Skip to main content

Advertisement

Log in

Ionizing radiation exposure: hazards, prevention, and biomarker screening

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Radiation is a form of energy derived from a source that is propagated through material in space. It consists of ionizing radiation or nonionizing radiation. Ionizing radiation is a feature of the environment and an important tool in medical treatment, but it can cause serious damage to organisms. A number of protective measures and standards of protection have been proposed to protect against radiation. There is also a need for biomarkers to rapidly assess individual doses of radiation, which can not only estimate the dose of radiation but also determine its effects on health. Proteomics, genomics, metabolomics, and lipidomics have been widely used in the search for such biomarkers. These topics are discussed in depth in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A-bomb:

Atomic bomb

ALARA:

As low as reasonably achievable

CA:

Chernobyl accident

CT:

Computed tomography

CVD:

Cardiovascular disease

HDR:

High-dose radiation

IR:

Ionizing radiation

LC:

Liquid chromatography

LSS:

Life span study

MS:

Mass spectrometry

NC:

Nuclear accident

NIR:

Nonionizing radiation

NMR:

Nuclear magnetic resonance

RT:

Radiotherapy

References

  • Afshinnia F, Rajendiran TM, Soni T, Byun J, Wernisch S, Sas KM, Hawkins J, Bellovich K, Gipson D, Michailidis G, Pennathur S, Michigan Kidney Translational Core CPROBE Investigator Group (2018) Impaired β-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. J Am Soc Nephrol 29:295–306

    Google Scholar 

  • Akam-Venkata J, Franco VI, Lipshultz SE (2016) Late cardiotoxicity: issues for childhood cancer survivors. Curr Treat Options Cardiovasc Med 18:47

    Article  Google Scholar 

  • Amundson SA, Bittner M, Chen Y, Trent J, Meltzer P, Fornace AJ Jr (1999) Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene 18:3666–3672

    Article  CAS  Google Scholar 

  • Ayoglu B, Haggmark A, Neiman M, Igel U, Uhlén M, Schwenk JM, Nilsson P (2011) Systematic antibody and antigen-based proteomic profiling with microarrays. Expert Rev Mol Diagn 11:219–234

    Article  CAS  Google Scholar 

  • Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A (2016) Cardiovascular diseases related to ionizing radiation: the risk of low-dose exposure (review). Int J Mol Med 38:1623–1641

    Article  CAS  Google Scholar 

  • Berrington de González A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, Land C (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077

    Article  Google Scholar 

  • Bharadwaj S, Rocker J (2016) Minor head injury: limiting patient exposure to ionizing radiation, risk stratification, and concussion management. Curr Opin Pediatr 28:121–131

    Article  CAS  Google Scholar 

  • Boerma M, Sridharan V, Mao XW, Nelson GA, Cheema AK, Koturbash I, Singh SP, Tackett AJ, Hauer-Jensen M (2016) Effects of ionizing radiation on the heart. Mutat Res 770:319–327

    Article  CAS  Google Scholar 

  • Boone JM, Hendee WR, McNitt-Gray MF, Seltzer SE (2012) Radiation exposure from CT scans: how to close our knowledge gaps, monitor and safeguard exposure—proceedings and recommendations of the radiation dose summit, sponsored by NIBIB, February 24–25, 2011. Radiology 265:544–554

    Article  Google Scholar 

  • Braganza MZ, Kitahara CM, Berrington de González A, Inskip PD, Johnson KJ, Rajaraman P (2012) Ionizing radiation and the risk of brain and central nervous system tumors: a systematic review. Neuro-Oncology 14:1316–1324

    Article  Google Scholar 

  • Brengues M, Paap B, Bittner M, Amundson S, Seligmann B, Korn R, Lenigk R, Zenhausern F (2010) Biodosimetry on small blood volume using gene expression assay. Health Phys 98:179–185

    Article  CAS  Google Scholar 

  • Brenner DJ (2010) Slowing the increase in the population dose resulting from CT scans. Radiat Res 174:809–815

    Article  CAS  Google Scholar 

  • Byrum SD, Burdine MS, Orr L, Mackintosh SG, Authier S, Pouliot M, Hauer-Jensen M, Tackett AJ (2017) Time- and radiation-dose dependent changes in the plasma proteome after total body irradiation of non-human primates: implications for biomarker selection. PLoS One 12:e0174771

