Skip to main content

Advertisement

Log in

Can We Predict Response and/or Resistance to Neoadjuvant Chemoradiotherapy in Patients with Rectal Cancer?

  • Localized Colorectal Cancer (R Glynne-Jones, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

The current management of locally advanced rectal cancer consists of neoadjuvant chemoradiotherapy (CRT) followed by total mesorectal excision. Response to CRT varies significantly, and the ability to predict responsiveness, so that treatment modalities can be tailored to the tumor biology of the individual patient, remains a pressing goal. Although many studies have reported promising findings, no markers of response or resistance have been validated and widely incorporated into clinical use. However, many ongoing prospective clinical trials have the potential to dramatically change the standard of care for rectal cancer. This review summarizes the current understanding of predictors of response to CRT, ranging from patient-specific factors to radiologic modalities, with a special emphasis on the rapidly expanding field of molecular biomarkers derived from genomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

CRC:

Colorectal cancer

CRT:

Chemoradiotherapy

DCE:

Dynamic contrast-enhanced

FOLFOX:

5-Fluorouracil/leucovorin/oxaliplatin

5-FU:

5-Fluorouracil

LARC:

Locally advanced rectal cancer

MSI:

Microsatellite instability

pCR:

Pathologic complete response

TME:

Total mesorectal excision

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sauer R, Becker H, Hohenberger W, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351:1731–40.

    Article  CAS  PubMed  Google Scholar 

  2. De Caluwé L, Van Nieuwenhove Y, Ceelen WP. Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer. Cochrane Database Syst Rev. 2013;2:CD006041.

    PubMed  Google Scholar 

  3. Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11:835–44.

    Article  PubMed  Google Scholar 

  4. Allegra CJ, Jessup JM, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27(12):2091–6.

    Article  PubMed  Google Scholar 

  5. National Cancer Institute. Colon Cancer Treatment (PDQ®). http://cancer.gov/cancertopics/pdq/treatment/colon/HealthProfessional (2013). Accessed 3 Dec 2013.

  6. Habr-Gama A, Sabbaga J, Gama-Rodrigues J, et al. Watch and wait approach following extended neoadjuvant chemoradiation for distal rectal cancer: are we getting closer to anal cancer management? Dis Colon Rectum. 2013;56(10):1109–17. The authors demonstrate that 68 % of stage II/III rectal cancer patients (n = 69) receiving CRT with additional cycles of 5-FU were able to achieve a durable clinical response (more than 1 year) without radical rectal resection in a prospective single-center trial.

    Article  PubMed  Google Scholar 

  7. Smith JD, Ruby JA, Goodman KA, et al. Nonoperative management of rectal cancer with complete clinical response after neoadjuvant therapy. Ann Surg. 2012;256(6):965–72.

    Article  PubMed  Google Scholar 

  8. Doubeni CA, Field TS, Buist dS, et al. Racial differences in tumor stage and survival for colorectal cancer in an insured population. Cancer. 2007;109(3):612–20.

    Article  PubMed  Google Scholar 

  9. Sanoff HK, Sargent DJ, Green EM, et al. Racial differences in advanced colorectal cancer outcomes and pharmacogenetics: a subgroup analysis of a large randomized clinical trial. J Clin Oncol. 2009;27(25):4109–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Polite BN, Sing A, Sargent DJ, et al. Exploring racial differences in outcome and treatment for metastatic colorectal cancer. Cancer. 2012;118:1083–90. The authors demonstrate in a large prospective observational cohort study that African Americans have a significantly lower rate of response to standard chemotherapy for metastatic colorectal cancer than whites, but that overall survival and disease-free survival remain unchanged.

    Article  PubMed  Google Scholar 

  11. Khan AA, Kionizakis M, Shabaan A, et al. The association between pre-treatment haemoglobin levels, morphometric characteristics of the tumour, response to neoadjuvant treatment and long-term outcomes in patients with locally advanced rectal cancers. Colorectal Dis. 2013;15(10):1232–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lee SD, Park JW, Park KS, et al. Influence of anemia on tumor response to preoperative chemoradiotherapy for locally advanced rectal cancer. Int J Colorectal Dis. 2009;24(12):1451–8.

    Article  PubMed  Google Scholar 

  13. Box B, Lindsey I, Wheeler JM, et al. Neoadjuvant therapy for rectal cancer: improved tumor response, local recurrence, and overall survival in nonanemic patients. Dis Colon Rectum. 2005;48(6):1153–60.

