Skip to main content

Advertisement

Log in

The epigenome of colorectal cancer

  • Published:
Current Colorectal Cancer Reports

Abstract

Epigenetic alterations (eg, DNA methylation) play important roles in silencing cancer-related genes in colorectal cancers (CRCs). DNA methylation occurs in genes involved in cell cycle checkpoints, apoptosis, signal transduction, DNA repair, and maintenance of the genome’s integrity. Recent developments of new methods for detecting DNA methylation have enabled us to create epigenetic profiles of CRC and to classify them into three distinct subgroups based on genetic and epigenetic alterations. DNA methylation also leads to silencing of some microRNAs, which in turn leads to dysregulation of oncogenic proteins, which are their targets. Moreover, for diagnosis, epigenetic information may be used to detect cancer cells in serum and stool. Obtaining a fuller understanding of the epigenome will be an important step toward understanding the molecular mechanisms underlying CRC and may provide the basis for the development of novel diagnostic tools and approaches to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell 1996, 87:159–170.

    Article  PubMed  CAS  Google Scholar 

  2. Wood LD, Parsons DW, Jones S, et al.: The genomic landscapes of human breast and colorectal cancers. Science 2007, 318:1108–1113.

    Article  PubMed  CAS  Google Scholar 

  3. Leary RJ, Lin JC, Cummins J, et al.: Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc Natl Acad Sci U S A 2008, 105:16224–16229.

    Article  PubMed  CAS  Google Scholar 

  4. Rhee I, Bachman KE, Park BH, et al.: DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002, 416:552–556.

    Article  PubMed  CAS  Google Scholar 

  5. Cameron EE, Bachman KE, Myohanen S, et al.: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999, 21:103–107.

    Article  PubMed  CAS  Google Scholar 

  6. Ohm JE, McGarvey KM, Yu X, et al.: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007, 39:237–242.

    Article  PubMed  CAS  Google Scholar 

  7. Widschwendter M, Fiegl H, Egle D, et al.: Epigenetic stem cell signature in cancer. Nat Genet 2007, 39:157–158.

    Article  PubMed  CAS  Google Scholar 

  8. Watanabe Y, Toyota M, Kondo Y, et al.: PRDM5 identified as a target of epigenetic silencing in colorectal and gastric cancer. Clin Cancer Res 2007, 13:4786–4794.

    Article  PubMed  CAS  Google Scholar 

  9. Eads CA, Danenberg KD, Kawakami K, et al.: MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 2000, 28:E32.

    Article  PubMed  CAS  Google Scholar 

  10. Herman JG, Graff JR, Myohanen S, et al.: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996, 93:9821–9826.

    Article  PubMed  CAS  Google Scholar 

  11. Clark SJ, Harrison J, Paul CL, Frommer M: High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994, 22:2990–2997.

    Article  PubMed  CAS  Google Scholar 

  12. Xiong Z, Laird PW: COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997, 25:2532–2534.

    Article  PubMed  CAS  Google Scholar 

  13. Uhlmann K, Brinckmann A, Toliat MR, et al.: Evaluation of a potential epigenetic biomarker by quantitative methylsingle nucleotide polymorphism analysis. Electrophoresis 2002, 23:4072–4079.

    Article  PubMed  CAS  Google Scholar 

  14. Costello JF, Fruhwald MC, Smiraglia DJ, et al.: Aberrant CpG-island methylation has non-random and tumour-typespecific patterns. Nat Genet 2000, 24:132–138.

    Article  PubMed  CAS  Google Scholar 

  15. Ushijima T, Morimura K, Hosoya Y, et al.: Establishment of methylation-sensitive-representational difference analysis and isolation of hypo- and hypermethylated genomic fragments in mouse liver tumors. Proc Natl Acad Sci U S A 1997, 94:2284–2289.

    Article  PubMed  CAS  Google Scholar 

  16. Toyota M, Ho C, Ahuja N, et al.: Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 1999, 59:2307–2312.

    PubMed  CAS  Google Scholar 

  17. Estecio MR, Yan PS, Ibrahim AE, et al.: High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res 2007, 17:1529–1536.

    Article  PubMed  CAS  Google Scholar 

  18. Silverman AL, Park JG, Hamilton SR, et al.: Abnormal methylation of the calcitonin gene in human colonic neoplasms. Cancer Res 1989, 49:3468–3473.

    PubMed  CAS  Google Scholar 

  19. Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002, 3:415–428.

    Article  PubMed  CAS  Google Scholar 

  20. Herman JG, Merlo A, Mao L, et al.: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 1995, 55:4525–4530.

    PubMed  CAS  Google Scholar 

  21. Suzuki H, Watkins DN, Jair KW, et al.: Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004, 36:417–422.

    Article  PubMed  CAS  Google Scholar 

  22. Bovolenta P, Esteve P, Ruiz JM, et al.: Beyond Wnt inhibition: new functions of secreted frizzled-related proteins in development and disease. J Cell Sci 2008, 121:737–746.