    Article  CAS  Google Scholar 

  • Bystrom S, Ayoglu B, Haggmark A, Mitsios N, Hong MG, Drobin K, Forsström B, Fredolini C, Khademi M, Amor S, Uhlén M, Olsson T, Mulder J, Nilsson P, Schwenk JM (2014) Affinity proteomic profiling of plasma, cerebrospinal fluid, and brain tissue within multiple sclerosis. J Proteome Res 13:4607–4619

    Article  CAS  Google Scholar 

  • Carter CL, Jones JW, Farese AM, MacVittie TJ, Kane MA (2017) Lipidomic dysregulation within the lung parenchyma following whole-thorax lung irradiation: markers of injury, inflammation and fibrosis detected by MALDI-MSI. Sci Rep 7:10343

    Article  CAS  Google Scholar 

  • Chen C, Brenner DJ, Brown TR (2011) Identification of urinary biomarkers from X-irradiated mice using NMR spectroscopy. Radiat Res 175:622–630

    Article  CAS  Google Scholar 

  • Christensen DM, Iddins CJ, Sugarman SL (2014a) Ionizing radiation injuries and illnesses. Emerg Med Clin North Am 32:245–265

    Article  Google Scholar 

  • Christensen DM, Livingston GK, Sugarman SL, Parillo SJ, Glassman ES (2014b) Management of ionizing radiation injuries and illnesses, part 3: radiobiology and health effects of ionizing radiation. J Am Osteopath Assoc 114:556–565

    Article  Google Scholar 

  • Curtis JR (2010) Computed tomography shielding methods: a literature review. Radiol Technol 81:428–436

    Google Scholar 

  • Darnell K, Morrison GD (2016) Minimizing the long-term effects of ionizing radiation in pediatric computed tomography examinations. Radiol Technol 87:495–501

    Google Scholar 

  • Dartnell LR (2011) Ionizing radiation and life. Astrobiology 11:551–582

    Article  CAS  Google Scholar 

  • Domina EA (2016) Chornobyl catastrophe: cytogenetic effects of low dose ionizing radiation and their modification. Exp Oncol 38:219–223

    CAS  Google Scholar 

  • Douple EB, Mabuchi K, Cullings HM, Preston DL, Kodama K, Shimizu Y, Fujiwara S, Shore RE (2011) Long-term radiation-related health effects in a unique human population: lessons learned from the atomic bomb survivors of Hiroshima and Nagasaki. Disaster Med Public Health Prep 5(Suppl):S122–S133

    Article  Google Scholar 

  • Epperly MW, Wang H, Jones JA, Dixon T, Montesinos CA, Greenberger JS (2011) Antioxidant chemoprevention diet ameliorates late effects of total-body irradiation and supplements radioprotection by MnSOD-plas-mid liposome administration. Radiat Res 175:759–765

    Article  CAS  Google Scholar 

  • Fernandes Messias MC, Mecatti GC, Figueiredo Angolini CF, Eberlin MN, Credidio L, Real Martinez CA, Rodrigues Coy CS, de Oliveira Carvalho P (2018) Plasma lipidomic signature of rectal adenocarcinoma reveals potential biomarkers. Front Oncol 7:325

    Article  Google Scholar 

  • Food and Drug Administration (2002) FDA public health notification: reducing radiation risk from computed tomography for pediatric and small adult patients. Pediatr Radiol 32:314–316

    Article  Google Scholar 

  • Food and Drug Administration (FDA). White paper (2010) Unveils initiative to reduce unnecessary radiation exposure from medical imaging. In: 9

    Google Scholar 

  • Fujimichi Y, Hamada N (2014) Ionizing irradiation not only inactivates clonogenic potential in primary normal human diploid lens epithelial cells but also stimulates cell proliferation in a subset of this population. PLoS One 9:e98154

    Article  CAS  Google Scholar 

  • Gerber TC, Carr JJ, Arai AE, Dixon RL, Ferrari VA, Gomes AS, Heller GV, McCollough CH, McNitt-Gray MF, Mettler FA, Mieres JH, Morin RL, Yester MV (2009) Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation 119:1056–1065