    Article  PubMed  Google Scholar 

  14. Das P, Skibber JM, Rodriguez-Bigas MA, et al. Predictors of tumor response and downstaging in patients who receive preoperative chemoradiation for rectal cancer. Cancer. 2007;109:1750–5.

    Article  CAS  PubMed  Google Scholar 

  15. Huh JW, Kim HR, Kim YJ. Clinical prediction of pathological complete response after preoperative chemoradiotherapy for rectal cancer. Dis Colon Rectum. 2013;56(6):698–703.

    Article  PubMed  Google Scholar 

  16. Lin AY, Wong WD, Shia J, et al. Predictive clinicopathologic factors for limited response of T3 rectal cancer to combined modality therapy. Int J Colorectal Dis. 2008;23(3):243–9.

    Article  PubMed  Google Scholar 

  17. Moureau-Zabotto L, Farnault B, Chaisemartin C, et al. Predictive factors of tumor response after neoadjuvant chemoradiation for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2011;80(2):483–91.

    Article  PubMed  Google Scholar 

  18. Yan H, Wang R, Zhu K, et al. Predictors of sensitivity to preoperative chemoradiotherapy of rectal adenocarcinoma. Tumori. 2011;97(6):717–23.

    CAS  PubMed  Google Scholar 

  19. Qiu HZ, Wu B, Xiao Y, et al. Combination of differentiation and T stage can predict unresponsiveness to neoadjuvant therapy for rectal cancer. Colorectal Dis. 2011;13(12):1353–60.

    Article  PubMed  Google Scholar 

  20. Grillo-Ruggieri F, Mantello G, Berardi R, et al. Mucinous rectal adenocarcinoma can be associated to tumor downstaging after preoperative chemoradiotherapy. Dis Colon Rectum. 2007;50(10):1594–603.

    Article  PubMed  Google Scholar 

  21. Shin US, Yu CS, Kim JH, et al. Mucinous rectal cancer: effectiveness of preoperative chemoradiotherapy and prognosis. Ann Surg Oncol. 2011;18(8):2232–9.

    Article  PubMed  Google Scholar 

  22. Onaitis MW, Noone RB, Hartwig M, et al. Neoadjuvant chemoradiation for rectal cancer: analysis of clinical outcomes from a 13-year institutional experience. Ann Surg. 2001;233(6):778–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Brown CL, Ternent CA, Thorson AG, et al. Response to preoperative chemoradiation in stage II and III rectal cancer. Dis Colon Rectum. 2003;46(9):1189–93.

    Article  PubMed  Google Scholar 

  24. Garcia-Aguilar J, Shi Q, Thomas Jr CR, et al. A phase II trial of neoadjuvant chemoradiation and local excision for T2N0 rectal cancer: preliminary results of the ACOSOG Z6041 trial. Ann Surg Oncol. 2012;19(2):384–91.

    Article  PubMed  Google Scholar 

  25. Shanmugan S, Arrangoiz R, Nitzkorski JR, et al. Predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer using 18FDG-PET/CT. Ann Surg Oncol. 2012;19:2178–85.

    Article  PubMed  Google Scholar 

  26. Yoon HJ, Kim SK, Kim TS, et al. New application of dual point 18F-FDG PET/CT in the evaluation of neoadjuvant chemoradiation response of locally advanced rectal cancer. Clin Nucl Med. 2013;38(1):7–12.

    Article  PubMed  Google Scholar 

  27. Capirci C, Rampin L, Erba PA, et al. Sequential FDG-PET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy. Eur J Nucl Med Mol Imaging. 2007;34(10):1583–93.

    Article  CAS  PubMed  Google Scholar 

  28. Perez RO, Habr-Gama A, Gama-Rodrigues J, et al. Accuracy of positron emission tomography/computed tomography and clinical assessment in the detection of complete rectal tumor regression after neoadjuvant chemoradiation: long-term results of a prospective trial (National Clinical Trial 00254683). Cancer. 2012;118(14):3501–11.

    Article  PubMed  Google Scholar 

  29. Kim SH. Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo-and radiation therapy. Radiology. 2009;253(1):116–25.

    Article  PubMed  Google Scholar 

  30. Monguzzi L, Ippolito D, Bernasconi DP, et al. Locally advanced rectal cancer: value of ADC mapping in prediction of tumor response to radiochemotherapy. Eur J Radiol. 2013;82:234–40.

