Skip to main content
Log in

Occupational Risks of Radiation Exposure to Cardiologists

  • Interventional Cardiology (SR Bailey and T Helmy, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Invasive cardiologists are exposed to large amounts of ionizing radiation. This review aims to summarize the main occupational risks in a radiation-exposed cardiology practice.

Recent Findings

We carried out a literature review on the subject. The studies reviewed allowed us to list six main health risk categories possibly associated with radiation exposure among cardiologists: deoxyribonucleic acid (DNA) and biochemical damages; cancers; ocular manifestations; olfaction, vascular, and neuropsychological alterations; musculoskeletal problems; and reproductive risks.

Summary

Our descriptive analysis demonstrates higher risks of DNA damage and lens opacities among radiation-exposed cardiology staff. Surveys and questionnaires have demonstrated a higher risk of musculoskeletal disease in exposed workers. Studies reported no difference in cancer frequency between radiation-exposed workers and controls. Changes in olfactory performance, neuropsychological aspects, and vascular changes have also been reported. Limited literature supports the security of continuing radiation-exposed work during pregnancy. Therefore, there is an urgent need to increase knowledge of the occupational risks of radiation exposure and to adopt technologies to reduce them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AZFc:

Azoospermia factor

CI:

Confidence intervals

DNA:

Deoxyribonucleic acid

Mm:

Millimeter

MN:

Micronuclei

mSv:

Millisiever

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Klein LW, et al. Occupational health hazards of interventional cardiologists in the current decade: results of the 2014 SCAI membership survey. Catheter Cardiovasc Interv. 2015;86:913–24. https://doi.org/10.1002/ccd.25927.

    Article  PubMed  Google Scholar 

  2. • Orme NM, et al. Occupational health hazards of working in the interventional laboratory: a multisite case control study of physicians and allied staff. J Am Coll Cardiol. 2015;65:820–6. https://doi.org/10.1016/j.jacc.2014.11.056. Findings from this study suggest that musculoskeletal pain is more frequent in interventional health workers, while the frequency of cancers and cataracts were similar to controls.

    Article  PubMed  Google Scholar 

  3. Cousins C, et al. ICRP PUBLICATION 120: radiological protection in cardiology. Ann ICRP. 2013;42:1–125.

    Article  CAS  PubMed  Google Scholar 

  4. Abbott JD. Controlling radiation exposure in interventional cardiology. Circ Cardiovasc Interv. 2014;7:425–8. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001815.

    Article  PubMed  Google Scholar 

  5. Sun Z, AbAziz A, Yusof AK. Radiation-induced noncancer risks in interventional cardiology: optimisation of procedures and staff and patient dose reduction. Biomed Res Int. 2013;2013:976962. https://doi.org/10.1155/2013/976962.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Venneri L, et al. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council’s Biological Effects of Ionizing Radiation VII Report. Am Heart J. 2009;157:118–24. https://doi.org/10.1016/j.ahj.2008.08.009.

    Article  PubMed  Google Scholar 

  7. Andreassi MG, et al. Occupational health risks in cardiac catheterization laboratory workers. Circ Cardiovasc Interv. 2016;9:e003273. https://doi.org/10.1161/CIRCINTERVENTIONS.115.003273.

    Article  PubMed  Google Scholar 

  8. Karatasakis A, et al. Radiation-associated lens changes in the cardiac catheterization laboratory: results from the IC-CATARACT (CATaracts Attributed to RAdiation in the CaTh lab) study. Catheter Cardiovasc Interv. 2018;91:647–54. https://doi.org/10.1002/ccd.27173.

    Article  PubMed  Google Scholar 

  9. Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111:1368–72. https://doi.org/10.1016/j.amjcard.2012.12.060.

    Article  PubMed  Google Scholar 

  10. Ho TL, Shieh SH, Lin CL, Shen WC, Kao CH. Risk of cancer among cardiologists who frequently perform percutaneous coronary interventions: a population-based study. Eur J Clin Invest. 2016;46:527–34. https://doi.org/10.1111/eci.12628.