    Article  Google Scholar 

  • Gold L, Walker JJ, Wilcox SK, Williams S (2012) Advances in human proteomics at high scale with the SOMAscan proteomics platform. New Biotechnol 29:543–549

    Article  CAS  Google Scholar 

  • Golla S, Golla JP, Krausz KW, Manna SK, Simillion C, Beyoğlu D, Idle JR, Gonzalez FJ (2017) Metabolomic analysis of mice exposed to gamma radiation reveals a systemic understanding of total-body exposure. Radiat Res 187:612–629

    Article  CAS  Google Scholar 

  • Goto H, Watanabe T, Miyao M, Fukuda H, Sato Y, Oshida Y (2012) Cancer mortality among atomic bomb survivors exposed as children. Environ Health Prev Med 17:228–234

    Article  Google Scholar 

  • Grandjean P (1995) Biomarkers in epidemiology. Clin Chem 41:1800–1803

    CAS  Google Scholar 

  • Groen RS, Bae JY, Lim KJ (2012) Fear of the unknown: ionizing radiation exposure during pregnancy. Am J Obstet Gynecol 206:456–462

    Article  Google Scholar 

  • Guipaud O (2013) Serum and plasma proteomics and its possible use as detector and predictor of radiation diseases. Adv Exp Med Biol 990:61–86

    Article  CAS  Google Scholar 

  • Hadelsberg UP, Harel R (2016) Hazards of ionizing radiation and its impact on spine surgery. World Neurosurg 92:353–359

    Article  Google Scholar 

  • Hall EJ (2009) Radiation biology for pediatric radiologists. Pediatr Radiol 39(Suppl 1):S57–S64

    Article  Google Scholar 

  • Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E (2017) Ionizing radiation biomarkers in epidemiological studies—an update. Mutat Res 771:59–84

    Article  CAS  Google Scholar 

  • Harrison JD, Stather JW (1996) The assessment of doses and effects from intakes of radioactive particles. J Anat 189:521–530

    CAS  Google Scholar 

  • Hathout Y, Marathi RL, Rayavarapu S, Zhang A, Brown KJ, Seol H, Gordish-Dressman H, Cirak S, Bello L, Nagaraju K, Partridge T, Hoffman EP, Takeda S, Mah JK, Henricson E, McDonald C (2014) Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients. Hum Mol Genet 23:6458–6469

    Article  CAS  Google Scholar 

  • IAEA (2005) Generic procedures for medical response during a nuclear and radiological emergency. International Atomic Energy Agency and World Health Organization, Vienna

    Google Scholar 

  • ICRP (International Commission on Radiological Protection) (2007) The 2007 recommendations of the ICRP. publication 103. Ann ICRP 37:1–332

    Google Scholar 

  • Izzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F, Bei R (2012) The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front Biosci (Landmark Ed) 17:2396–2418

    Article  CAS  Google Scholar 

  • Jelonek K, Pietrowska M, Widlak P (2017) Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity. Int J Radiat Biol 93:683–696

    Article  CAS  Google Scholar 

  • Jin YW, Jeong M, Moon K, Jo MH, Kang SK (2010) Ionizing radiation-induced diseases in Korea. J Korean Med Sci 25(Suppl):S70–S76

    Article  Google Scholar 

  • Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17:451–459

    Article  CAS  Google Scholar 

  • Khan A, Rana P, Devi M, Chaturvedi S, Javed S, Tripathi R, Khushu S (2011) Nuclear magnetic resonance spectroscopy-based metabonomic investigation of biochemical effects in serum of c-irradiated mice. Int J Radiat Biol 87:91–97

    Article  CAS  Google Scholar 

  • Kutanzi KR, Lumen A, Koturbash I, Miousse IR (2016) Pediatric exposures to ionizing radiation: carcinogenic considerations. Int J Environ Res Public Health 13(11)

  • Leng S, Hruska CB, McCollough CH (2015) Use of ionizing radiation in screening examinations for coronary artery calcium and cancers of the lung, colon, and breast. Semin Roentgenol 50:148–160

    Article  Google Scholar 

  • Lowe X, Wyrobek A (2012) Characterization of the early CNS stress biomarkers and profiles associated with neuropsychiatric diseases. Curr Genomics 13:489–497