    Article  PubMed  Google Scholar 

  31. Elmi A, Hedgire SS, Covarrubias D, et al. Apparent diffusion coefficient as a non-invasive predictor of treatment response and recurrence in locally advanced rectal cancer. Clin Radiol. 2013;16:e524–31.

    Article  Google Scholar 

  32. Song I, Kim SH, Lee SJ, et al. Value of diffusion-weighted imaging in the detection of viable tumour after neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer: comparison with T2 weighted and PET/CT imaging. Br J Radiol. 2012;85(1013):577–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Genovesi D, Filippone A, Ausili Cèfaro G, et al. Diffusion-weighted magnetic resonance for prediction of response after neoadjuvant chemoradiation therapy for locally advanced rectal cancer: preliminary results of a monoinstitutional prospective study. Eur J Surg Oncol. 2013;39(10):1071–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ha HI, Kim AY, Yu CS, et al. Locally advanced rectal cancer: diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. Eur Radiol. 2013;23(12):3345–53.

    Article  PubMed  Google Scholar 

  35. Kim SH, Lee JY, Lee JM, et al. Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiation therapy for locally advanced rectal cancer. Eur Radiol. 2011;21(5):987–95.

    Article  PubMed  Google Scholar 

  36. Jung SH, Heo SH, Kim JW, et al. Predicting response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer: diffusion-weighted 3 tesla MR imaging. J Magn Reson Imaging. 2012;35(1):110–6.

    Article  PubMed  Google Scholar 

  37. Patel UB, Brown G, Rutten H, et al. Comparison of magnetic resonance imaging and histopathological response to chemoradiotherapy in locally advanced rectal cancer. Ann Surg Oncol. 2012;19(9):2842–52.

    Article  PubMed  Google Scholar 

  38. Patel UB, Taylor F, Blomqvist L, et al. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol. 2011;29(28):3753–60.

    Article  PubMed  Google Scholar 

  39. Goldberg N, Kundel Y, Purim O, et al. Early prediction of histopathological response of rectal tumors after one week of preoperative radiochemotherapy using 18F-FDG PET-CT imaging. A prospective clinical study. Radiat Oncol. 2012;7:124. The authors demonstrate in a small prospective study that larger drops in maximum standardized uptake value, measured by PET/CT at 6–8 days after commencement of CRT, correlated with pCR.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Lambrecht M, Vandecaveye V, De Keyzer F, et al. Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal caner: preliminary results. Int J Radiat Oncol Biol Phys. 2012;82(2):863–70.

    Article  PubMed  Google Scholar 

  41. Musio D, De Felice F, Magnante AL, et al. Diffusion-weighted magnetic resonance application in response prediction before, during, and after neoadjuvant radiochemotherapy in primary rectal cancer carcinoma. Biomed Res Int. 2013;2013:740195.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Lim JS, Kim D, Baek SE, et al. Perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 2012;22(8):1693–700.

    Article  PubMed  Google Scholar 

  43. Oberholzer K, Menig M, Pohlmann A, et al. Rectal cancer: assessment of response to neoadjuvant chemoradiation by dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2013;38(1):119–26.

    Article  PubMed  Google Scholar 

  44. George ML, Dzik-Jurasz AS, Padhani AR, et al. Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg. 2001;88(12):1628–36.

    Article  CAS  PubMed  Google Scholar 

  45. Kim SH, Lee JM, Gupta SN, et al. Dynamic contrast enhanced MRI to evaluate the therapeutic response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer. J Magn Reson Imaging. 2013. doi:10.1002/jmri.24387.

    PubMed Central  Google Scholar 

  46. Gollub MJ, Gultekin DH, Akin O, et al. Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer. Eur Radiol. 2012;22(4):821–31.

    Article  CAS  PubMed  Google Scholar 

  47. Padhani AR, Dzik-Jurasz A. Perfusion MR imaging of extracranial tumor angiogenesis. Top Magn Reson Imaging. 2004;15(1):41–57.

    Article  PubMed  Google Scholar 

  48. Memorial Sloan Kettering Cancer Center. Advanced MR imaging for early biologic tumor changes to neoadjuvant chemoradiation treatment for rectal cancer. In: ClinicalTrials.gov. National Library of Medicine. 2013–2014. http://clinicaltrials.gov/show/NCT01830582 NLM Identifier: NCT01830582. Accessed 8 Jan 2014.