    Article  PubMed  Google Scholar 

  11. Sarkozy A, et al. Occupational radiation exposure in the electrophysiology laboratory with a focus on personnel with reproductive potential and during pregnancy: a European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS). Europace. 2017;19:1909–22. https://doi.org/10.1093/europace/eux252.

    Article  PubMed  Google Scholar 

  12. Erol MK, Oztas S, Bozkurt E, Karakelleoglu S. Sister chromatid exchange analysis and chromosoma aberration studies in interventional cardiology laboratory workers. Jpn heart j  2002;43.

  13. Boyaci B, et al. Evaluation of DNA damage in lymphocytes of cardiologists exposed to radiation during cardiac catheterization by the COMET ASSAY. Jpn Heart J. 2004;45:845–53.

    Article  CAS  PubMed  Google Scholar 

  14. Andreassi MG, et al. Somatic DNA damage in interventional cardiologists: a case-control study. FASEB J. 2005;19:998–9.

    Article  CAS  PubMed  Google Scholar 

  15. Andreassi MG, Sagliano I, Cioppa A, Manfredi S, Picano E. Chronic low-dose radiation exposure from interventional cardiology procedures induces chromosomal abnormalities in originally genetically identical twins. Int J Cardiol. 2007;118:130–1. https://doi.org/10.1016/j.ijcard.2006.01.070.

    Article  PubMed  Google Scholar 

  16. Andreassi MG, et al. Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutat Res. 2009;666:57–63. https://doi.org/10.1016/j.mrfmmm.2009.04.003.

    Article  CAS  PubMed  Google Scholar 

  17. Zakeri F, Hirobe T, Akbari Noghabi K. Biological effects of low-dose ionizing radiation exposure on interventional cardiologists. Occup Med (Lond). 2010;60:464–9. https://doi.org/10.1093/occmed/kqq062.

    Article  CAS  PubMed  Google Scholar 

  18. Zakeri F, Hirobe T. A cytogenetic approach to the effects of low levels of ionizing radiations on occupationally exposed individuals. Eur J Radiol. 2010;73:191–5. https://doi.org/10.1016/j.ejrad.2008.10.015.

    Article  PubMed  Google Scholar 

  19. Zakeri F, Assaei RG. Cytogenetic monitoring of personnel working in angiocardiography laboratories in Iran hospitals. Mutat Res. 2004;562:1–9. https://doi.org/10.1016/j.mrgentox.2004.04.005.

    Article  CAS  PubMed  Google Scholar 

  20. Russo GL, et al. Cellular adaptive response to chronic radiation exposure in interventional cardiologists. Eur Heart J. 2012;33:408–14. https://doi.org/10.1093/eurheartj/ehr263.

    Article  CAS  PubMed  Google Scholar 

  21. Borghini A, et al. Increased circulating cell-free DNA levels and mtDNA fragments in interventional cardiologists occupationally exposed to low levels of ionizing radiation. Environ Mol Mutagen. 2015;56:293–300. https://doi.org/10.1002/em.21917.

    Article  CAS  PubMed  Google Scholar 

  22. Vral A, Decorte V, Depuydt J, Wambersie A, Thierens H. A semiautomated FISHbased micronucleuscentromere assay for biomonitoring of hospital workers exposed to low doses of ionizing radiation. Mol Med Rep. 2016;14:103–10. https://doi.org/10.3892/mmr.2016.5265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Torkabadi E, Kariminia A, Zakeri F. Alteration of peripheral blood T-reg cells and cytokines production in angiography personnel exposed to scattered X-rays. Iran J Allergy Asthma Immunol. 2007;6:181–7.