    Article  CAS  Google Scholar 

  • Lu TP, Hsu YY, Lai LC, Tsai MH, Chuang EY (2014) Identification of gene expression biomarkers for predicting radiation exposure. Sci Rep 4:6293

    Article  CAS  Google Scholar 

  • Marazziti D, Baroni S, Catena-Dell'Osso M, Schiavi E, Ceresoli D, Conversano C, Dell'Osso L, Picano E (2012) Cognitive, psychological and psychiatric effects of ionizing radiation exposure. Curr Med Chem 19:1864–1869

    Article  CAS  Google Scholar 

  • Martinou M, Gaya A (2013) Cardiac complications after radical radiotherapy. Semin Oncol 40:178–185

    Article  Google Scholar 

  • Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360

    Article  Google Scholar 

  • McLean AR, Adlen EK, Cardis E, Elliott A, Goodhead DT, Harms-Ringdahl M, Hendry JH, Hoskin P, Jeggo PA, Mackay DJC, Muirhead CR, Shepherd J, Shore RE, Thomas GA, Wakeford R, Godfray HCJ (2017) A restatement of the natural science evidence base concerning the health effects of low-level ionizing radiation. Proc Biol Sci 284(1862):20171070

    Article  Google Scholar 

  • Mecatti GC, Fernandes Messias MC, Sant'Anna Paiola RM, Figueiredo Angolini CF, da Silva Cunha IB, Eberlin MN, de Oliveira Carvalho P (2018) Lipidomic profiling of plasma and erythrocytes from septic patients reveals potential biomarker candidates. Biomark Insights 13:1177271918765137

    Article  Google Scholar 

  • Mehan MR, Williams SA, Siegfried JM, Bigbee WL, Weissfeld JL, Wilson DO, Pass HI, Rom WN, Muley T, Meister M, Franklin W, Miller YE, Brody EN, Ostroff RM (2014) Validation of a blood protein signature for non-small cell lung cancer. Clin Proteomics 11:32

    Article  CAS  Google Scholar 

  • Mettler FA Jr, Voelz GL (2002) Major radiation exposure—what to expect and how to respond. N Engl J Med 346:1554–1561

    Article  Google Scholar 

  • Miousse IR, Kutanzi KR, Koturbash I (2017a) Effects of ionizing radiation on DNA methylation: from experimental from experimental biology to clinical applications. Int J Radiat Biol 93:457–469

    Article  CAS  Google Scholar 

  • Miousse IR, Tobacyk J, Melnyk S, James SJ, Cheema AK, Boerma M, Hauer-Jensen M, Koturbash I (2017b) One-carbon metabolism and ionizing radiation: a multifaceted interaction. Biomol Concepts 8:83–92

    Article  CAS  Google Scholar 

  • Mitchel RE (2015) Adaption by low dose radiation exposure: a look at scope and limitations for radioprotection. Dose Response 13(1):1–7

    Article  CAS  Google Scholar 

  • Moding EJ, Kastan MB, Kirsch DG (2013) Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 12:526–542

    Article  CAS  Google Scholar 

  • Mujoo K, Hunt CR, Pandita RK, Ferrari M, Krishnan S, Cooke JP, Hahn S, Pandita TK (2018) Harnessing and optimizing the interplay between immunotherapy and radiotherapy to improve survival outcomes. Mol Cancer Res

  • Mulinacci N, Valletta A, Pasqualetti V, Innocenti M, Giuliani C, Bellumori M, De Angelis G, Carnevale A, Locato V, Di Venanzio C, De Gara L, Pasqua G (2018) Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Nat Prod Res 2:1–9

    Article  CAS  Google Scholar 

  • Nylund R, Lemola E, Hartwig S, Lehr S, Acheva A, Jahns J, Hildebrandt G, Lindholm C (2014) Profiling of low molecular weight proteins in plasma from locally irradiated individuals. J Radiat Res 55:674–682

    Article  CAS  Google Scholar 

  • Oak Ridge Institute for Science and Education (ORISE) (2011) The medical aspects of radiation incidents. Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN

    Google Scholar 

  • Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K (2012) Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 177:229–243

