Skip to main content

The Beta Cell in Metabolic Syndrome

  • Chapter
  • First Online:
A Systems Biology Approach to Study Metabolic Syndrome

Abstract

The pancreatic beta cell is equipped with a highly sophisticated machinery to precisely sense the metabolic status of the organism and secrete the exactly appropriate amount of insulin to maintain blood glucose levels in a very narrow range. When the Metabolic Syndrome develops, insulin resistance imposes an additional burden on the beta cell, which then hypersecretes insulin to meet the demand. In the majority of individuals, the beta cell can sustain this additional workload and maintain normoglycemia. In a subset of predisposed individuals however, this compensatory response eventually fails and diabetes develops. Once diabetes is established, beta-cell function continues to deteriorate over time. The molecular and cellular mechanisms underlying beta-cell failure are not fully understood, although several hypotheses have been proposed. Amongst these, glucolipotoxicity; defective mitochondrial metabolism and oxidative stress; inflammation; amyloid deposits, disruption of autophagic flux; endoplasmic reticulum stress; beta-cell dedifferentiation and exhaustion from chronic hypersecretion probably contribute to some extent, perhaps at various stages of the disease progression and differently between individuals. Thus, beta-cell failure is likely mediated by a number of interrelated and complex mechanisms, which is reflected in the inability of the current therapeutic options to significantly slow down disease progression. This provides a strong argument for early interventions aimed at preventing the functional demise of pancreatic beta cells in the Metabolic Syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderrahmani A, Niederhauser G, Favre D, Abdelli S, Ferdaoussi M, Yang JY, Regazzi R, Widmann C, Waeber G (2007) Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia 50:1304–1314

    PubMed  CAS  Google Scholar 

  • Ackermann Misfeldt A, Costa RH, Gannon M (2008) Beta-cell proliferation, but not neogenesis, following 60 % partial pancreatectomy is impaired in the absence of FoxM1. Diabetes 57:3069–3077

    PubMed  Google Scholar 

  • ALberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SCJR (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645

    PubMed  CAS  Google Scholar 

  • Andrikopoulos S (2010) Obesity and type 2 diabetes: slow down!—Can metabolic deceleration protect the islet beta cell from excess nutrient-induced damage? Mol Cell Endocrinol 316:140–146

    PubMed  CAS  Google Scholar 

  • Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, Del Prato S, Rabuazzo AM, Purrello F, Marchetti P (2005) Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48:282–289

    PubMed  CAS  Google Scholar 

  • Aston-Mourney K, Proietto J, Morahan G, Andrikopoulos S (2008) Too much of a good thing: why it is bad to stimulate the beta cell to secrete insulin. Diabetologia 51:540–545

    PubMed  CAS  Google Scholar 

  • Bjork E, Berne C, Kampe O, Wibell L, Oskarsson P, Karlsson FA (1996) Diazoxide treatment at onset preserves residual insulin secretion in adults with autoimmune diabetes. Diabetes 45:1427–1430

    PubMed  CAS  Google Scholar 

  • Boden G, Chen X (1999) Effects of fatty acids and ketone bodies on basal insulin secretion in type 2 diabetes. Diabetes 48:577–583

    PubMed  CAS  Google Scholar 

  • Boden G, Chen X, Rosner J, Barton M (1995) Effects of a 48 h fat infusion on insulin secretion and glucose utilization. Diabetes 44:1239–1242

    PubMed  CAS  Google Scholar 

  • Boni-Schnetzler M, Boller S, Debray S, Bouzakri K, Meier DT, Prazak R, Kerr-Conte J, Pattou F, Ehses JA, Schuit FC, Donath MY (2009) Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150:5218–5229

    PubMed  CAS  Google Scholar 

  • Boni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, Pattou F, Halban PA, Weir GC, Donath MY (2008) Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93:4065–4074

    PubMed  Google Scholar 

  • Bouche C, Lopez X, Fleischman A, Cypess AM, O’shea S, Stefanovski D, Bergman RN, Rogatsky E, Stein DT, Kahn CR, Kulkarni RN, Goldfine AB (2010) Insulin enhances glucose-stimulated insulin secretion in healthy humans. Proc Natl Acad Sci U S A 107:4770–4775

    PubMed  CAS  Google Scholar 

  • Briaud I, Harmon JS, Kelpe CL, Segu VB, Poitout V (2001) Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes 50:315–321

    PubMed  CAS  Google Scholar 

  • Briaud I, Kelpe CL, Johnson LM, Tran POT, Poitout V (2002) Differential effects of hyperlipidemia on insulin secretion in islets of Langerhans from hyperglycemic vs normoglycemic rats. Diabetes 51:662–668

    PubMed  CAS  Google Scholar 

  • Brown RJ, Rother KI (2008) Effects of beta-cell rest on beta-cell function: a review of clinical and preclinical data. Pediatr Diabetes 9:14–22

