atkinson M, Salzler MC, Winter W, Muir A, et al. Preservation of C-peptide secretion in subjects at high risk of developing type 1 diabetes mellitus—a new surrogate measure of non-progression? Pediatr Diabetes. 2004;5:72–9.

    Article  PubMed  Google Scholar 

  7. Kano Y, Kanatsuna T, Nakamura N, Kitagawa Y, Mori H, Kajiyama S, et al. Defect of the first-phase insulin secretion to glucose stimulation in the perfused pancreas of the nonobese diabetic (NOD) mouse. Diabetes. 1986;35:486–90.

    Article  CAS  PubMed  Google Scholar 

  8. Sreenan S, Pick AJ, Levisetti M, Baldwin AC, Pugh W, Polonsky KS. Increased beta-cell proliferation and reduced mass before diabetes onset in the nonobese diabetic mouse. Diabetes. 1999;48:989–96.

    Article  CAS  PubMed  Google Scholar 

  9. Soeldner JS, Tuttleman M, Srikanta S, Ganda OP, Eisenbarth GS. Insulin-dependent diabetes mellitus and autoimmunity: islet-cell autoantibodies, insulin autoantibodies, and beta-cell failure. N Engl J Med. 1985;313:893–4.

    Article  CAS  PubMed  Google Scholar 

  10. Eisenbarth GS, Srikanta S, Fleischnick E, Ganda OP, Jackson RA, Brink SJ, et al. Progressive autoimmune beta cell insufficiency: occurrence in the absence of high-risk HLA alleles DR3, DR4. Diabetes Care. 1985;8:477–80.

    Article  CAS  PubMed  Google Scholar 

  11. Srikanta S, Ganda OP, Rabizadeh A, Soeldner JS, Eisenbarth GS. First-degree relatives of patients with type I diabetes mellitus. Islet-cell antibodies and abnormal insulin secretion. N Engl J Med. 1985;313:461–4.

    Article  CAS  PubMed  Google Scholar 

  12. Srikanta S, Ganda OP, Gleason RE, Jackson RA, Soeldner JS, Eisenbarth GS. Pre-type I diabetes. Linear loss of beta cell response to intravenous glucose. Diabetes. 1984;33:717–20.

    Article  CAS  PubMed  Google Scholar 

  13. Srikanta S, Ganda OP, Jackson RA, Brink SJ, Fleischnick E, Yunis E, et al. Pre-type 1 (insulin-dependent) diabetes: common endocrinological course despite immunological and immunogenetic heterogeneity. Diabetologia. 1984;27(Suppl):146–8.

    Article  PubMed  Google Scholar 

  14. Ganda OP, Srikanta S, Brink SJ, Morris MA, Gleason RE, Soeldner JS, et al. Differential sensitivity to beta-cell secretagogues in “early,” type I diabetes mellitus. Diabetes. 1984;33:516–21. The manuscript documents that individuals exhibit a reduction in the insulin secretion in response to glucose prior to diagnosis. Glucose-responses are lost prior to any change in response to other secretagogues.

  15. Srikanta S, Ganda OP, Jackson RA, Gleason RE, Kaldany A, Garovoy MR, et al. Type I diabetes mellitus in monozygotic twins: chronic progressive beta cell dysfunction. Ann Intern Med. 1983;99:320–6. Noted a progressive loss of glucose-stimulated insulin secretion in the pre-diabetes period in those that developed T1D.

  16. Srikanta S, Ganda OP, Eisenbarth GS, Soeldner JS. Islet-cell antibodies and beta-cell function in monozygotic triplets and twins initially discordant for Type I diabetes mellitus. N Engl J Med. 1983;308:322–5.

    Article  CAS  PubMed  Google Scholar 

  17. Heaton DA, Lazarus NR, Pyke DA, Leslie RD. B-cell responses to intravenous glucose and glucagon in non-diabetic twins of patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1989;32:814–7.

    CAS  PubMed  Google Scholar 

  18. Lo SS, Hawa M, Beer SF, Pyke DA, Leslie RD. Altered islet beta-cell function before the onset of type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1992;35:277–82.

    Article  CAS  PubMed  Google Scholar 

  19. Barker JM, McFann K, Harrison LC, Fourlanos S, Krischer J, Cuthbertson D, et al. Pre-type 1 diabetes dysmetabolism: maximal sensitivity achieved with both oral and intravenous glucose tolerance testing. J Pediatr. 2007;150:31–6. e36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chaillous L, Rohmer V, Maugendre D, Lecomte P, Marechaud R, Marre M, et al. Differential beta-cell response to glucose, glucagon, and arginine during progression to type I (insulin-dependent) diabetes mellitus. Metab Clin Exp. 1996;45:306–14.

    Article  CAS  PubMed  Google Scholar 

  21. Lupi R, Marselli L, Dionisi S, Del Guerra S, Boggi U, Del Chiaro M, et al. Improved insulin secretory function and reduced chemotactic properties after tissue culture of islets from type 1 diabetic patients. Diabetes Metab Res Rev. 2004;20:246–51. Islets isolated from patients diagnosed with T1D were compared to islets from non-diabetic donors. These investigators noted that the T1D islets failed to release insulin in response to glucose but maintained release when expose to arginine. Dysfunction was linked to loss of glucose metabolizing enzymes.

    Article  CAS  PubMed  Google Scholar 

  22. Marchetti P, Dotta F, Ling Z, Lupi R, Del Guerra S, Santangelo C, et al. Function of pancreatic islets isolated from a type 1 diabetic patient. Diabetes Care. 2000;23:701–3.