    Article  CAS  Google Scholar 

  • Pannkuk EL, Laiakis EC, Mak TD, Astarita G, Authier S, Wong K, Fornace AJ Jr (2016) A lipidomic and metabolomic serum signature from nonhuman primates exposed to ionizing radiation. Metabolomics 12(5)

  • Pannkuk EL, Fornace AJ Jr, Laiakis EC (2017a) Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol 93:1151–1176

    Article  CAS  Google Scholar 

  • Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ Jr (2017b) Gas chromatography/mass spectrometry metabolomics of urine and serum from nonhuman primates exposed to ionizing radiation: impacts on the tricarboxylic acid cycle and protein metabolism. J Proteome Res 16:2091–2100

    Article  CAS  Google Scholar 

  • Paul S, Barker CA, Turner HC, McLane A, Wolden SL, Amundson SA (2011) Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures. Radiat Res 175:257–265

    Article  CAS  Google Scholar 

  • Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

    Article  Google Scholar 

  • Pernemalm M, Lehtio J (2014) Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics 11:431–448

    Article  CAS  Google Scholar 

  • Pernemalm M, De Petris L, Branca RM, Forshed J, Kanter L, Soria JC, Girard P, Validire P, Pawitan Y, van den Oord J, Lazar V, Påhlman S, Lewensohn R, Lehtiö J (2013) Quantitative proteomics profiling of primary lung adenocarcinoma tumors reveals functional perturbations in tumor metabolism. J Proteome Res 12:3934–3943

    Article  CAS  Google Scholar 

  • Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, Jeggo P, Kreuzer M, Laurier D, Lindholm C, Mkacher R, Quintens R, Rothkamm K, Sabatier L, Tapio S, de Vathaire F, Cardis E (2012) Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat Res 751:258–286

    Article  CAS  Google Scholar 

  • Petersen AG, Eiskjær S, Kaspersen J (2012) Dose optimisation for intraoperative cone-beam flat-detector CT in paediatric spinal surgery. Pediatr Radiol 42:965–973

    Article  Google Scholar 

  • Philchenkov AA, Balcer-Kubiczek EK (2016) Molecular markers of apoptosis in cancer patients exposed to ionizing radiation: the post-Chornobyl view. Exp Oncol 38:224–237

    CAS  Google Scholar 

  • Picano E, Vano E, Domenici L, Bottai M, Thierry-Chef I (2012) Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure. BMC Cancer 12:157

    Article  CAS  Google Scholar 

  • Popova NR, Gudkov SV, Bruskov VI (2014) Natural purine compounds as radioprotective agents. Radiats Biol Radioekol 54:38–49

    CAS  Google Scholar 

  • Quon BS, Dai DL, Hollander Z, Ng RT, Tebbutt SJ, Man SF, Wilcox PG, Sin DD (2016) Discovery of novel plasma protein biomarkers to predict imminent cystic fibrosis pulmonary exacerbations using multiple reaction monitoring mass spectrometry. Thorax 71:216–222

    Article  Google Scholar 

  • Rai S, Bhatnagar S (2017) Novel lipidomic biomarkers in hyperlipidemia and cardiovascular diseases: an integrative biology analysis. OMICS 21:132–142

    Article  CAS  Google Scholar 

  • Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21:260–292

    Article  CAS  Google Scholar 

  • Rezaeejam H, Shirazi A, Valizadeh M, Izadi P (2015) Candidate gene biodosimeters of mice and human exposure to ionizing radiation by quantitative reverse transcription polymerase chain reaction. J Cancer Res Ther 11:549–557

    Article  CAS  Google Scholar 

  • Rosell R, Bivona TG, Karachaliou N (2013) Genetics and biomarkers in personalisation of lung cancer treatment. Lancet 382:720–731

    Article  CAS  Google Scholar 

  • Rosenstierne MW, McLoughlin KS, Olesen ML, Papa A, Gardner SN, Engler O, Plumet S, Mirazimi A, Weidmann M, Niedrig M, Fomsgaard A, Erlandsson L (2014) The microbial detection array for detection of emerging viruses in clinical samples—a useful panmicrobial diagnostic tool. PLoS One 9:e100813

    Article  CAS  Google Scholar 

  • Ryan JL (2012) Ionizing radiation: the good, the bad, and the ugly. J Invest Dermatol 132:985–993