    PubMed  CAS  Google Scholar 

  • Brunham LR, Kruit JK, Pape TD, Timmins JM, Reuwer AQ, Vasanji Z, Marsh BJ, Rodrigues B, Johnson JD, Parks JS, Verchere CB, Hayden MR (2007) Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med 13:340–347

    PubMed  CAS  Google Scholar 

  • Busch AK, Gurisik E, Cordery DV, Sudlow M, Denyer GS, Laybutt DR, Hughes WE, Biden TJ (2005) Increased fatty acid desaturation and enhanced expression of stearoyl coenzyme a desaturase protects pancreatic beta-cells from lipoapoptosis. Diabetes 54:2917–2924

    PubMed  CAS  Google Scholar 

  • Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC (2004) Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes 53:1509–1516

    PubMed  CAS  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    PubMed  CAS  Google Scholar 

  • Carpentier A, Giacca A, Lewis GF (2001) Effect of increased plasma non-esterified fatty acids (NEFAs) on arginine-stimulated insulin secretion in obese humans. Diabetologia 44:1989–1997

    PubMed  CAS  Google Scholar 

  • Carpentier A, Mittelman SD, Lamarche B, Bergman RN, Giacca A, Lewis GF (1999) Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol 276: E1055–1066

    Google Scholar 

  • Carpentier AC, Bourbonnais A, Frisch F, Giacca A, Lewis GF (2010) Plasma nonesterified fatty acid intolerance and hyperglycemia are associated with intravenous lipid-induced impairment of insulin sensitivity and disposition index. J Clin Endocrinol Metab 95:1256–1264

    PubMed  CAS  Google Scholar 

  • Choi SE, Lee SM, Lee YJ LILJ, Lee SJ, Lee JH, Kim Y, Jun HS, Lee KW, Kang Y (2009) Protective role of autophagy in palmitate-induced INS-1 beta-cell death. Endocrinology 150:126–134

    PubMed  CAS  Google Scholar 

  • Choudhury AI, Heffron H, Smith MA, AL-Qassab H XUAW, Selman C, Simmgen M, Clements M, Claret M, Maccoll G, Bedford DC, Hisadome K, Diakonov I, Moosajee V, Bell JD, Speakman JR, Batterham RL, Barsh GS, Ashford ML, Withers DJ (2005) The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J Clin Invest 115:940–950

    PubMed  CAS  Google Scholar 

  • Christesen HB, Tribble ND, Molven A, Siddiqui J, Sandal T, Brusgaard K, Ellard S, Njolstad PR, Alm J, Brock Jacobsen B, Hussain K, Gloyn AL (2008) Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation. Eur J Endocrinol 159:27–34

    PubMed  CAS  Google Scholar 

  • Cnop M, Igoillo-Esteve M, Cunha DA, Ladriere L, Eizirik DL (2008) An update on lipotoxic endoplasmic reticulum stress in pancreatic beta-cells. Biochem Soc Trans 36:909–915

    PubMed  CAS  Google Scholar 

  • Cnop M, Ladriere L, Hekerman P, Ortis F, Cardozo AK, Dogusan Z, Flamez D, Boyce M, Yuan J, Eizirik DL (2007) Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J Biol Chem 282:3989–3997

    PubMed  CAS  Google Scholar 

  • Colas R, Pruneta-Deloche V, Guichardant M, Luquain-Costaz C, Cugnet-Anceau C, Moret M, Vidal H, Moulin P, Lagarde M, Calzada C (2010) Increased lipid peroxidation in LDL from type-2 diabetic patients. Lipids 45:723–731

    PubMed  CAS  Google Scholar 

  • da Silva Xavier G, Rutter J, Rutter GA (2004) Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proc Natl Acad Sci U S A 101:8319–8324

    Google Scholar 

  • da Silva Xavier G, Farhan H, Kim H, Caxaria S, Johnson P, Hughes S, Bugliani M, Marselli L, Marchetti P, Birzele F, Sun G, Scharfmann R, Rutter J, Siniakowicz K, Weir G, Parker H, Reimann F, Gribble FM, Rutter GA (2010) Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia 54(4):819–817

    Google Scholar 

  • Davis DB, Lavine JA, Suhonen JI, Krautkramer KA, Rabaglia ME, Sperger JM, Fernandez LA, Yandell BS, Keller MP, Wang IM, Schadt EE, Attie AD (2010) FoxM1 is up-regulated by obesity and stimulates beta-cell proliferation. Mol Endocrinol 24:1822–1834

    PubMed  CAS  Google Scholar 

  • Del Guerra S, Lupi R, Marselli L, Masini M, Bugliani M, Sbrana S, Torri S, Pollera M, Boggi U, Mosca F, Del Prato S, Marchetti P (2005) Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54:727–735