    CAS  PubMed  Google Scholar 

  24. Vellingiri B, et al. Cytogenetic endpoints and Xenobiotic gene polymorphism in lymphocytes of hospital workers chronically exposed to ionizing radiation in Cardiology, Radiology and Orthopedic Laboratories. Ecotoxicol Environ Saf. 2014;100:266–74. https://doi.org/10.1016/j.ecoenv.2013.09.036.

    Article  CAS  PubMed  Google Scholar 

  25. Koc U, et al. Evaluation of thiol-disulphide homeostasis in radiation workers. Int J Radiat Biol. 2017;93:705–10. https://doi.org/10.1080/09553002.2017.1304668.

    Article  CAS  PubMed  Google Scholar 

  26. Maffei F, et al. Spectrum of chromosomal aberrations in peripheral lymphocytes of hospital workers occupationally exposed to low doses of ionizing radiation. Mutat Res. 2004;547:91–9. https://doi.org/10.1016/j.mrfmmm.2003.12.003.

    Article  CAS  PubMed  Google Scholar 

  27. Angelini S, et al. Micronuclei in humans induced by exposure to low level of ionizing radiation: influence of polymorphisms in DNA repair genes. Mutat Res. 2005;570:105–17. https://doi.org/10.1016/j.mrfmmm.2004.10.007.

    Article  CAS  PubMed  Google Scholar 

  28. Bouraoui S, et al. A cytogenetic approach to the effects of low levels of ionizing radiation (IR) on the exposed Tunisian hospital workers. Int J Occup Med Environ Health. 2013;26:144–54. https://doi.org/10.2478/s13382-013-0084-4.

    Article  PubMed  Google Scholar 

  29. Maffei F, et al. Micronuclei frequencies in hospital workers occupationally exposed to low levels of ionizing radiation: influence of smoking status and other factors. Mutagenesis. 2002;17:405–9. https://doi.org/10.1093/mutage/17.5.405.

    Article  CAS  PubMed  Google Scholar 

  30. Milic M, et al. Polymorphisms in DNA repair genes: link with biomarkers of the CBMN cytome assay in hospital workers chronically exposed to low doses of ionising radiation. Arh Hig Rada Toksikol. 2015;66:109–20. https://doi.org/10.1515/aiht-2015-66-2655.

    Article  PubMed  Google Scholar 

  31. Sakly A, et al. Assessment of chromosomal aberrations and micronuclei in peripheral lymphocytes from tunisian hospital workers exposed to ionizing radiation. Genet Test Mol Biomarkers. 2013;17:650–5. https://doi.org/10.1089/gtmb.2012.0111.

    Article  CAS  PubMed  Google Scholar 

  32. Sari-Minodier I, Orsiere T, Auquier P, Martin F, Botta A. Cytogenetic monitoring by use of the micronucleus assay among hospital workers exposed to low doses of ionizing radiation. Mutat Res. 2007;629:111–21. https://doi.org/10.1016/j.mrgentox.2007.01.009.

    Article  CAS  PubMed  Google Scholar 

  33. Scarpato R, et al. Analysis of chromosome damage in circulating lymphocytes of radiological workers affected by thyroid nodules. Mutat Res. 2006;606:21–6. https://doi.org/10.1016/j.mrgentox.2006.02.012.

    Article  CAS  PubMed  Google Scholar 

  34. Thierens H, Vral A, Morthier R, Aousalah B, De Ridder L. Cytogenetic monitoring of hospital workers occupationally exposed to ionizing radiation using the micronucleus centromere assay. Mutagenesis. 2000;15:245–9. https://doi.org/10.1093/mutage/15.3.245.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou DD, Yao L, Guo KM, Lu CW. Cytogenetic evaluation of cataract patients occupationally exposed to ionizing radiation in northeast China. Genet Mol Res. 2016;15. https://doi.org/10.4238/gmr.15038687.