    Article  CAS  Google Scholar 

  • Ryan PB, Burke TA, Cohen Hubal EA, Cura JJ, McKone TE (2007) Using biomarkers to inform cumulative risk assessment. Environ Health Perspect 115:833–840

    Article  CAS  Google Scholar 

  • Saenko V, Ivanov V, Tsyb A, Bogdanova T, Tronko M, Demidchik Y, Yamashita S (2011) The Chernobyl accident and its consequences. Clin Oncol 23:234–243

    Article  CAS  Google Scholar 

  • Sasaki MS, Tachibana A, Takeda S (2014) Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors. J Radiat Res 55:391–406

    Article  CAS  Google Scholar 

  • Scherb H, Voigt K, Kusmierz R (2015) Ionizing radiation and the human gender proportion at birth—a concise review of the literature and complementary analyses of historical and recent data. Early Hum Dev 91:841–850

    Article  Google Scholar 

  • Schmidt CW (2012) CT scans: balancing health risks and medical benefits. Environ Health Perspect 120:a118–a121

    Google Scholar 

  • Shimura T, Fukumoto M, Kunugita N (2013) The role of cyclin D1 in response to long-term exposure to ionizing radiation. Cell Cycle 12:2738–2743

    Article  CAS  Google Scholar 

  • Shore RE, Neriishi K, Nakashima E (2010) Epidemiological studies of cataract risk at low to moderate radiation doses: (not) seeing is believing. Radiat Res 174:889–894

    Article  CAS  Google Scholar 

  • Sibley RF, Moscatto BS, Wilkinson GS, Natajaran NL (2003) Nested case-control study of external ionizing radiation dose and mortality from dementia within a pooled cohort of female nuclear weapons workers. Am J Ind Med 44(4):351–358

    Article  Google Scholar 

  • Slovis TL (2002a) The ALARA concept in pediatric CT: myth or reality? Radiology 223:5–6

    Article  Google Scholar 

  • Slovis TL (2002b) ALARA conference proceedings: the ALARA concept in pediatric CT-intelligent dose reduction. Pediatr Radiol 32:217–313

    Article  Google Scholar 

  • Sokolov M, Neumann R (2015) Global gene expression alterations as a crucial constituent of human cell response to low doses of ionizing radiation exposure. Int J Mol Sci 17(1)

  • Sperling K, Neitzel H, Scherb H (2012) Evidence for an increase in trisomy 21 (Down syndrome) in Europe after the Chernobyl reactor accident. Genet Epidemiol 36:48–55

    Article  Google Scholar 

  • Sun X, Deng L, Lu Y (2018) Challenges and opportunities of using stereotactic body radiotherapy with anti-angiogenesis agents in tumor therapy. Chin J Cancer Res 30:147–156

    Article  Google Scholar 

  • Tang FR, Loke WK, Khoo BC (2017) Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. J Radiat Res 58:165–182

    Google Scholar 

  • Tapio S (2013) Ionizing radiation effects on cells, organelles and tissues on proteome level. Adv Exp Med Biol 990:37–48

    Article  CAS  Google Scholar 

  • Thaker A, Navadeh S, Gonzales H, Malekinejad M (2015) Effectiveness of policies on reducing exposure to ionizing radiation from medical imaging: a systematic review. J Am Coll Radiol 12:1434–1445

    Article  Google Scholar 

  • Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, Guérin S, Pacquement H, Aouba A, Hawkins M, Winter D, Bourhis J, Lefkopoulos D, Diallo I, de Vathaire F (2010) Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol 28:1308–1315

    Article  Google Scholar 

  • Turtoi A, Brown I, Schläger M, Schneeweiss FH (2010) Gene expression profile of human lymphocytes exposed to 211At alpha particles. Radiat Res 174:125–136

    Article  CAS  Google Scholar 

  • UNSCEAR (2005) Health effects of the Chernobyl accident and special health care programs: report of the UN Chernobyl Forum Expert Group“Health”. World Health Organization, Geneva

    Google Scholar 

  • UNSCEAR (2010) Summary of low-dose radiation effects on health. United Nations, New York