    PubMed  CAS  Google Scholar 

  • Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25:406–409

    PubMed  CAS  Google Scholar 

  • Delghingaro-Augusto V, Nolan CJ, Gupta D, Jetton TL, Latour MG, Peshavaria M, Madiraju SR, Joly E, Peyot ML, Prentki M, Leahy J (2009) Islet beta cell failure in the 60 % pancreatectomised obese hyperlipidaemic Zucker fatty rat: severe dysfunction with altered glycerolipid metabolism without steatosis or a falling beta cell mass. Diabetologia 52:1122–1132

    PubMed  CAS  Google Scholar 

  • Deng S, Vatamaniuk M, Huang X, Doliba N, Lian MM, Frank A, Velidedeoglu E, Desai NM, Koeberlein B, Wolf B, Barker CF, Naji A, Matschinsky FM, Markmann JF (2004) Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 53:624–632

    PubMed  CAS  Google Scholar 

  • Doliba NM, Qin W, Najafi H, Liu C, Buettger CW, Sotiris J, Weik-Collins H LICD, Stanley CA, Wilson DF, Grimsby J, Sarabu R, Naji A, Matschinsky FM (2011) Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type-2-diabetics. Am J Physiol Endocrinol Metab 302(1):E87–102

    PubMed  Google Scholar 

  • Donath MY, Storling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) 81:455–470

    Google Scholar 

  • Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46

    PubMed  CAS  Google Scholar 

  • Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, Thomas WG, Mukhamedova N, DE Courten B, Forbes JM, Yap FY, Kaye DM, Van Hall G, Febbraio MA, Kemp BE, Sviridov D, Steinberg GR, Kingwell BA (2009) High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 119:2103–2111

    PubMed  CAS  Google Scholar 

  • Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332

    PubMed  CAS  Google Scholar 

  • Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, Gueripel X, Ellingsgaard H, Schneider MK, Biollaz G, Fontana A, Reinecke M, Homo-Delarche F, Donath MY (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370

    PubMed  CAS  Google Scholar 

  • Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N, Irminger JC, Kergoat M, Portha B, Homo-Delarche F, Donath MY (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci U S A 106:13998–14003

    PubMed  CAS  Google Scholar 

  • Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61

    PubMed  CAS  Google Scholar 

  • EL-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, Joly E, Dbaibo G, Rosenberg L, Prentki M (2003) Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 144:4154–4163

    PubMed  CAS  Google Scholar 

  • El Ouaamari A, Kawamori D, Dirice E, Liew CW, Shadrach JL, Hu J, Katsuta H, Hollister-Lock J, Qian WJ, Wagers AJ, Kulkarni RN (2013). Liver-derived systemic factors drive beta cell hyperplasia in insulin-resistant states. Cell reports 3, 401–410

    Google Scholar 

  • Ellingsgaard H, Ehses JA, Hammar EB, Van Lommel L, Quintens R, Martens G, Kerr-Conte J, Pattou F, Berney T, Pipeleers D, Halban PA, Schuit F, Donath MY (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci U S A 105:13163–13168

    PubMed  CAS  Google Scholar 

  • Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AM, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489

    PubMed  CAS  Google Scholar 

  • Escribano O, Guillen C, Nevado C, Gomez-Hernandez A, Kahn CR, Benito M (2009) Beta-Cell hyperplasia induced by hepatic insulin resistance: role of a liver-pancreas endocrine axis through insulin receptor A isoform. Diabetes 58:820–828

    PubMed  CAS  Google Scholar 

  • Federici M, Hribal M, Perego L, Ranalli M, Caradonna Z, Perego C, Usellini L, Nano R, Bonini P, Bertuzzi F, Marlier LN, Davalli AM, Carandente O, Pontiroli AE, Melino G, Marchetti P, Lauro R, Sesti G, Folli F (2001) High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50:1290–1301

    PubMed  CAS  Google Scholar 

  • Fernandez-Alvarez J, Conget I, Rasschaert J, Sener A, Gomis R, Malaisse WJ (1994) Enzymatic, metabolic and secretory patterns in human islets of type 2 (non-insulin-dependent) diabetic patients. Diabetologia 37:177–181

    PubMed  CAS  Google Scholar 

  • Fex M, Nitert MD, Wierup N, Sundler F, Ling C, Mulder H (2007) Enhanced mitochondrial metabolism may account for the adaptation to insulin resistance in islets from C57BL/6J mice fed a high-fat diet. Diabetologia 50:74–83

    PubMed  CAS  Google Scholar 

  • Fontes G, Semache M, Hagman DK, Tremblay C, Shah R, Rhodes CJ, Rutter J, Poitout V (2009) Involvement of Per-Arnt-Sim Kinase and extracellular-regulated kinases-1/2 in palmitate inhibition of insulin gene expression in pancreatic beta-cells. Diabetes 58:2048–2058

