Skip to main content
Log in

Understanding the Genetic and Non-genetic Interconnections in the Aetiology of Isolated Congenital Heart Disease: An Updated Review: Part 1

  • Congenital Heart Disease (RA Krasuski and G Fleming, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Congenital heart disease (CHD) is the most frequently occurring birth defect. Majority of the earlier reviews focussed on the association of genetic factors with CHD. A few epidemiological studies provide convincing evidence for environmental factors in the causation of CHD. Although the multifactorial theory of gene-environment interaction is the prevailing explanation, explicit understanding of the biological mechanism(s) involved, remains obscure. Nonetheless, integration of all the information into one platform would enable us to better understand the collective risk implicated in CHD development.

Recent Findings

Great strides in novel genomic technologies namely, massive parallel sequencing, whole exome sequencing, multiomics studies supported by system-biology have greatly improved our understanding of the aetiology of CHD. Molecular genetic studies reveal that cardiac specific gene variants in transcription factors or signalling molecules, or structural proteins could cause CHD. Additionally, non-hereditary contributors such as exposure to teratogens, maternal nutrition, parental age and lifestyle factors also contribute to induce CHD. Moreover, DNA methylation and non-coding RNA are also correlated with CHD.

Summary

Here, we inform that a complex combination of genetic, environmental and epigenetic factors interact to interfere with morphogenetic processes of cardiac development leading to CHD. It is important, not only to identify individual genetic and non-inherited risk factors but also to recognize which factors interact mutually, causing cardiac defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

AD:

Autosomal dominant

AR:

Autosomal recessive

AS:

Aortic stenosis

ASD:

Atrial septal defect

AVSD:

Atrioventricular septal defect

BAV:

Bicuspid aortic valve

CNVs:

Copy number variations

CoA:

Coarctation of aorta

DCM:

Dilated cardiomyopathy

DILV:

Double inlet left ventricle

DORV:

Double outlet right ventricle

EA:

Ebstein’s anomaly

HCM:

Hypertrophic cardiomyopathy

HLHS:

Hypoplastic left heart syndrome

HOS:

Holt-Oram syndrome

IAA:

Interrupted aortic arch

LVOTO:

Left ventricular outflow tract obstruction

NGS:

Next-generation sequencing

OFT:

Outflow tract

PDA:

Patent ductus arteriosus

PS:

Pulmonary stenosis

PTA:

Persistent truncus arteriosus

RVOTO:

Right ventricular outflow tract obstruction

SNVs:

Single nucleotide variants

SVAS:

Supravalvular aortic stenosis

TA:

Tricuspid atresia

TAPVR:

Total anomalous pulmonary venous return

TGA:

Transposition of great arteries

ToF:

Tetralogy of Fallot

VSD:

Ventricular septal defect

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A, Dandara C. Genomics and epigenomics of congenital heart defects: expert review and lessons learned in Africa. OMICS: A Journal of Integrative Biology. 2018 May 1;22(5):301-21.

  2. Wijnands KP, Zeilmaker GA, Meijer WM, Helbing WA, Steegers-Theunissen RP. Periconceptional parental conditions and perimembranous ventricular septal defects in the offspring. Birth Defects Res A. 2014;100:944–50.

    Article  CAS  Google Scholar 

  3. Abqari S, Gupta A, Shahab T, Rabbani MU, Ali SM, Firdaus U. Profile and risk factors for congenital heart defects: a study in a tertiary care hospital. Ann Pediatr Cardiol. 2016;9:216.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bhardwaj R, Rai SK, Yadav AK, Lakhotia S, Agrawal D, Kumar A, Mohapatra B. Epidemiology of congenital heart disease in India. Congenit Heart Dis. 2015;10:437–46.

    Article  Google Scholar 

  5. Chadha SL, Singh N, Shukla DK. Epidemiological study of congenital heart disease. The Indian Journal of Pediatrics. 2001;68:507–10.

    Article  CAS  PubMed  Google Scholar 

  6. Gelb BD, Chung WK. Complex genetics and the etiology of human congenital heart disease. Cold Spring Harb Perspect Med. 2014;4: a013953.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nees SN, Chung WK. Genetic basis of human congenital heart disease. Cold Spring Harb Perspect Biol. 2020;12: a036749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ito S, Chapman KA, Kisling M, John AS. Genetic considerations for adults with congenital heart disease. InAmerican Journal of Medical Genetics Part C: Seminars in Medical Genetics 2020 Mar (Vol. 184, No. 1, pp. 149-153). Hoboken, USA: John Wiley & Sons, Inc.

  9. Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. J Am Heart Assoc. 2018;7: e006906.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of epigenetics in cardiac development and congenital diseases. Physiol Rev. 2018;98:2453–75.

    Article  PubMed  Google Scholar 

  11. Obermann‐Borst SA, Vujkovic M, De Vries JH, Wildhagen MF, Looman CW, de Jonge R, Steegers EA, Steegers‐Theunissen RP. A maternal dietary pattern characterised by fish and seafood in association with the risk of congenital heart defects in the offspring. BJOG: an international Journal of Obstetrics & Gynaecology. 2011 Sep;118(10):1205-15.