  49. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.

    Article  CAS  PubMed  Google Scholar 

  50. Garcia-Aguilar J, Chen Z, Smith DD, et al. Identification of a biomarker profile associated with resistance to neoadjuvant chemoradiation therapy in rectal cancer. Ann Surg. 2011;254:486–93.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Duldulao MP, Lee W, Nelson RA, et al. Mutations in specific codons of the KRAS oncogene are associated with variable resistance to neoadjuvant chemoradiation therapy in patients with rectal adenocarcinoma. Ann Surg Oncol. 2013;20(7):2166–71.

    Article  PubMed  Google Scholar 

  52. Grimminger PP, Danenberg P, Dellas K, et al. Biomarkers for cetuximab-based neoadjuvant radiochemotherapy in locally advanced rectal cancer. Clin Cancer Res. 2011;17(10):3469–77.

    Article  CAS  PubMed  Google Scholar 

  53. Chen MB, Wu XY, Yu R, et al. P53 status as a predictive biomarker for patients receiving neoadjuvant radiation-based treatment: a metaanalysis in rectal cancer. PLoS One. 2012;7(9):e45388.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Russo AL, Ryan DP, Borger DR, et al. Mutational and clinical predictors of pathologic complete response in the treatment of locally advanced rectal cancer. J Gastrointest Cancer. 2014;45(1):34–9.

    Google Scholar 

  55. Cecchin E, Agostini M, Pucciarelli S, et al. Tumor response is predicted by patient genetic profile in rectal cancer patients treated with neo-adjuvant chemo-radiotherapy. Pharmacogenomics J. 2011;11(3):214–26.

    Article  CAS  PubMed  Google Scholar 

  56. Ho-Pun-Cheung A, Assenat E, Thezenas S, et al. Cyclin D1 gene G870A polymorphism predicts response to neoadjuvant radiotherapy and prognosis in rectal cancer. Int J Radiat Oncol Biol Phys. 2007;68(4):1094–101.

    Article  CAS  PubMed  Google Scholar 

  57. Villafranca E, Okruzhnov Y, Dominguez MA, et al. Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J Clin Oncol. 2001;19(6):1779–86.

    CAS  PubMed  Google Scholar 

  58. Spindler KL, Nielsen JN, Lindebjerg J, et al. Germline polymorphisms may act as predictors of response to preoperative chemoradiation in locally advanced T3 rectal tumors. Dis Colon Rectum. 2007;50(9):1363–9.

    Article  PubMed  Google Scholar 

  59. Tan BR, Thomas F, Myerson RJ, et al. Thymidylate synthase genotype-directed neoadjuvant chemoradiation for patients with rectal adenocarcinoma. J Clin Oncol. 2011;28:875–83. The authors demonstrate in a prospective phase II trial that providing irinotecan on top of standard CRT to patients deemed poor risk on the basis of TS genotyping results in improved tumor downstaging and pCR compared with historical controls.

    Article  Google Scholar 

  60. Charara M, Edmonston TB, Burkholder S, et al. Microsatellite status and cell cycle associated markers in rectal cancer patients undergoing a combined regimen of 5-FU and CPT-11 chemotherapy and radiotherapy. Anticancer Res. 2004;24(5B):3161–7.

    CAS  PubMed  Google Scholar 

  61. Reerink O, Karrenbeld A, Plukker JT, et al. Molecular prognostic factors in locally irresectable rectal cancer treated preoperatively by chemo-radiotherapy. Anticancer Res. 2004;24(2C):1217–21.

    PubMed  Google Scholar 

  62. Chang HJ, Jung KH, Kim DY, et al. Bax, a predictive marker for therapeutic response to preoperative chemoradiotherapy in patients with rectal carcinoma. Hum Pathol. 2005;36(4):364–71.

    Article  CAS  PubMed  Google Scholar 

  63. Huh JW, Lee JH, Kim HR. Pretreatment expression of 13 molecular markers as a predictor of tumor response after neoadjuvant chemoradiation in rectal cancer. Ann Surg. 2014;259(3):508–15.

    Article  PubMed  Google Scholar 

  64. Kudrimoto M, Lee EY, Kang Y, et al. Genetic markers predictive of response to induction chemoradiotherapy for locally advanced rectal cancers. J Ky Med Assoc. 2007;105(1):18–22.