  36. Mrdjanovic J, Jakimov D, Tursijan S, Bogdanovic G. Evaluation of sister chromatid exchanges, micronuclei, and proliferating rate index in hospital workers chronically exposed to ionizing radiation. J BUON. 2005;10:99–103.

    CAS  PubMed  Google Scholar 

  37. Boffetta P, et al. Chromosomal aberrations and cancer risk: results of a cohort study from Central Europe. Am J Epidemiol. 2007;165:36–43. https://doi.org/10.1093/aje/kwj367.

    Article  PubMed  Google Scholar 

  38. Bonassi S, et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis. 2007;28:625–31. https://doi.org/10.1093/carcin/bgl177.

    Article  CAS  PubMed  Google Scholar 

  39. Linet MS, et al. Mortality in US physicians likely to perform fluoroscopy-guided interventional procedures compared with psychiatrists, 1979 to 2008. Radiology. 2017;284:482–94.

    Article  PubMed  Google Scholar 

  40. Goldstein JA, et al. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv. 2004;63:407–11. https://doi.org/10.1002/ccd.20201.

    Article  PubMed  Google Scholar 

  41. Jiang MR, et al. Body pain - An unheeded personal health hazard in interventional cardiologists: a national online cross-sectional survey study in China. Int J Cardiol. 2022;350:27–32. https://doi.org/10.1016/j.ijcard.2021.12.052.

    Article  Google Scholar 

  42. Yuan MK, et al. Health effects of medical radiation on cardiologists who perform cardiac catheterization. J Chin Med Assoc. 2010;73:199–204. https://doi.org/10.1016/S1726-4901(10)70041-1.

    Article  PubMed  Google Scholar 

  43. Thirumal R, et al. The inverse correlation between the duration of lifetime occupational radiation exposure and the prevalence of atrial arrhythmia. Front Cardiovasc Med. 2022;9:863939. https://doi.org/10.3389/fcvm.2022.863939.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Buchanan GL, et al. The occupational effects of interventional cardiology: results from the WIN for safety survey. EuroIntervention. 2012;8:658–63. https://doi.org/10.4244/EIJV8I6A103.

    Article  PubMed  Google Scholar 

  45. • Boice JD, et al. Mortality among medical radiation workers in the United States, 1965–2016. Int J Radiat Biol, 1–25. https://doi.org/10.1080/09553002.2021.1967508 (2022). Study including a large population of radiation workers who were not at statistically significant increased risk of death by cancer when compared to the general population expectation.

  46. Wei F, Chen W, Lin X. Night-shift work, breast cancer incidence, and all-cause mortality: an updated meta-analysis of prospective cohort studies. Sleep Breath. 2022;26:1509–26. https://doi.org/10.1007/s11325-021-02523-9.

    Article  PubMed  Google Scholar 

  47. Mohan A, Huybrechts I, Michels N. Psychosocial stress and cancer risk: a narrative review. Eur J Cancer Prev. 2022;31:585–99. https://doi.org/10.1097/CEJ.0000000000000752.

    Article  PubMed  Google Scholar 

  48. Ciraj-Bjelac O, et al. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76:826–34. https://doi.org/10.1002/ccd.22670.

    Article  PubMed  Google Scholar 

  49. Vano E, et al. Radiation cataract risk in interventional cardiology personnel. Radiat Res. 2010;174:490–5. https://doi.org/10.1667/RR2207.1.

    Article  CAS  PubMed  Google Scholar 

  50. Ciraj-Bjelac O, et al. Radiation-induced eye lens changes and risk for cataract in interventional cardiology. Cardiology. 2012;123:168–71. https://doi.org/10.1159/000342458.

    Article  CAS  PubMed  Google Scholar 

  51. Jacob S, et al. Interventional cardiologists and risk of radiation-induced cataract: results of a French multicenter observational study. Int J Cardiol. 2013;167:1843–7. https://doi.org/10.1016/j.ijcard.2012.04.124.

