Skip to main content

Advertisement

Log in

The Role of Toll-Like Receptors in Diabetes-Induced Inflammation: Implications for Vascular Complications

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (R Watanabe, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetes confers an increased risk for both microvascular and macrovascular complications. Numerous studies have reported increased levels of biomarkers of inflammation that could predispose to vascular complications. The pattern recognition receptors of the innate immune response, such as Toll-like receptors (TLRs), especially TLR2 and TLR4, have been incriminated in both atherosclerosis and insulin resistance. Studies have reported increased expression and activity of these receptors in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus. Most recently, knockout of TLR2 has been shown to attenuate the proinflammatory state of T1DM and the progression of diabetic nephropathy. The increased activity of TLRs in diabetes could be the result of a conspiracy of both endogenous and exogenous ligands. Biomediators of increased TLR2 and TLR4 activity include tumor necrosis factor-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1, and type 1 interferons. Modulating these TLRs could be beneficial in forestalling diabetic complications given the pivotal role of inflammation in both microvascular and macrovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13(5):816–25.

    Article  PubMed  CAS  Google Scholar 

  2. O Neill LA. How Toll-like receptors signal: what we know and what we don’t know. Curr Opin Immunol. 2006;18(1):3–9.

    Article  CAS  Google Scholar 

  3. Medzhitov R. Toll-like receptors innate immunity. Nat Rev Immunol. 2001;1:135–45.

    Article  PubMed  CAS  Google Scholar 

  4. Krishnan J, Selvarajoo K, Tsuchiya M, et al. Toll-like receptor signal transduction. Exp Mol Med. 2007;39:421–38.

    PubMed  CAS  Google Scholar 

  5. Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol. 2007;147(2):199–207.

    Article  PubMed  CAS  Google Scholar 

  6. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(3):373–84.

    Article  PubMed  CAS  Google Scholar 

  7. Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol. 2004;76:14–519.

    Article  Google Scholar 

  8. Mullic AE, Tobias PS, Curtiss LK. Toll-like receptors and atherosclerosis: key contributors in disease and health? Immunol Res. 2006;34(3):193–209.

    Article  Google Scholar 

  9. Erridge C, Duncan SH, Bereswill S, Heimesaat MM. The induction of colitis and ileitis in mice is associated with marked increases in intestinal concentrations of stimulants of TLRs 2, 4, and 5. PLoS One. 2010;5(2):e9125.

    Article  PubMed  Google Scholar 

  10. Beutler B. Inferences, questions and possibilities in Toll-like receptor signaling. Nature. 2004;430:257–63.

    Article  PubMed  CAS  Google Scholar 

  11. Tobias PS, Curtiss LK. Toll-like receptors in atherosclerosis. Biochem Soc Trans. 2007;35(Pt 6):1453–5.

    Article  PubMed  CAS  Google Scholar 

  12. Devaraj S, Dasu MR, Jialal I. Diabetes is a proinflammatory state: a translational perspective. Expert Rev Endocrinol Metab. 2010;5(1):19–28.

    PubMed  CAS  Google Scholar 

  13. Dasu MR, Ramirez S, Isseroff RR. Toll-like receptors and diabetes: a therapeutic perspective. Clin Sci. 2012;122:203–14.

    Article  PubMed  CAS  Google Scholar 

  14. Fresno M, Alvarez R, Cuesta N. Toll-like receptors, inflammation, metabolism and obesity. Arch Physiol Biochem. 2011;117(3):151–64.

    Article  PubMed  CAS  Google Scholar 

  15. Uematsu S, Akira S. Toll-like receptors and innate immunity. J Mol Med. 2006;84(9):712–25.

    Article  PubMed  CAS  Google Scholar 

  16. Doyle SL, O’Neill LA. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol. 2006;72(9):1102–13.

    Article  PubMed  CAS  Google Scholar 

  17. Ozinsky A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. PNAS USA. 2000;97(25):13766–71.

    Article  PubMed  CAS  Google Scholar 

  18. Centers for Disease Control and Prevention (2011) National diabetes fact sheet: general information and national estimates on diabetes and prediabetes in the United States, U.S. Department of Health and Human Services, Atlanta, GA (http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf)

  19. Schram MT, Chaturvedi N, Schalkwijk C, et al. Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes Care. 2003;26:2165–73.