    Google Scholar 

  65. Kim NK, Park JK, Lee KY, et al. p53, BCL-2, and Ki-67 expression according to tumor response after concurrent chemoradiotherapy for advanced rectal cancer. Ann Surg Oncol. 2001;8(5):418–24.

    Article  CAS  PubMed  Google Scholar 

  66. Scopa CD, Vagianos C, Kardamakis D, et al. bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with rectal cancer. Appl Immunohistochem Mol Morphol. 2001;9(4):329–34.

    Article  CAS  PubMed  Google Scholar 

  67. Chen Z, Liu Z, Li W, et al. Chromosomal copy number alterations area associated with tumor response to chemoradiation in locally advanced rectal cancer. Genes Chromosome Cancer. 2011;50(9):689–99.

    Article  CAS  Google Scholar 

  68. Grade M, Gaedcke J, Wangsa D, et al. Chromosomal copy number changes of locally advanced rectal cancers treated with preoperative chemoradiotherapy. Cancer Genet Cytogenet. 2009;193(1):19–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Demes M, Scheil-Bertram S, Bartsch H, et al. Signature of microsatellite instability, KRAS and BRAF gene mutations in German patients with locally advanced rectal adenocarcinoma before and after neoadjuvant 5-FU radiochemotherapy. J Gastrointest Oncol. 2013;4(2):182–92.

    PubMed Central  PubMed  Google Scholar 

  70. Du C, Zhao J, Xue W, et al. Prognostic value of microsatellite instability in sporadic locally advanced rectal cancer following neoadjuvant radiotherapy. Histopathology. 2013;62(5):723–30.

    Article  PubMed  Google Scholar 

  71. Ghadimi BM, Grade M, Difilippantonio MJ, et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol. 2005;23(9):1826–38.

    Article  CAS  PubMed  Google Scholar 

  72. Watanabe T, Komuro Y, Kiyomatsu T, et al. Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res. 2006;66:3370–4.

    Article  CAS  PubMed  Google Scholar 

  73. Kim IJ, Lim SB, Kang HC, et al. Microarray gene expression profiling for predicting complete response to preoperative chemoradiotherapy in patients with advanced rectal cancer. Dis Colon Rectum. 2007;50(9):1342–53.

    Article  PubMed  Google Scholar 

  74. Rimkus C, Friederichs J, Boulesteix AL, et al. Microarray-based prediction of tumor response to neoadjuvant radiochemotherapy of patients with locally advanced rectal cancer. Clin Gastroenterol Hepatol. 2008;6(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  75. Nishioka M, Shimada M, Kurita N, et al. Gene expression profile can predict pathological response preoperative chemoradiotherapy in rectal cancer. Cancer Genomics Proteomics. 2011;8:87–92.

    CAS  PubMed  Google Scholar 

  76. Brettingham-Moore KH, Duong CP, Greenawalt DM, et al. Pretreatment transcriptional profiling for predicting response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma. Clin Cancer Res. 2011;17:3039–47. The authors evaluate microarray gene expression and pathway analysis in their cohort of 51 patients. Using three similar published studies and their respective predictive gene lists, they attempt cross-validation of those lists in their own cohort and demonstrate mediocre predictive ability among all the lists.

    Article  CAS  PubMed  Google Scholar 

  77. Gantt G, Chen Y, Dejulius K, et al. Gene expression profile is associated with chemoradiation resistance in rectal cancer. Colorectal Dis. 2014;16(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  78. Akiyoshi T, Kobunai T, Watanabe T. Predicting the response to preoperative radiation or chemoradiation by a microarray analysis of the gene expression profiles in rectal cancer. Surg Today. 2012;42:713–9.

    Article  CAS  PubMed  Google Scholar 

  79. da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

    Article  PubMed Central  Google Scholar 

  80. Nocq J, Celton M, Gendron P, et al. Harnessing virtual machines to simplify next-generation DNA sequencing analysis. Bioinformatics. 2013;29(17):2075–83.

    Article  CAS  PubMed  Google Scholar 

  81. Simonds NI, Khoury MJ, Schully SD, et al. Comparative effectiveness research in cancer genomics and precision medicine: current landscape and future prospects. J Natl Cancer Inst. 2013;105(13):929–36.

    Article  CAS  PubMed  Google Scholar 

  82. Xuan J, Yu Y, Qing T, et al. Next-generation sequencing in the clinic: promises an challenges. Cancer Lett. 2013;340(2):284–95.