    PubMed  CAS  Google Scholar 

  • Fontes G, Zarrouki B, Hagman DK, Latour MG, Semache M, Roskens V, Moore PC, Prentki M, Rhodes CJ, Jetton TL, Poitout V (2010) Glucolipotoxicity age-dependently impairs beta cell function in rats despite a marked increase in beta cell mass. Diabetologia 53:2369–2379

    PubMed  CAS  Google Scholar 

  • label="German, Moss | ?" type="Other"German MS, Moss LG, Wang J Rutter WJ (1992) The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes. Mol Cell Biol 12:1777–1788

    Google Scholar 

  • Glaser B, Kesavan P, Heyman M, Davis E, Cuesta A, Buchs A, Stanley CA, Thornton PS, Permutt MA, Matschinsky FM, Herold KC (1998) Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med 338:226–230

    PubMed  CAS  Google Scholar 

  • Golbidi S, Ebadi SA, Laher I (2011) Antioxidants in the treatment of diabetes. Curr diabetes rev 7:106–125

    Google Scholar 

  • Grill V, Radtke M, Qvigstad E, Kollind M, Bjorklund A (2009) Beneficial effects of K-ATP channel openers in diabetes: an update on mechanisms and clinical experiences. Diabetes Obes Metab 11(Suppl 4):143–148

    PubMed  CAS  Google Scholar 

  • Gwiazda KS, Yang TL, Lin Y, Johnson JD (2009) Effects of palmitate on ER and cytosolic Ca + homeostasis in beta-cells. Am J Physiol Endocrinol Metab 296: E690–701

    Google Scholar 

  • Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29:303–316

    PubMed  CAS  Google Scholar 

  • Hagman DK, Hays LB, Parazzoli SD, Poitout V (2005) Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 280:32413–32418

    PubMed  CAS  Google Scholar 

  • Hagman DK, Latour MG, Chakrabarti SK, Fontes G, Amyot J, Tremblay C, Semache M, Lausier JA, Roskens V, Mirmira RG, Jetton TL, Poitout V (2008) Cyclical and alternating infusions of glucose and intralipid in rats inhibit insulin gene expression and Pdx-1 binding in islets. Diabetes 57:424–431

    PubMed  CAS  Google Scholar 

  • Hashimoto N, Kido Y, Uchida T, Asahara S, Shigeyama Y, Matsuda T, Takeda A, Tsuchihashi D, Nishizawa A, Ogawa W, Fujimoto Y, Okamura H, Arden KC, Herrera PL, Noda T, Kasuga M (2006) Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet 38:589–593

    PubMed  CAS  Google Scholar 

  • Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760

    PubMed  CAS  Google Scholar 

  • Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751

    PubMed  CAS  Google Scholar 

  • Herder C, Roden M (2011) Genetics of type 2 diabetes: pathophysiologic and clinical relevance. Eur J Clin Invest 41:679–692

    PubMed  Google Scholar 

  • Hoene M, Weigert C (2008) The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes Rev 9:20–29

    PubMed  CAS  Google Scholar 

  • Holman RR (1998) Assessing the potential for alpha-glucosidase inhibitors in prediabetic states. Diabetes Res Clin Pract 40 Suppl:S21–S25

    Google Scholar 

  • Hoppa MB, Collins S, Ramracheya R, Hodson L, Amisten S, Zhang Q, Johnson P, Ashcroft FM, Rorsman P (2009) Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2 +) channels from secretory granules. Cell Metab 10:455–465

    PubMed  CAS  Google Scholar 

  • Huopio H, Otonkoski T, Vauhkonen I, Reimann F, Ashcroft FM, Laakso M (2003) A new subtype of autosomal dominant diabetes attributable to a mutation in the gene for sulfonylurea receptor 1. Lancet 361:301–307

    PubMed  CAS  Google Scholar 

  • Imai J, Katagiri H, Yamada T, Ishigaki Y, Suzuki T, Kudo H, Uno K, Hasegawa Y, Gao J, Kaneko K, Ishihara H, Niijima A, Nakazato M, Asano T, Minokoshi Y, Oka Y (2008) Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 322:1250–1254

    PubMed  CAS  Google Scholar 

  • Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, Sharma A, Bonner-Weir S (2008) Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A 105:19915–19919

    PubMed  CAS  Google Scholar 

  • Jacqueminet S, Briaud I, Rouault C, Reach G, Poitout V (2000) Inhibition of insulin gene expression by long-term exposure of pancreatic beta-cells to palmitate is dependent upon the presence of a stimulatory glucose concentration. Metabolism 49:532–536