    Article  PubMed  CAS  Google Scholar 

  23. Sato H, Suzuki H, Toyota M, et al.: Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 2007, 28:2459–2466.

    Article  PubMed  CAS  Google Scholar 

  24. Benanti JA, Galloway DA: The normal response to RAS: senescence or transformation? Cell Cycle 2004, 3:715–717.

    PubMed  CAS  Google Scholar 

  25. Akino K, Toyota M, Suzuki H, et al.: The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer. Gastroenterology 2005, 129:156–169.

    Article  PubMed  CAS  Google Scholar 

  26. van Engeland M, Roemen GM, Brink M, et al.: K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene 2002, 21:3792–3795.

    Article  PubMed  Google Scholar 

  27. Agrelo R, Cheng WH, Setien F, et al.: Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci U S A 2006, 103:8822–8827.

    Article  PubMed  CAS  Google Scholar 

  28. Esteller M, Hamilton SR, Burger PC, et al.: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 1999, 59:793–797.

    PubMed  CAS  Google Scholar 

  29. Ahuja N, Mohan AL, Li Q, et al.: Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res 1997, 57:3370–3374.

    PubMed  CAS  Google Scholar 

  30. Satoh A, Toyota M, Ikeda H, et al.: Epigenetic inactivation of class II transactivator (CIITA) is associated with the absence of interferon-gamma-induced HLA-DR expression in colorectal and gastric cancer cells. Oncogene 2004, 23:8876–8886.

    Article  PubMed  CAS  Google Scholar 

  31. Chung DC, Rustgi AK: DNA mismatch repair and cancer. Gastroenterology 1995, 109:1685–1699.

    Article  PubMed  CAS  Google Scholar 

  32. Cunningham JM, Christensen ER, Tester DJ, et al.: Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 1998, 58:3455–3460.

    PubMed  CAS  Google Scholar 

  33. Toyota M, Ahuja N, Ohe-Toyota M, et al.: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999, 96:8681–8686.

    Article  PubMed  CAS  Google Scholar 

  34. Weisenberger DJ, Siegmund KD, Campan M, et al.: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006, 38:787–793.

    Article  PubMed  CAS  Google Scholar 

  35. Shen L, Toyota M, Kondo Y, et al.: Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A 2007, 104:18654–18659.

    Article  PubMed  CAS  Google Scholar 

  36. Barault L, Charon-Barra C, Jooste V, et al.: Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res 2008, 68:8541–8546.

    Article  PubMed  CAS  Google Scholar 

  37. Shen L, Catalano PJ, Benson AB 3rd, et al.: Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin Cancer Res 2007, 13:6093–6098.

    Article  PubMed  CAS  Google Scholar 

  38. He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5:522–531.

    Article  PubMed  CAS  Google Scholar 

  39. He X, He L, Hannon GJ: The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 2007, 67:11099–11101.

    Article  PubMed  CAS  Google Scholar 

  40. Hermeking H: p53 enters the microRNA world. Cancer Cell 2007, 12:414–418.

    Article  PubMed  CAS  Google Scholar 

  41. Toyota M, Suzuki H, Sasaki Y, et al.: Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 2008, 68:4123–4132.

    Article  PubMed  CAS  Google Scholar 

  42. Bommer GT, Gerin I, Feng Y, et al.: p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007, 17:1298–1307.

    Article  PubMed  CAS  Google Scholar 

  43. He L, He X, Lim LP, et al.: A microRNA component of the p53 tumour suppressor network. Nature 2007, 447:1130–1134.

    Article  PubMed  CAS  Google Scholar 

  44. Lujambio A, Ropero S, Ballestar E, et al.: Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007, 67:1424–1429. [Published erratum appears in Cancer Res 2007, 67:3492.]

    Article  PubMed  CAS  Google Scholar 

  45. Lujambio A, Calin GA, Villanueva A, et al.: A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008, 105:13556–13561.

    Article  PubMed  CAS  Google Scholar 

  46. Chen WD, Han ZJ, Skoletsky J, et al.: Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst 2005, 97:1124–1132.

    Article  PubMed  CAS  Google Scholar 

  47. Wallner M, Herbst A, Behrens A, et al.: Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin Cancer Res 2006, 12:7347–7352.

    Article  PubMed  CAS  Google Scholar 

  48. Carethers JM, Chauhan DP, Fink D, et al.: Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 1999, 117:123–131.

    Article  PubMed  CAS  Google Scholar 

  49. Arnold CN, Goel A, Boland CR: Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 2003, 106:66–73.

    Article  PubMed  CAS  Google Scholar 

  50. Shen L, Kondo Y, Ahmed S, et al.: Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel. Cancer Res 2007, 67:11335–11343.

    Article  PubMed  CAS  Google Scholar 

  51. Toyota M, Sasaki Y, Satoh A, et al.: Epigenetic inactivation of CHFR in human tumors. Proc Natl Acad Sci U S A 2003, 100:7818–7823.

    Article  PubMed  CAS  Google Scholar 

  52. Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H: Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer 2008, 112:2341–2351.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Toyota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyota, M., Suzuki, H. & Shinomura, Y. The epigenome of colorectal cancer. Curr colorectal cancer rep 5, 84–89 (2009). https://doi.org/10.1007/s11888-009-0013-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-009-0013-x

Keywords

Navigation