    Article  PubMed  Google Scholar 

  52. Bitarafan Rajabi A, et al. Ionizing radiation-induced cataract in interventional cardiology staff. Res Cardiovasc Med. 2015;4:e25148. https://doi.org/10.5812/cardiovascmed.25148.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Matsubara K, et al. Eye lens dosimetry and the study on radiation cataract in interventional cardiologists. Phys Med. 2017;44:232–5. https://doi.org/10.1016/j.ejmp.2017.10.007.

    Article  PubMed  Google Scholar 

  54. Barbosa AHP, et al. Prevalence of lens opacity in interventional cardiologists and professional working in the hemodynamics in Brazil. Arq Bras Cardiol. 2019;112:392–9. https://doi.org/10.5935/abc.20190028.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mrena S, Kivela T, Kurttio P, Auvinen A. Lens opacities among physicians occupationally exposed to ionizing radiation–a pilot study in Finland. Scand J Work Environ Health. 2011;37:237–43. https://doi.org/10.5271/sjweh.3152.

    Article  PubMed  Google Scholar 

  56. Vano E, Kleiman NJ, Duran A, Romano-Miller M, Rehani MM. Radiation-associated lens opacities in catheterization personnel: results of a survey and direct assessments. J Vasc Interv Radiol. 2013;24:197–204. https://doi.org/10.1016/j.jvir.2012.10.016.

    Article  PubMed  Google Scholar 

  57. Papp C, et al. Results of Relid Study 2014-Buenos Aires, Argentina retrospective evaluation of lens injuries and dose. Radiat Prot Dosimetry. 2017;173:212–7. https://doi.org/10.1093/rpd/ncw339.

    Article  CAS  PubMed  Google Scholar 

  58. Coppeta L, et al. Risk of radiation-induced lens opacities among surgeons and interventional medical staff. Radiol Phys Technol. 2019;12:26–9. https://doi.org/10.1007/s12194-018-0487-9.

    Article  PubMed  Google Scholar 

  59. Behr-Meenen C, von Boetticher H, Kersten JF, Av Nienhaus. Radiation protection in interventional radiology/cardiology-is state-of-the-art equipment used? Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph182413131.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Auvinen A, Kivela T, Heinavaara S, Mrena S. Eye lens opacities among physicians occupationally exposed to ionizing radiation. Ann Occup Hyg. 2015;59:945–8. https://doi.org/10.1093/annhyg/mev022.

    Article  PubMed  Google Scholar 

  61. Thrapsanioti Z, et al. Eye lens radiation exposure in greek interventional cardiology article. Radiat Prot Dosimetry. 2017;175:344–56. https://doi.org/10.1093/rpd/ncw356.

    Article  CAS  PubMed  Google Scholar 

  62. Domienik-Andrzejewska J, Kaluzny P, Piernik G, Jurewicz J. Occupational exposure to ionizing radiation and lens opacity in interventional cardiologists. Int J Occup Med Environ Health. 2019;32:663–75. https://doi.org/10.13075/ijomeh.1896.01456.

    Article  PubMed  Google Scholar 

  63. Tonacci A, et al. Olfactory non-cancer effects of exposure to ionizing radiation in staff working in the cardiac catheterization laboratory. Int J Cardiol. 2014;171:461–3. https://doi.org/10.1016/j.ijcard.2013.12.223.

    Article  PubMed  Google Scholar 

  64. Andreassi MG, et al. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: a genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc Interv. 2015;8:616–27. https://doi.org/10.1016/j.jcin.2014.12.233.

    Article  PubMed  Google Scholar 

  65. Zhu Z, et al. Association between radiation exposure and endothelium-dependent vasodilation: results from clinical and experimental studies. J Vasc Interv Radiol. 2020;31:42–8. https://doi.org/10.1016/j.jvir.2019.09.017.