    Article  CAS  PubMed  Google Scholar 

  83. Chen X, Guo X, Zhang H, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28(10):1385–92.

    Article  CAS  PubMed  Google Scholar 

  84. Hrašovec S, Glavač D. MicroRNAs as novel biomarkers in colorectal cancer. Front Genet. 2012;3:180.

    PubMed Central  PubMed  Google Scholar 

  85. Della Vittoria Scarpati G, Falcetta F, Carlomagno C, et al. A specific miRNA signature correlates with complete pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2012;83(4):1113–9.

    Article  CAS  PubMed  Google Scholar 

  86. Kheirelseid EA, Miller N, Chang KH, et al. miRNA expressions in rectal cancer as predictors of response to neoadjuvant chemoradiation therapy. Int J Colorectal Dis. 2013;28:247–60.

    Article  PubMed  Google Scholar 

  87. Svoboda M, Sana J, Fabian P, et al. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol. 2012;7:195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Hotchi M, Shimada M, Kurita N, et al. MicroRNA expression is able to predict response to chemoradiotherapy in rectal cancer. Mol Clin Oncol. 2013;1:137–42.

    PubMed Central  PubMed  Google Scholar 

  89. Svoboda M, Holla LI, Sefr R, et al. Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol. 2008;33(3):541–7.

    CAS  PubMed  Google Scholar 

  90. Drebber U, Lay M, Wedemeyer I, et al. Altered levels of the onco-microRNA 21 and the tumor-supressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy. Int J Oncol. 2011;39(2):409–15.

    PubMed  Google Scholar 

  91. Mo Q, Wang S, Seshan VE, et al. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc Natl Acad Sci U S A. 2013;110(11):4245–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52. The authors demonstrate breast cancer subgroups using a large integrated analysis of inherited copy number variations, single-nucleotide polymorphisms, and acquired somatic copy number alterations, with gene expression in a discovery set of 997 and a validation set of 995 fresh-frozen breast tumors, identifying previously unidentified breast cancer subgroups associated with different clinical outcomes.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. The authors demonstrate and provide a large genome-scale analysis of 276 colon and rectal cancers including exome sequencing, DNA copy number, promoter methylation, and messenger RNA and microRNA expression, and reveal 24 significantly mutated genes and recurrent copy number alterations that provide new potential drug targets.

    Article  Google Scholar 

  94. Cubillo A, Hernando-Requejo O, Garcia-Garcia E, et al. A prospective pilot study of target-guided personalized chemotherapy with intensity-modulated radiotherapy in patients with early rectal cancer. Am J Clin Oncol. 2012. doi:10.1097/COC.0b013e31826e0703.

    PubMed  Google Scholar 

  95. Garcia-Aguilar J, Smith DD, Avila D, et al. Optimal timing of surgery after chemoradiation for advanced rectal cancer: preliminary results of a multicenter, nonrandomized phase II prospective trial. Ann Surg. 2011;254(1):97–102.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Grade M, Wolff HA, Gaedcke J, et al. The molecular basis of chemoradiosensitivity in rectal cancer: implications for personalized therapies. Langenbecks Arch Surg. 2012;397(4):543–55.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Dworak O, Keilholz L, Hoffman A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis. 1997;12:19–23.

    Article  CAS  PubMed  Google Scholar 

  98. Becker K, Mueller JD, Schumacher C, et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer. 2003;98:1521–30.

    Article  PubMed  Google Scholar 

  99. Mandard AM, Dalibard F, Mandard JC, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer. 1994;73:2680–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jenifer Levin, editor in the Colorectal Surgery Service at Memorial Sloan Kettering Cancer Center, for her assistance in editing this review. This work was supported by funding from NCI grants NCT00335816 and NCT00114231 (J.G.A).

Compliance with Ethics Guidelines

Conflict of Interest

Oliver S. Chow, J. Joshua Smith, Marc J. Gollub, and Julio Garcia-Aguilar declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Garcia-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, O.S., Smith, J.J., Gollub, M.J. et al. Can We Predict Response and/or Resistance to Neoadjuvant Chemoradiotherapy in Patients with Rectal Cancer?. Curr Colorectal Cancer Rep 10, 164–172 (2014). https://doi.org/10.1007/s11888-014-0210-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-014-0210-0

Keywords

Navigation