    PubMed  CAS  Google Scholar 

  • Janson J, Soeller WC, Roche PC, Nelson RT, Torchia AJ, Kreutter DK, Butler PC (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci U S A 93:7283–7288

    PubMed  CAS  Google Scholar 

  • Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R, Bonner-Weir S, Weir GC (1999) Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem 274:14112–14121

    PubMed  CAS  Google Scholar 

  • Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, Jeong YT, Han MS, Lee MK, Kim KW, Shin J, Lee MS (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324

    PubMed  CAS  Google Scholar 

  • Kaneko K, Ueki K, Takahashi N, Hashimoto S, Okamoto M, Awazawa M, Okazaki Y, Ohsugi M, Inabe K, Umehara T, Yoshida M, Kakei M, Kitamura T, Luo J, Kulkarni RN, Kahn CR, Kasai H, Cantley LC, Kadowaki T (2010) Class IA phosphatidylinositol 3-kinase in pancreatic beta cells controls insulin secretion by multiple mechanisms. Cell Metab 12:619–632

    PubMed  CAS  Google Scholar 

  • karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147:3398–3407

    PubMed  CAS  Google Scholar 

  • Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, Defronzo R, Cusi K (2003) A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 52:2461–2474

    PubMed  CAS  Google Scholar 

  • Kasuga M (2006) Insulin resistance and pancreatic beta cell failure. J Clin Invest 116:1756–1760

    PubMed  CAS  Google Scholar 

  • Kaushik S, Singh R, Cuervo AM (2010) Autophagic pathways and metabolic stress. Diabetes Obes Metab 12(Suppl 2):4–14

    PubMed  CAS  Google Scholar 

  • Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes, CJ Poitout V (2003) Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem 278:30015–30021

    PubMed  CAS  Google Scholar 

  • Koseki M, Matsuyama A, Nakatani K, Inagaki M, Nakaoka H, Kawase R, Yuasa-Kawase M, Tsubakio-Yamamoto K, Masuda D, Sandoval JC, Ohama T, Nakagawa-Toyama Y, Matsuura F, Nishida M, Ishigami M, Hirano K, Sakane N, Kumon Y, Suehiro T, Nakamura T, Shimomura I, Yamashita S (2009) Impaired insulin secretion in four Tangier disease patients with ABCA1 mutations. J Atheroscler Thromb 16:292–296

    PubMed  CAS  Google Scholar 

  • Kruit JK, Kremer PH, Dai L, Tang R, Ruddle P, DE Haan W, Brunham LR, Verchere CB, Hayden MR (2010) Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice. Diabetologia 53:1110–1119

    PubMed  CAS  Google Scholar 

  • Kruit JK, Wijesekara N, Fox JE, Dai XQ, Brunham LR, Searle GJ, Morgan GP, Costin AJ, Tang R, Bhattacharjee A, Johnson JD, Light PE, Marsh BJ, Macdonald PE, Verchere CB, Hayden MR (2011) Islet cholesterol accumulation due to loss of ABCA1 leads to impaired exocytosis of insulin granules. Diabetes 60(12):3186–3196

    PubMed  CAS  Google Scholar 

  • Kubota N, Terauchi Y, Tobe K, Yano W, Suzuki R, Ueki K, Takamoto I, Satoh H, Maki T, Kubota T, Moroi M, Okada-Iwabu M, Ezaki O, Nagai R, Ueta Y, Kadowaki T, Noda T (2004) Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus. J Clin Invest 114:917–927

    PubMed  CAS  Google Scholar 

  • Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson, MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    Google Scholar 

  • Kullin M LIZ, Hansen JB, Bjork E, Sandler S, Karlsson FA (2000) K(ATP) channel openers protect rat islets against the toxic effect of streptozotocin. Diabetes 49:1131–1136

    PubMed  Google Scholar 

  • Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526

    PubMed  CAS  Google Scholar 

  • Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32:1663–1668

    PubMed  CAS  Google Scholar 

  • Las G, Sereda S, Wikstrom JD, Twig G, Shirihai OS (2011) Fatty acids suppress autophagic turnover in {beta}-cells. J Biol Chem 286(49):42534–42544

    PubMed  CAS  Google Scholar 

  • Laybutt DR, Sharma A, Sgroi DC, Gaudet J, Bonner-Weir S, Weir GC (2002) Genetic regulation of metabolic pathways in beta-cells disrupted by hyperglycemia. J Biol Chem 277:10912–10921

    PubMed  CAS  Google Scholar 

  • Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763

    PubMed  CAS  Google Scholar 

  • Leahy JL, Bumbalo LM, Chen C (1994) Diazoxide causes recovery of beta-cell glucose responsiveness in 90 % pancreatectomized diabetic rats. Diabetes 43:173–179

    PubMed  CAS  Google Scholar 

  • Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, Colombani AL, Ktorza A, Casteilla L, Penicaud L (2009) Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58:673–681