    Article  PubMed  Google Scholar 

  20. Jialal I, Devaraj S, Venugopal SK. Oxidative stress, inflammation, and diabetic vasculopathies: the role of alpha tocopherol therapy. Free Radic Res. 2002;6:1331–6.

    Article  Google Scholar 

  21. Devaraj S, Venugopal SK, Signh U, Jialal I. Hyperglycemia induces monocytic release of interleukin-6 via induction of protein kinase C-alpha and beta. Diabetes. 2005;54:85–91.

    Article  PubMed  CAS  Google Scholar 

  22. Devaraj S, Glasser N, Griffen S, et al. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes. 2006;55:774–9.

    Article  PubMed  CAS  Google Scholar 

  23. Jain SK, Kannan K, Lim G, et al. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care. 2003;26:2139–43.

    Article  PubMed  CAS  Google Scholar 

  24. Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation endproducts and their receptor in inflammation and diabetes complications. Nat Clin Pract Endocrinol Metab. 2008;4:285–93.

    Article  PubMed  CAS  Google Scholar 

  25. Li H, Sun B. Toll-like 4 receptor 4 in atherosclerosis. J Cell Mol Med. 2007;11:88–95.

    Article  PubMed  CAS  Google Scholar 

  26. Michelsen KS, Wong MH, Shah PK, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduced atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004;101:10679–84.

    Article  PubMed  CAS  Google Scholar 

  27. Liu X, Ukai T, Yumoto H, et al. Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids. Atherosclerosis. 2008;196:146–54.

    Article  PubMed  CAS  Google Scholar 

  28. Bjorkbacka H, Kunjathoor VV, Moore KJ, et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med. 2004;10:416–21.

    Article  PubMed  Google Scholar 

  29. Mullick AE, Tobbias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest. 2005;115:3149–56.

    Article  PubMed  CAS  Google Scholar 

  30. •• Devaraj S, Dasu MR, Rockwood J, et al. Increased toll-like receptor (TLR) 2 and TLR 4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab. 2008;93:578–83. This study demonstrated an increase in expression of TLR2/4 in the monocyes from T1DM with further increase in levels of various downstream signaling targets such as MyD88, TRIF, pIRAK, NF-κB and release of biomediators such as IL-1β, IL-6, TNF-α, IFN-β, MCP-1.

    Article  PubMed  CAS  Google Scholar 

  31. Devaraj S, Jialal I. Increased secretion of IP-10 from monocytes under hyperglycemia is via the TLR2 and TLR4 pathway. Cytokine. 2009;47(1):6–10.

    Article  PubMed  CAS  Google Scholar 

  32. Devaraj S, Dasu MR, Park SH, Jialal I. Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia. 2009;52(8):1665–8.

    Article  PubMed  CAS  Google Scholar 

  33. •• Devaraj S, Jialal I, Yun JM, Bremer A. Demonstration of increased toll-like receptor 2 and toll-like receptor 4 expression in monocytes of type 1 diabetes mellitus patients with microvascular complications. Metabolism. 2011;60(2):256–9. This study provided substantial evidence of significantly enhanced increase in TLR2/TLR4 expression and NF-κB signaling with release of biomediators such as IL-1β in T1DM patients with microvascular complications. Also, there was an increase in levels of ligands such as plasma FFAs, etc..

    Article  PubMed  CAS  Google Scholar 

  34. Nymark M, Pussinen PJ, Tuomainen AM, et al. Serum lipopolysaccharide activity is associated with the progression of kidney disease in finnish patients with type 1 diabetes. Diabetes Care. 2009;32:1689–93.

    Article  PubMed  CAS  Google Scholar 

  35. Du T, Zhou ZG, You S, et al. Regulation by 1, 25-dihydroxy-vitamin D3 on altered TLRs expression and response to ligands of monocyte from autoimmune diabetes. Clin Chim Acta. 2009;402(1,2):133–8.

    Article  PubMed  CAS  Google Scholar 

  36. Mohammad MK, Morran M, Slotterbeck B, et al. Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol. 2006;18:1101–13.

    Article  PubMed  CAS  Google Scholar 

  37. Devaraj S, Tobias P, Jialal I. Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes. Cytokine. 2011;55(3):441–5.

    Article  PubMed  CAS  Google Scholar 

  38. Devaraj S, Tobias P, Kasinath BS, et al. Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arterioscler Thromb Vasc Biol. 2011;31(8):1796–804.