  12. Wang F, Reece EA, Yang P. Superoxide dismutase 1 overexpression in mice abolishes maternal diabetes–induced endoplasmic reticulum stress in diabetic embryopathy. Am J Obstet Gynecol. 2013;209:345-e1.

    Article  PubMed Central  Google Scholar 

  13. Patel SS, Burns TL. Nongenetic risk factors and congenital heart defects. Pediatr Cardiol. 2013;34:1535–55.

    Article  PubMed  Google Scholar 

  14. Sampayo F, Pinto FF. The sex distribution of congenital cardiopathies. Acta Med Port. 1994;7:413–8.

    CAS  PubMed  Google Scholar 

  15. Egbe A, Uppu S, Stroustrup A, Lee S, Ho D, Srivastava S. Incidences and sociodemographics of specific congenital heart diseases in the United States of America: an evaluation of hospital discharge diagnoses. Pediatr Cardiol. 2014;35:975–82.

    Article  PubMed  Google Scholar 

  16. Loffredo CA, Chokkalingam A, Sill AM, Boughman JA, Clark EB, Scheel J, Brenner JI. Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A. 2004;124:225–30.

    Article  Google Scholar 

  17. Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M. Recurrence of congenital heart defects in families. Circulation. 2009;120:295–301.

    Article  PubMed  Google Scholar 

  18. Burn J, Brennan P, Little J, Holloway S, Coffey R, Somerville J, Dennis NR, Allan L, Arnold R, Deanfield JE. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. The Lancet. 1998;351:311–6.

    Article  CAS  Google Scholar 

  19. Blue GM, Kirk EP, Sholler GF, Harvey RP, Winlaw DS. Congenital heart disease: current knowledge about causes and inheritance. Med J Aust. 2012;197:155–9.

    Article  PubMed  Google Scholar 

  20. Øyen N, Boyd HA, Carstensen L, Søndergaard L, Wohlfahrt J, Melbye M. Risk of congenital heart defects in offspring of affected mothers and fathers. Circulation: Genomic and Precision Medicine. 2022 Aug;15(4):e003533.

  21. Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. ANNUAL REVIEW OF PATHOLOG. 2006;1:199.

    Article  CAS  Google Scholar 

  22. Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Translational Pediatrics. 2021;10:2366.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112:707–20.

    Article  CAS  PubMed  Google Scholar 

  24. Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 2018;138:e653–711.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ellesøe SG, Johansen MM, Bjerre JV, Hjortdal VE, Brunak S, Larsen LA. Familial atrial septal defect and sudden cardiac death: identification of a novel NKX2-5 mutation and a review of the literature. Congenit Heart Dis. 2016;11:283–90.

    Article  PubMed  Google Scholar 

  26. Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functionally significant, novel GATA4 variants are frequently associated with tetralogy of Fallot. Hum Mutat. 2018;39:1957–72.

    Article  CAS  PubMed  Google Scholar 

  27. Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci. 2009;106:13933–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Griffin HR, Töpf A, Glen E, Zweier C, Stuart AG, Parsons J, Peart I, Deanfield J, O’Sullivan J, Rauch A. Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart. 2010;96:1651–5.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu J, Fu Y, Nettleton M, Richman A, Han Z. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila. Elife. 2017;6: e22617.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Armstrong EJ, Bischoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004;95:459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009;18:861–71.

    Article  CAS  PubMed  Google Scholar 

  32. • Yadav ML, Ranjan P, Das P, Jain D, Kumar A, Mohapatra B. Implication of rare genetic variants of NODAL and ACVR1B in congenital heart disease patients from Indian population. Exp Cell Res. 2021;409:112869. This study defined the role of NODAL and ACR1B mutations in impairing the NODAL signaling which might be inducing congenital heart diseases in isolated patients.

  33. Page DJ, Miossec MJ, Williams SG, Monaghan RM, Fotiou E, Cordell HJ, Sutcliffe L, Topf A, Bourgey M, Bourque G. Whole exome sequencing reveals the major genetic contributors to nonsyndromic tetralogy of Fallot. Circ Res. 2019;124:553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. H. Bean LJ, Allen EG, Tinker SW, Hollis ND, Locke AE, Druschel C, Hobbs CA, O’Leary L, Romitti PA, Royle MH,. Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: a report from the National Down Syndrome Project. Birth Defects Res A. 2011;91:885–93.

    Article  Google Scholar 

  35. Digilio MC, Marino B. What is new in genetics of congenital heart defects? Front Pediatr. 2016;4:120.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D, Cosgrove C, Setchfield K, Thornborough C, Granados-Riveron J. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. The American Journal of Human Genetics. 2012;91:489–501.

    Article  CAS  PubMed  Google Scholar 

  37. Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, Ergul E, Conta JH, Korn JM, McCarroll SA. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41:931–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim DS, Kim JH, Burt AA, Crosslin DR, Burnham N, Kim CE, McDonald-McGinn DM, Zackai EH, Nicolson SC, Spray TL. Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate-adjusted transplant-free survival. J Thorac Cardiovasc Surg. 2016;151:1147–51.