    Google Scholar 

  • UNSCEAR (2011) Health effects due to radiation from the Chernobyl accident. Annex D of UNSCEAR 2008: sources and effects of ionizing radiation. Volume 2: effects. J Radiol Prot 31:275–277

    Article  Google Scholar 

  • US National Academy of Sciences, Committee of the Biological Effects of Ionizing Radiation. BEIR VII Phase 2 (2006) Health effects from exposure to low level of ionizing radiation. Academic Press, Washington DC

    Google Scholar 

  • Vano E (2003) Radiation exposure to cardiologists: how it could be reduced. Heart 89:1123–1124

    Article  CAS  Google Scholar 

  • Vaño E, Gonzalez L, Fernandez JM, Alfonso F, Macaya C (2006) Occupational radiation doses in interventional cardiology: a 15-year follow-up. Br J Radiol 79:383–388

    Article  Google Scholar 

  • Vasin MV (2013) Classification of anti-radiations facilities as reflection of the modern state and prospect of development of radiation pharmacology. Radiats Biol Radioecol 53:459–467

    CAS  Google Scholar 

  • Wang B, Ninomiya Y, Tanaka K, Maruyama K, Varès G, Eguchi-Kasai K, Nenoi M (2012) Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis. Birth Defects Res B Dev Reprod Toxicol 95:379–385

    Article  CAS  Google Scholar 

  • Weiss JF, Landauer MR (2009) History and development of radiation-protective agents. Int J Radiat Biol 85:539–573

    Article  CAS  Google Scholar 

  • Wertelecki W (2010) Malformations in a chornobyl-impacted region. Pediatrics 125:836–843

    Article  Google Scholar 

  • WHO (1993) Biomarkers and risk assessment: concepts and principles (EHC 155). In: n.d.

    Google Scholar 

  • Wood EJ (1994) Review of NCRP report no 116: limitation of exposure to ionising radiation. Occupat Environ Med 51:216

    Article  Google Scholar 

  • Wu CL, Kimmerling KA, Little D, Guilak F (2017) Serum and synovial fluid lipidomic profiles predict obesity-associated osteoarthritis, synovitis, and wound repair. Sci Rep 7:44315

    Article  CAS  Google Scholar 

  • Xiao X, Hu M, Zhang X, Hu JZ (2017) NMR-based metabolomics analysis of liver from C57BL/6 mouse exposed to ionizing radiation. Radiat Res 188:44–55

    Article  CAS  Google Scholar 

  • Yi L, Hu N, Yin J, Sun J, Mu H, Dai K, Ding D (2017) Up-regulation of calreticulin in mouse liver tissues after long-term irradiation with low-dose-rate gamma rays. PLoS One 12:e0182671

    Article  CAS  Google Scholar 

  • Yoo SS, Jorgensen TJ, Kennedy AR, Boice JD Jr, Shapiro A, Hu TC, Moyer BR, Grace MB, Kelloff GJ, Fenech M, Prasanna PG, Coleman CN (2014) Mitigating the risk of radiation-induced cancers: limitations and paradigms in drug development. J Radiol Prot 34:R25–R52

    Article  Google Scholar 

  • Zeegers D, Venkatesan S, Koh SW, Low GK, Srivastava P, Sundaram N, Sethu S, Banerjee B, Jayapal M, Belyakov O, Baskar R, Balajee AS, Hande MP (2017) Biomarkers of ionizing radiation exposure: a multiparametric approach. Genome Integr 8:6

    Article  Google Scholar 

  • Zhao M, Lau KK, Zhou X, Wu J, Yang J, Wang C (2017) Urinary metabolic signatures and early triage of acute radiation exposure in rat model. Mol BioSyst 13:756–766

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Defense Industrial Technology Development Program (No. JCKY2016403C001), National Natural Science Foundation of China (No. U1401231), China Postdoctoral Science Foundation (No. 2014 M562115), and the Research Initiation Funding of University of South China for the Returned Scholars from Abroad (No. 2014XQD46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Yi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, H., Sun, J., Li, L. et al. Ionizing radiation exposure: hazards, prevention, and biomarker screening. Environ Sci Pollut Res 25, 15294–15306 (2018). https://doi.org/10.1007/s11356-018-2097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2097-9

Keywords

Navigation