    Article  CAS  PubMed  Google Scholar 

  23. Eisenbarth GS. Type I, diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314:1360–8.

    Article  CAS  PubMed  Google Scholar 

  24. Keenan HA, Sun JK, Levine J, Doria A, Aiello LP, Eisenbarth G, et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59:2846–53. Individuals with long-standing T1D (up to 17 years post-diagnosis) were subjected to an arginine stimulation test and a mixed-meal test. 55% had measurable C-peptide in both tests while smaller cohorts exhibited release to only arginine (12.5%) or mix-meal (17.5%).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Liu EH, Digon III BJ, Hirshberg B, Chang R, Wood BJ, Neeman Z, et al. Pancreatic beta cell function persists in many patients with chronic type 1 diabetes, but is not dramatically improved by prolonged immunosuppression and euglycaemia from a beta cell allograft. Diabetologia. 2009;52:1369–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rother KI, Spain LM, Wesley RA, Digon III BJ, Baron A, Chen K, et al. Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes. Diabetes Care. 2009;32:2251–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang L, Lovejoy NF, Faustman DL. Persistence of prolonged C-peptide production in type 1 diabetes as measured with an ultrasensitive C-peptide assay. Diabetes Care. 2012;35:465–70. Using an ultra-sensitive c-peptide ELISA these investigators noted c-peptide release in individuals that would have been missed by using previous methodologies as these T1D patients are microsecretors.

  28. Oram RA, Jones AG, Besser RE, Knight BA, Shields BM, Brown RJ, et al. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia. 2014;57:187–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Campbell-Thompson M, Wasserfall C, Kaddis J, Albanese-O'Neill A, Staeva T, et al. Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab Res Rev. 2012;28:608–17.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Steele C, Hagopian WA, Gitelman S, Masharani U, Cavaghan M, Rother KI, et al. Insulin secretion in type 1 diabetes. Diabetes. 2004;53:426–33.

    Article  CAS  PubMed  Google Scholar 

  31. Sherr JL, Ghazi T, Wurtz A, Rink L, Herold KC. Characterization of residual beta cell function in long-standing type 1 diabetes. Diabetes Metab Res Rev. 2014;30:154–62.

    Article  CAS  PubMed  Google Scholar 

  32. Krogvold L, Edwin B, Buanes T, Ludvigsson J, Korsgren O, Hyoty H, et al. Pancreatic biopsy by minimal tail resection in live adult patients at the onset of type 1 diabetes: experiences from the DiViD study. Diabetologia. 2014;57:841–3.

    Article  PubMed  Google Scholar 

  33. Atkinson MA. Pancreatic biopsies in type 1 diabetes: revisiting the myth of Pandora's box. Diabetologia. 2014;57:656–9.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.

    Article  CAS  PubMed  Google Scholar 

  35. Ize-Ludlow D, Lightfoot YL, Parker M, Xue S, Wasserfall C, Haller MJ, et al. Progressive erosion of beta-cell function precedes the onset of hyperglycemia in the NOD mouse model of type 1 diabetes. Diabetes. 2011;60:2086–91.

  36. Shimada A, Charlton B, Taylor-Edwards C, Fathman CG. Beta-cell destruction may be a late consequence of the autoimmune process in nonobese diabetic mice. Diabetes. 1996;45:1063–7. This paper highlights the similarities between beta cell failure in NOD to that in humans during the pre-diabetes period. Using a longitudinal design, NOD were observed to have a progressive decline in glucose stimulated insulin secretion, in vivo, while maintaining insulin release in response to arginine

  37. Chatenoud L, Thervet E, Primo J, Bach JF. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci U S A. 1994;91:123–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Parker MJ, Xue S, Alexander JJ, Wasserfall CH, Campbell-Thompson ML, Battaglia M, et al. Immune depletion with cellular mobilization imparts immunoregulation and reverses autoimmune diabetes in nonobese diabetic mice. Diabetes. 2009;58:2277–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sever D, Eldor R, Sadoun G, Amior L, Dubois D, Boitard C, et al. Evaluation of impaired beta-cell function in nonobese–diabetic (NOD) mouse model using bioluminescence imaging. FASEB J. 2011;25:676–84.

    Article  CAS  PubMed  Google Scholar 

  40. Reddy S, Liu W, Thompson JM, Bibby NJ, Elliott RB. First phase insulin release in the non-obese diabetic mouse: correlation with insulitis, beta cell number and autoantibodies. Diabetes Res Clin Pract. 1992;17:17–25.

    Article  CAS  PubMed  Google Scholar 

  41. Orban T, Sosenko JM, Cuthbertson D, Krischer JP, Skyler JS, Jackson R, et al. Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care. 2009;32:2269–74.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by research grants R01 DK074656 and U01 AI042288 from the National Institutes of Health as well as from the Juvenile Diabetes Research Foundation, the American Diabetes Association, and The Leona M. and Harry B. Helmsley Charitable Trust. Support from the Network for Pancreatic Organ Donors with Diabetes (nPOD), a collaborative type 1 diabetes research project sponsored by JDRF was essential for completion of this work. The resources provided by the partnership of Organ Procurement Organizations (OPO) with nPOD are listed at http://www.jdrfnpod.org/for-partners/npod-partners/.

Compliance with Ethics Guidelines

Conflict of Interest

Shuyao Zheng and Clayton E. Mathews declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton E. Mathews.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Mathews, C.E. Metabolic Abnormalities in the Pathogenesis of Type 1 Diabetes. Curr Diab Rep 14, 519 (2014). https://doi.org/10.1007/s11892-014-0519-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0519-8

Keywords

Navigation