    Article  PubMed  Google Scholar 

  66. Tomei F, et al. Vascular effects of occupational exposure to low-dose ionizing radiation. Am J Ind Med. 1996;30:72–7. https://doi.org/10.1002/(SICI)1097-0274(199607)30:1%3c72::AID-AJIM12%3e3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  67. Wild P, et al. Effects of chronic low-dose exposure to ionizing radiation on physician microvascular structure revealed by nail fold capillaroscopy. Radiat Environ Biophys. 2016;55:71–9. https://doi.org/10.1007/s00411-015-0631-4.

    Article  CAS  PubMed  Google Scholar 

  68. Marazziti D, et al. Neuropsychological testing in interventional cardiology staff after long-term exposure to ionizing radiation. J Int Neuropsychol Soc. 2015;21:670–6. https://doi.org/10.1017/S135561771500082X.

    Article  PubMed  Google Scholar 

  69. Ross AM, Segal J, Borenstein D, Jenkins E, Cho S. Prevalence of spinal disc disease among interventional cardiologists. Am J Cardiol. 1997;79:68–70. https://doi.org/10.1016/s0002-9149(96)00678-9.

    Article  CAS  PubMed  Google Scholar 

  70. Birnie D, et al. Prevalence and risk factors for cervical and lumbar spondylosis in interventional electrophysiologists. J Cardiovasc Electrophysiol. 2011;22:957–60. https://doi.org/10.1111/j.1540-8167.2011.02041.x.

    Article  PubMed  Google Scholar 

  71. Menon R, et al. Radiation safety in the catheterization laboratory: current perspectives and practices. J Invasive Cardiol. 2018;30:296–300.

    PubMed  Google Scholar 

  72. Ross AM, Segal J, Borenstein D, Jenkins E, Cho S. Prevalence of spinal disc disease among interventional cardiologists. Am J Cardiol. 1997;79:68–70.

    Article  CAS  PubMed  Google Scholar 

  73. Alexandre D, Prieto M, Beaumont F, Taiar R, Polidori G. Wearing lead aprons in surgical operating rooms: ergonomic injuries evidenced by infrared thermography. J Surg Res. 2017;209:227–33. https://doi.org/10.1016/j.jss.2016.10.019.

    Article  PubMed  Google Scholar 

  74. Benjamin JL, Meisinger QC. Ergonomics in the development and prevention of musculoskeletal injury in interventional radiologists. Tech Vasc Interv Radiol. 2018;21:16–20. https://doi.org/10.1053/j.tvir.2017.12.004.

    Article  PubMed  Google Scholar 

  75. •• Manzo-Silberman S, et al. Radiation protection for healthcare professionals working in catheterisation laboratories during pregnancy: a statement of the European Association of Percutaneous Cardiovascular Interventions (EAPCI) in collaboration with the European Heart Rhythm Association (EHRA), the European Association of Cardiovascular Imaging (EACVI), the ESC Regulatory Affairs Committee and Women as One. EuroIntervention. 2022. https://doi.org/10.4244/EIJ-D-22-00407. Statement that suggests it is safe for cardiologists to continue working during pregnancy as long as the limit dose to the foetus is not exceeded. Also reports that the small available data from practice doses are far from theses limits.

  76. Velazquez M, et al. Radiation exposure to the pregnant interventional cardiologist. Does it really pose a risk to the fetus? Rev Esp Cardiol (Engl Ed). 2017;70:606–8. https://doi.org/10.1016/j.rec.2016.11.037.

    Article  PubMed  Google Scholar 

  77. Kneale GW, Stewart AM. Mantel-Haenszel analysis of Oxford data. II. Independent effects of fetal irradiation subfactors. J Natl Cancer Inst. 1976;57:1009–14. https://doi.org/10.1093/jnci/57.5.1009.

    Article  CAS  PubMed  Google Scholar 

  78. McCollough CH, et al. Radiation exposure and pregnancy: when should we be concerned? Radiographics. 2007;27:909–17. https://doi.org/10.1148/rg.274065149. discussion 917–908.