    PubMed  CAS  Google Scholar 

  • Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466

    PubMed  CAS  Google Scholar 

  • Lopez X, Cypess A, Manning R, O’shea S, Kulkarni RN, Goldfine AB (2011) Exogenous insulin enhances glucose-stimulated insulin response in healthy humans independent of changes in free fatty acids. J Clin Endocrinol Metab 96(12):3811–3821

    PubMed  CAS  Google Scholar 

  • Lusis AJ, Attie AD, Reue K (2008) Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet 9:819–830

    PubMed  CAS  Google Scholar 

  • Ma Z, Westermark GT (2002) Effects of free fatty acid on polymerization of islet amyloid polypeptide (IAPP) in vitro and on amyloid fibril formation in cultivated isolated islets of transgenic mice overexpressing human IAPP. Mol Med 8:863–868

    PubMed  CAS  Google Scholar 

  • Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860

    PubMed  CAS  Google Scholar 

  • Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY (2003) Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes 52:726–733

    PubMed  CAS  Google Scholar 

  • Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA, Thompson JE, Dondero RS, Lewis EC, Dinarello CA, Nadler JL, Mirmira RG (2010) The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest 120:2156–2170

    PubMed  CAS  Google Scholar 

  • Mari A, Tura A, Natali A, Anderwald C, Balkau B, Lalic N, Walker M, Ferrannini E (2011) Influence of hyperinsulinemia and insulin resistance on in vivo beta-cell function: their role in human beta-cell dysfunction. Diabetes 60(12):3141–3147

    PubMed  CAS  Google Scholar 

  • Marsh BJ, Soden C, Alarcon C, Wicksteed BL, Yaekura K, Costin AJ, Morgan GPRCJ (2007) Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine beta-cells. Mol Endocrinol 21:2255–2269

    PubMed  CAS  Google Scholar 

  • Masini M, Bugliani M, Lupi R, Del Guerra S, Boggi U, Filipponi F, Marselli L, Masiello P, Marchetti P (2009) Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52:1083–1086

    PubMed  CAS  Google Scholar 

  • Matveyenko AV, Gurlo T, Daval M, Butler AE, Butler PC (2009) Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced beta-cell endoplasmic reticulum stress. Diabetes 58:906–916

    PubMed  CAS  Google Scholar 

  • Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, Rizza RA, Butler PC (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57:1584–1594

    PubMed  CAS  Google Scholar 

  • Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97

    PubMed  CAS  Google Scholar 

  • Moore PC, Ugas MA, Hagman DK, Parazzoli SD, Poitout V (2004) Evidence against the involvement of oxidative stress in fatty acid inhibition of insulin secretion. Diabetes 53:2610–2616

    PubMed  CAS  Google Scholar 

  • Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9:193–205

    PubMed  CAS  Google Scholar 

  • Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24

    PubMed  CAS  Google Scholar 

  • Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378:169–181

    PubMed  Google Scholar 

  • Olofsson CS, Collins S, Bengtsson M, Eliasson L, Salehi A, Shimomura K, Tarasov A, Holm C, Ashcroft F, Rorsman P (2007) Long-term exposure to glucose and lipids inhibits glucose-induced insulin secretion downstream of granule fusion with plasma membrane. Diabetes 56:1888–1897

    PubMed  CAS  Google Scholar 

  • Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C, Park E, Uchino H, Lewis GF, Fantus IG, Rozakis-Adcock M, Wheeler MB, Giacca A (2007) Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 56:2927–2937

    PubMed  CAS  Google Scholar 

  • Ortqvist E, Bjork E, Wallensteen M, Ludvigsson J, Aman J, Johansson C, Forsander G, Lindgren F, Berglund L, Bengtsson M, Berne C, Persson B, Karlsson FA (2004) Temporary preservation of beta-cell function by diazoxide treatment in childhood type 1 diabetes. Diabetes Care 27:2191–2197

    PubMed  CAS  Google Scholar 

  • Paolisso G, Giugliano D, Pizza G, Gambardella A, Tesauro P, Varricchio M, D’onofrio F (1992) Glutathione infusion potentiates glucose-induced insulin secretion in aged patients with impaired glucose tolerance. Diabetes Care 15:1–7

    PubMed  CAS  Google Scholar 

  • Peyot ML, Pepin E, Lamontagne J, Latour MG, Zarrouki B, Lussier R, Pineda M, Jetton TL, Madiraju SR, Joly E, Prentki M (2010) Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 59:2178–2187

    PubMed  CAS  Google Scholar 

  • Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE, Collins S (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791

    Google Scholar 

  • Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontes G (2010) Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta 1801:289–298