    Article  PubMed  CAS  Google Scholar 

  39. •• Creely SJ, McTernan PG, Kusminsji CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E740–7. Creely et al. provided the first report of increased expression of TLR2 but not TLR4 in subcutaneous adipose tissue of T2DM with release of inflammatory mediators such as IL-6 and TNF-α. Also there was an increase in plasma endotoxin levels..

    Article  PubMed  CAS  Google Scholar 

  40. •• Reyna SM, Ghosh S, Tantiwong P, et al. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes. 2008;57:2595–602. Reyna et al. reported increased TLR4 expression in muscle biopsies in T2DM with increase in NF-κB signaling and release of inflammatory makers such as IL-6 and TNF-α. Also there was an increase in levels of plasma FFAs in T2DM..

    Article  PubMed  CAS  Google Scholar 

  41. Du T, Zhou ZG, You S, et al. Modulation of monocyte hyperresponsiveness to TLR ligands by 1, 25-dihydroxy-vitamin D3 from LADA and T2DM. Diabetes Res Clin Pract. 2009;83:208–14.

    Article  PubMed  CAS  Google Scholar 

  42. Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33(4):861–8.

    Article  PubMed  CAS  Google Scholar 

  43. Jagannathan M, McDonnell M, Liang Y, et al. Toll-like receptors regulate B cell cytokine production in patients with diabetes. Diabetologia. 2010;53(7):1461–71.

    Article  PubMed  CAS  Google Scholar 

  44. Mraz M, Lacinova Z, Drapalova J, et al. The effect of very-low-calorie diet on m RNA expression if inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. Clin Endocrinol Metab. 2011;96(4):E606–13.

    Article  CAS  Google Scholar 

  45. Dasu MR, Devaraj S, Zhao L, et al. High glucose induces Toll-like receptor expression in human monocytes: mechanism of activation. Diabetes. 2008;57:3090–8.

    Article  PubMed  CAS  Google Scholar 

  46. Chen JX, Stinnett A. Critical role of the NADPH oxidase subunit p47phox on vascular TLR expression and neointimal lesion formation in high-fat diet-induced obesity. Lab Invest. 2008;88(12):1316–28.

    Article  PubMed  CAS  Google Scholar 

  47. Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KAM. RAGE biology, atherosclerosis and diabetes. Clin Sci. 2011;121:43–55.

    Article  PubMed  CAS  Google Scholar 

  48. Hodgkinson CP, Laxton RC, Patel K, Ye S. Advanced glycation end-product of low density lipoprotein activates the toll-like 4 receptor pathway implications for diabetic atherosclerosis. Atherocler Thromb Vasc Biol. 2008;28(12):2275–81.

    Article  CAS  Google Scholar 

  49. Xiang M, Fran J, Fran J. Association of toll-like receptor signaling and reactive oxygen species: a potential therapeutic target for posttrauma acute lung injury. Mediators Inflamm 2010, PMID: 20706658.

  50. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62.

    Article  PubMed  CAS  Google Scholar 

  51. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.

    Article  PubMed  CAS  Google Scholar 

  52. Shi H, Kokoeva MV, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–25.

    Article  PubMed  CAS  Google Scholar 

  53. Schwartz EA, Zhang WY, Karnik SK, et al. Nutrient modification of the innate immune response: a novel mechanism, by which saturated fatty acids greatly amplify monocyte inflammation. Arterioscler Thromb Vasc Biol. 2010;30:802–8.

    Article  PubMed  CAS  Google Scholar 

  54. Coll T, Palomer X, Blanco-Vaca F, et al. Cyclooxygenase 2 inhibition exacerbates palmitate-induced inflammation and insulin resistance in skeletal muscle cells. Endocrinology. 2010;151:537–48.

    Article  PubMed  CAS  Google Scholar 

  55. Dasu MR, Jialal I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am J Physiol Endocrinol Metab. 2011;300(1):E145–54.

    Article  PubMed  CAS  Google Scholar 

  56. Erridge C, Spickett CM. Oxidised phospholipid regulation of Toll-like receptor signalling. Redox Rep. 2007;12(1):76–80.

    Article  PubMed  CAS  Google Scholar 

  57. Sun L, Yu Z, Ye X, et al. A marker of endotoxemia is associated with obesity and related metabolic disorders in apparently healthy Chinese. Diabetes Care. 2010;33(9):1925–32.