    Article  PubMed  Google Scholar 

  79. Committee Opinion No. 723: Guidelines for diagnostic imaging during pregnancy and lactation. Obstet Gynecol. 2017;130:e210–6. https://doi.org/10.1097/AOG.0000000000002355.

    Article  Google Scholar 

  80. Williams PM, Fletcher S. Health effects of prenatal radiation exposure. Am Fam Physician. 2010;82:488–93.

    PubMed  Google Scholar 

  81. Best PJ, et al. SCAI consensus document on occupational radiation exposure to the pregnant cardiologist and technical personnel. EuroIntervention. 2011;6:866–74. https://doi.org/10.4244/EIJV6I7A148.

    Article  PubMed  Google Scholar 

  82. Cheney AE, Vincent LL, McCabe JM, Kearney KE. Pregnancy in the cardiac catheterization laboratory: a safe and feasible endeavor. Circ Cardiovasc Interv. 2021;14:e009636. https://doi.org/10.1161/CIRCINTERVENTIONS.120.009636.

    Article  PubMed  Google Scholar 

  83. Fink D, Glick S. Misinformation among physicians about dangers of fetal x-ray exposure. Harefuah. 1993;124(717–719):717-719 739.

    CAS  PubMed  Google Scholar 

  84. Rehani MM, et al. ICRP Publication 117. Radiological protection in fluoroscopically guided procedures performed outside the imaging department. Ann ICRP. 2010;40:1–102. https://doi.org/10.1016/j.icrp.2012.03.001.

    Article  CAS  PubMed  Google Scholar 

  85. Wunderle KA, et al. Occupational and patient radiation doses in a modern cardiac electrophysiology laboratory. J Interv Card Electrophysiol. 2019;56:183–90. https://doi.org/10.1007/s10840-018-0462-8.

    Article  PubMed  Google Scholar 

  86. Chandra V, et al. Monitoring of fetal radiation exposure during pregnancy. J Vasc Surg. 2013;58:710–4. https://doi.org/10.1016/j.jvs.2013.01.052.

    Article  PubMed  Google Scholar 

  87. Andreassi MG, et al. Reproductive outcomes and Y chromosome instability in radiation-exposed male workers in cardiac catheterization laboratory. Environ Mol Mutagen. 2020;61:361–8. https://doi.org/10.1002/em.22341.

    Article  CAS  PubMed  Google Scholar 

  88. Kumar D, et al. Semen abnormalities, sperm DNA damage and global hypermethylation in health workers occupationally exposed to ionizing radiation. PLoS ONE. 2013;8:e69927. https://doi.org/10.1371/journal.pone.0069927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. De Santis M, et al. Radiation effects on development. Birth Defects Res C Embryo Today. 2007;81:177–82. https://doi.org/10.1002/bdrc.20099.

    Article  CAS  PubMed  Google Scholar 

  90. Burns S, et al. Leaded eyeglasses substantially reduce radiation exposure of the surgeon’s eyes during acquisition of typical fluoroscopic views of the hip and pelvis. J Bone Joint Surg Am. 2013;95:1307–11. https://doi.org/10.2106/JBJS.L.00893.

    Article  PubMed  Google Scholar 

  91. Thornton RH, et al. Comparing strategies for operator eye protection in the interventional radiology suite. J Vasc Interv Radiol. 2010;21:1703–7. https://doi.org/10.1016/j.jvir.2010.07.019.

    Article  PubMed  Google Scholar 

  92. Wood A, Hussain ST. Working with radiation in pregnancy: a guide for cardiologists. Heart. 2021;107:1182–3. https://doi.org/10.1136/heartjnl-2021-318993.