    Google Scholar 

  • Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29:351–366

    PubMed  CAS  Google Scholar 

  • Pontiroli AE, Calderara A, Pozza G (1994) Secondary failure of oral hypoglycaemic agents: frequency, possible causes, and management. Diabetes Metab Rev 10:31–43

    PubMed  CAS  Google Scholar 

  • Prentki M, Madiraju SR (2008) Glycerolipid metabolism and signaling in health and disease. Endocr Rev 29:647–676

    PubMed  CAS  Google Scholar 

  • Preston AM, Gurisik E, Bartley C, Laybutt DR, Biden TJ (2009) Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52:2369–2373

    PubMed  CAS  Google Scholar 

  • Qi D, Cai K, Wang O LIZ, Chen J, Deng B, Qian L LEY (2010) Fatty acids induce amylin expression and secretion by pancreatic beta-cells. Am J Physiol Endocrinol Metab 298:E99–107

    Google Scholar 

  • Qvigstad E, kollind M, Grill V (2004) Nine weeks of bedtime diazoxide is well tolerated and improves beta-cell function in subjects with Type 2 diabetes. Diabet Med 21:73–76

    PubMed  CAS  Google Scholar 

  • Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    PubMed  CAS  Google Scholar 

  • Radtke M, Kollind M, Qvigstad E, Grill V (2007) Twelve weeks’ treatment with diazoxide without insulin supplementation in Type 2 diabetes is feasible but does not improve insulin secretion. Diabet Med 24:172–177

    PubMed  CAS  Google Scholar 

  • Reaven GM, Chen YD, Hollenbeck CB, Sheu WH, Ostrega D, Polonsky KS (1993) Plasma insulin, C-peptide, and proinsulin concentrations in obese and nonobese individuals with varying degrees of glucose tolerance. J Clin Endocrinol Metab 76:44–8

    PubMed  CAS  Google Scholar 

  • Robbins RD, Tersey SA, Ogihara T, Gupta D, Farb TB, Ficorilli J, Bokvist K, Maier B, Mirmira RG (2010) Inhibition of deoxyhypusine synthase enhances islet {beta} cell function and survival in the setting of endoplasmic reticulum stress and type 2 diabetes. J Biol Chem 285:39943–39952

    PubMed  CAS  Google Scholar 

  • Robertson RP (2009) Beta-cell deterioration during diabetes: what’s in the gun? Trends Endocrinol Metab 20:388–393

    PubMed  CAS  Google Scholar 

  • Rutti S, Ehses JA, Sibler RA, Prazak R, Rohrer L, Georgopoulos S, Meier DT, Niclauss N, Berney T, Donath MY, Von Eckardstein A (2009) Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology 150:4521–4530

    PubMed  CAS  Google Scholar 

  • Saisho Y, Manesso E, Butler AE, Galasso R, Kavanagh K, Flynn M, Zhang L, Clark P, Gurlo T, Toffolo GM, Cobelli C, Wagner JD, Butler PC (2011) Ongoing beta-cell turnover in adult nonhuman primates is not adaptively increased in streptozotocin-induced diabetes. Diabetes 60:848–856

    PubMed  CAS  Google Scholar 

  • Sako Y, Grill VE (1990) A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and ß-cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology 127:1580–1589

    PubMed  CAS  Google Scholar 

  • Scheuner D, Kaufman RJ (2008) The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr Rev 29:317–333

    PubMed  CAS  Google Scholar 

  • Semplici F, Vaxillaire M, Fogarty S, Semache M, Bonnefond A, Fontes G, Philippe J, Meur G, Diraison F, Sessions RB, Rutter J, Poitout V, Froguel P, Rutter GA (2011) A human mutation within the per-ARNT-sim (PAS) domain-containing protein kinase (PASK) causes basal insulin hypersecretion. J Biol Chem 286(51):44005–44014

    PubMed  CAS  Google Scholar 

  • Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based european prospective investigation into cancer and nutrition (EPIC)-Potsdam study. Diabetes 52:812–817

    PubMed  CAS  Google Scholar 

  • Sturek JM, Castle JD, Trace AP, Page LC, Castle AM, Evans-Molina C, Parks JS, Mirmira RG, Hedrick CC (2010) An intracellular role for ABCG1-mediated cholesterol transport in the regulated secretory pathway of mouse pancreatic beta cells. J Clin Invest 120:2575–2589

    PubMed  CAS  Google Scholar 

  • Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150:1223–1234

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Gleason CE, Tran PO, Harmon JS, Robertson RP (1999) Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci U S A 96:10857–10862

    PubMed  CAS  Google Scholar 

  • Tonooka N, Oseid E, Zhou H, Harmon JS, Robertson RP (2007) Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. Clin Transplant 21:767–772

    PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    PubMed  CAS  Google Scholar 

  • UK Prospective Diabetes Study 16 (1995) Overview of 6 years’ therapy of type II diabetes: a progressive disease. UK prospective piabetes study group. Diabetes 44:1249–1258