    Article  PubMed  CAS  Google Scholar 

  58. Coll RC, O’Neill LAJ. New insights into the regulation of signaling by toll-like receptors and nod-like receptors. J Innate Immunol. 2010;2:406–21.

    Article  CAS  Google Scholar 

  59. Dandona P, Aljada A, Mohanty P, et al. Insulin suppresses plasma concentration of vascular endothelial growth factor and matrixmetalloproteinase-9. Diabetes Care. 2003;26(12):3310–4.

    Article  PubMed  CAS  Google Scholar 

  60. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    Article  PubMed  CAS  Google Scholar 

  61. Devaraj S, Siegel D, Jialal I. Statin therapy in metabolic syndrome and hypertension post-JUPITER: what is the value of CRP? Curr Atheroscler Rep. 2011;13(1):31–42.

    Article  PubMed  CAS  Google Scholar 

  62. Methe H, Kin JO, Kofler S, et al. Statins decrease toll-like receptor 4 expression and downstream signaling in human CD14+ monocytes. Arterioscler Thromb Vasc Biol. 2005;25:1439–45.

    Article  PubMed  CAS  Google Scholar 

  63. Stoll LL, Denning GM, Weintraub NL. Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease. Curr Pharm Des. 2006;12:4229–45.

    Article  PubMed  CAS  Google Scholar 

  64. Niessner A, Steiner S, Speidl WS, et al. Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vitro. Atherosclerosis. 2006;189:408–13.

    Article  PubMed  CAS  Google Scholar 

  65. Dehmer T, Heneka MT, Sastre M, et al. Potection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa β and iNOS activation. J Neurochem. 2004;88(2):494–501.

    Article  PubMed  CAS  Google Scholar 

  66. Tao L, Liu HR, Gao E, et al. Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-gamma agonist in hypercholesterolemia. Circulation. 2003;108:2805–11.

    Article  PubMed  CAS  Google Scholar 

  67. Dasu MR, Park S, Devaraj S, Jialal I. Pioglitazone inhibits toll-like receptor expression and activity in human monocytes and db/db mice. Endocrinology. 2009;150:3457–64.

    Article  PubMed  CAS  Google Scholar 

  68. Ramirez SH, Heilman D, Morsey B, et al. Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) suppresses Rho GTPases in human brain microvascular endothelial cells and inhibits adhesion and transendothelial migration of HIV-1 infected monocytes. J Immunol. 2008;180(3):1854–65.

    PubMed  CAS  Google Scholar 

  69. Gurley C, Nichols J, Liu S, et al. Microglia and astrocyte activation by Toll-like receptor ligands: modulation by PPAR-gamma agonists. PPAR Res. 2008;453120.

  70. Ji Y, Liu J, Wang Z, et al. PPARgamma agonist, rosiglitazone, regulates angiotensin II-induced vascular inflammation through the TLR4-dependent signaling pathway. Lab Invest. 2009;89(8):887–902.

    Article  PubMed  CAS  Google Scholar 

  71. Dasu MR, Riosvelasco AC, Jialal I. Candesartan inhibits Toll-like receptor expression and activity both in vitro and in vivo. Atherosclerosis. 2009;202(1):76–83.

    Article  PubMed  CAS  Google Scholar 

  72. Zhao L, Lee JY, Hwang DH. Inhibition of pattern recognition receptor-mediated inflammation by bioactive phytochemicals. Nutr Rev. 2011;69(6):310–20.

    Article  PubMed  Google Scholar 

  73. Hirai S, Takahashi N, Goto T, et al. Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies. Mediators Inflamm. 2010;367838.

  74. Surh YJ. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem Toxicol. 2002;40(8):1091–7.

    Article  PubMed  CAS  Google Scholar 

  75. Yeop Han C, Kargi AY, Omer M, et al. Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: dissociation of adipocyte hypertrophy from inflammation. Diabetes. 2010;59(2):386–96.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank both Drs. S. Devaraj and R. Dasu for their contribution to the cited studies while in the Laboratory of Atherosclerosis Metabolic Research and Gerred Smith for manuscript preparation. The Stowell Endowment provided financial support.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishwarlal Jialal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jialal, I., Kaur, H. The Role of Toll-Like Receptors in Diabetes-Induced Inflammation: Implications for Vascular Complications. Curr Diab Rep 12, 172–179 (2012). https://doi.org/10.1007/s11892-012-0258-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0258-7

Keywords

Navigation