    Article  PubMed  Google Scholar 

  93. Domienik-Andrzejewska J, et al. Occupational exposure to physicians working with a Zero-Gravity™ protection system in haemodynamic and electrophysiology labs and the assessment of its performance against a standard ceiling suspended shield. Radiat Environ Biophys. 2022;61:293–300. https://doi.org/10.1007/s00411-022-00968-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gutierrez-Barrios A, et al. The radioprotective effect of the Cathpax® AIR cabin during interventional cardiology procedures. Catheter Cardiovasc Interv. 2021;98:E523–30. https://doi.org/10.1002/ccd.29773.

    Article  PubMed  Google Scholar 

  95. Fetterly KA, Magnuson DJ, Tannahill GM, Hindal MD, Mathew V. Effective use of radiation shields to minimize operator dose during invasive cardiology procedures. JACC Cardiovasc Interv. 2011;4:1133–9. https://doi.org/10.1016/j.jcin.2011.05.027.

    Article  PubMed  Google Scholar 

  96. Maeder M, et al. Impact of a lead glass screen on scatter radiation to eyes and hands in interventional cardiologists. Catheter Cardiovasc Interv. 2006;67:18–23. https://doi.org/10.1002/ccd.20457.

    Article  PubMed  Google Scholar 

  97. Scott H, Gallagher S, Abbott W, Talboys M. Assessment of occupational dose reduction with the use of a floor mounted mobile lead radiation protection shield. J Radiol Prot. 2022. https://doi.org/10.1088/1361-6498/ac8203.

    Article  PubMed  Google Scholar 

  98. Sciahbasi A, et al. Extended protective shield under table to reduce operator radiation dose in percutaneous coronary procedures. Circ Cardiovasc Interv. 2019;12:e007586. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007586.

    Article  PubMed  Google Scholar 

  99. Murphy JC, Darragh K, Walsh SJ, Hanratty CG. Efficacy of the RADPAD protective drape during real world complex percutaneous coronary intervention procedures. Am J Cardiol. 2011;108:1408–10. https://doi.org/10.1016/j.amjcard.2011.06.061.

    Article  PubMed  Google Scholar 

  100. Weisz G, et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) study. J Am Coll Cardiol. 2013;61:1596–600. https://doi.org/10.1016/j.jacc.2012.12.045.

    Article  PubMed  Google Scholar 

  101. Mahmud E, et al. Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: results of the CORA-PCI study (Complex Robotically Assisted Percutaneous Coronary Intervention). JACC Cardiovasc Interv. 2017;10:1320–7. https://doi.org/10.1016/j.jcin.2017.03.050.

    Article  PubMed  Google Scholar 

  102. Faroux L, et al. Reduction in exposure of interventional cardiologists to ionising radiation over a 10-year period. Int J Cardiol. 2018;259:57–9. https://doi.org/10.1016/j.ijcard.2018.02.026.

    Article  PubMed  Google Scholar 

  103. Daval C, et al. Impact of cardiac resynchronisation therapy on cardiologists’ exposure to radiation during implantation of pacemakers and implantable cardioverter-defibrillators. J Radiol Prot. 2019;39:489–97. https://doi.org/10.1088/1361-6498/ab1377.

    Article  PubMed  Google Scholar 

  104. Werner GS, et al. Reduction of radiation exposure during complex interventions for chronic total coronary occlusions: implementing low dose radiation protocols without affecting procedural success rates. Catheter Cardiovasc Interv. 2017;89:1005–12. https://doi.org/10.1002/ccd.26886.

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

J.B.V., M.A.C. and J.M.P. did the literature review, wrote the main manuscript text and prepared figures. S.R., J.M. and J.A. participated in the literature review and reviewed the manuscript.

Corresponding author

Correspondence to Jean-Michel Paradis.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no conflict of interest.20

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veillette, JB., Carrier, MA., Rinfret, S. et al. Occupational Risks of Radiation Exposure to Cardiologists. Curr Cardiol Rep (2024). https://doi.org/10.1007/s11886-024-02056-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-024-02056-z

Keywords

Navigation