    Google Scholar 

  • UK Prospective Diabetes Study (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK prospective diabetes study (UKPDS) group. Lancet 352:837–853

    Google Scholar 

  • Verchere CB, D’alessio DA, Palmiter RD, Weir GC, Bonner-Weir S, Baskin DG, Kahn SE (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic ß cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci U S A 93:3492–3496

    PubMed  CAS  Google Scholar 

  • Vergeer M, Brunham LR, Koetsveld J, Kruit JK, Verchere CB, Kastelein JJ, Hayden MR, Stroes ES (2010) Carriers of loss-of-function mutations in ABCA1 display pancreatic beta-cell dysfunction. Diabetes Care 33:869–874

    PubMed  CAS  Google Scholar 

  • Villarreal-Molina MT, Aguilar-Salinas CA, Rodriguez-Cruz M, Riano D, Villalobos-Comparan M, Coral-Vazquez R, Menjivar M, Yescas-Gomez P, Konigsoerg-Fainstein M, Romero-Hidalgo S, Tusie-Luna MT, Canizales-Quinteros S (2007) The ATP-binding cassette transporter A1 R230C variant affects HDL cholesterol levels and BMI in the Mexican population: association with obesity and obesity-related comorbidities. Diabetes 56:1881–1887

    PubMed  CAS  Google Scholar 

  • Villarreal-Molina MT, Flores-Dorantes MT, Arellano-Campos O, Villalobos-Comparan M, Rodriguez-Cruz M, Miliar-Garcia A, Huertas-Vazquez A, Menjivar M, Romero-Hidalgo S, Wacher NH, Tusie-Luna MT, Cruz M, Aguilar-Salinas CA, Canizales-Quinteros S (2008) Association of the ATP-binding cassette transporter A1 R230C variant with early-onset type 2 diabetes in a Mexican population. Diabetes 57:509–513

    PubMed  CAS  Google Scholar 

  • Von Eckardstein A, Schulte H, Assmann G (2000) Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Munster. J Clin Endocrinol Metab 85:3101–3108

    PubMed  CAS  Google Scholar 

  • Watada H, Kajimoto Y, Kaneto H, Matsuoka T, Fujitani Y, Miyazaki J, Yamasaki Y (1996) Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription. Biochem Biophys Res Commun 229:746–751

    PubMed  CAS  Google Scholar 

  • Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53(Suppl 3):S16–S21

    PubMed  CAS  Google Scholar 

  • Westermark P (1977) Amyloid of human islets of Langerhans II. Electron microscopic analysis of isolated amyloid. Virchows Arch A Pathol Anat Histol 373:161–166

    PubMed  CAS  Google Scholar 

  • Westermark P, Wilander E (1978) The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia 15:417–421

    PubMed  CAS  Google Scholar 

  • Westermark GT, Leckstrom A MAZ, Westermark P (1998) Increased release of IAPP in response to long-term high fat intake in mice. Horm Metab Res 30:256–258

    PubMed  CAS  Google Scholar 

  • Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    PubMed  CAS  Google Scholar 

  • Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321

    PubMed  Google Scholar 

  • Zhang H, Ackermann AM, Gusarova GA, Lowe D, Feng X, Kopsombut UG, Costa RH, Gannon M (2006) The FoxM1 transcription factor is required to maintain pancreatic beta-cell mass. Mol Endocrinol 20:1853–1866

    PubMed  CAS  Google Scholar 

  • Zhang H, Zhang J, Pope CF, Crawford LA, Vasavada RC, Jagasia SM, Gannon M (2010) Gestational diabetes mellitus resulting from impaired beta-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen. Diabetes 59:143–152

    PubMed  Google Scholar 

  • Zraika S, Hull RL, Verchere CB, Clark A, Potter KJ, Fraser PE, Raleigh DP, Kahn SE (2010) Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 53:1046–1056

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work performed in our laboratory was supported by the US National Institutes of Health (R01-DK58096 from NIDDK). B.Z. was supported by the Montreal Diabetes Research Center/ Merck Frosst post-doctoral fellowship and Eli Lilly Canada. G.F. was supported by a post-doctoral fellowship from the Canadian Diabetes Association. J.A. and M.S. were supported by doctoral fellowships from the Fonds de Recherche Québec—Santé. V.P. holds the Canada Research Chair in Diabetes and Pancreatic Beta-cell Function.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Poitout DVM, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zarrouki, B., Fontés, G., Semache, M., Amyot, J., Poitout, V. (2014). The Beta Cell in Metabolic Syndrome. In: Orešič, M., Vidal-Puig, A. (eds) A Systems Biology Approach to Study Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-01008-3_5

Download citation

Publish with us

Policies and ethics