    Article  PubMed  Google Scholar 

  39. Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA, Webb CL. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:2995–3014.

    Article  PubMed  Google Scholar 

  40. Gregg NM. Congenital cataract following German measles in the mother. Problems of Birth Defects: From Hippocrates to Thalidomide and After. 1941:170-80.

  41. Nora JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases: the genetic-environmental interaction. Circulation. 1968;38:604–17.

    Article  CAS  PubMed  Google Scholar 

  42. •• Szot JO, Cuny H, Blue GM, Humphreys DT, Ip E, Harrison K, Sholler GF, Giannoulatou E, Leo P, Duncan EL. A screening approach to identify clinically actionable variants causing congenital heart disease in exome data. Circ Genom Precis Med. 2018;11:e001978. Findings from this study identified clinically actionable variants and additional disease-causal genes, both of which are essential for improving the molecular diagnosis of CHD.

  43. Nicoll R. Environmental contaminants and congenital heart defects: a re-evaluation of the evidence. Int J Environ Res Public Health. 2018;15:2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nees SN, Chung WK. The genetics of isolated congenital heart disease. InAmerican Journal of Medical Genetics Part C: Seminars in Medical Genetics 2020 Mar (Vol. 184, No. 1, pp. 97-106). Hoboken, USA: John Wiley & Sons, Inc.

  45. Riehle-Colarusso TJ, Patel SS. Maternal nongenetic risk factors for congenital heart defects. InCongenital Heart Disease 2015 (pp. 57-69). Karger Publishers.

  46. Miller A, Riehle-Colarusso T, Siffel C, Frías JL, Correa A. Maternal age and prevalence of isolated congenital heart defects in an urban area of the United States. Am J Med Genet A. 2011;155:2137–45.

    Article  Google Scholar 

  47. Liu S, Joseph KS, Lisonkova S, Rouleau J, Van den Hof M, Sauve R, Kramer MS. Association between maternal chronic conditions and congenital heart defects: a population-based cohort study. Circulation. 2013;128:583–9.

    Article  PubMed  Google Scholar 

  48. Dolk H, McCullough N, Callaghan S, Casey F, Craig B, Given J, Loane M, Lagan BM, Bunting B, Boyle B. Risk factors for congenital heart disease: the Baby Hearts Study, a population-based case-control study. PLoS ONE. 2020;15: e0227908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Priest JR, Yang W, Reaven G, Knowles JW, Shaw GM. Maternal midpregnancy glucose levels and risk of congenital heart disease in offspring. JAMA Pediatr. 2015;169:1112–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kalisch-Smith JI, Ved N, Sparrow DB. Environmental risk factors for congenital heart disease. Cold Spring Harb Perspect Biol. 2020;12: a037234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leirgul E, Brodwall K, Greve G, Vollset SE, Holmstrøm H, Tell GS, Øyen N. Maternal diabetes, birth weight, and neonatal risk of congenital heart defects in Norway, 1994–2009. Obstet Gynecol. 2016;128:1116–25.

    Article  PubMed  Google Scholar 

  52. Stover PJ. Physiology of folate and vitamin B 12 in health and disease. Nutr Rev. 2004;62:S3–12.

    Article  PubMed  Google Scholar 

  53. Botto LD, Mulinare J, Erickson JD. Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Evidence and gaps. Am J Med Genet A. 2003;121:95–101.

    Article  Google Scholar 

  54. Mao B, Qiu J, Zhao N, Shao Y, Dai W, He X, Cui H, Lin X, Lv L, Tang Z. Maternal folic acid supplementation and dietary folate intake and congenital heart defects. PLoS ONE. 2017;12: e0187996.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bergström S, Carr H, Petersson G, Stephansson O, Bonamy AK, Dahlström A, Halvorsen CP, Johansson S. Trends in congenital heart defects in infants with Down syndrome. Pediatrics. 2016 Jul 1;138(1).

  56. Nakajima Y. Retinoic acid signaling in heart development. Genesis. 2019;57: e23300.

    Article  PubMed  Google Scholar 

  57. Stefanovic S, Zaffran S. Mechanisms of retinoic acid signaling during cardiogenesis. Mech Dev. 2017;143:9–19.

    Article  CAS  PubMed  Google Scholar 

  58. Zaffran S, Niederreither K. Retinoic acid signaling and heart development. The Retinoids: Biology, Biochemistry, and Disease. 2015 Mar 20:353-69.

  59. Chazaud C, Chambon P, Dollé P. Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development. 1999;126:2589–96.

    Article  CAS  PubMed  Google Scholar 

  60. Zile MH, Kostetskii I, Yuan S, Kostetskaia E, Amand TRS, Chen Y, Jiang W. Retinoid signaling is required to complete the vertebrate cardiac left/right asymmetry pathway. Dev Biol. 2000;223:323–38.

    Article  CAS  PubMed  Google Scholar 

  61. Moran R, Robin NH. Congenital heart defects. InEmery and Rimoin's Principles and Practice of Medical Genetics and Genomics 2020 Jan 1 (pp. 3-75). Academic Press.

  62. Watson JN, Seagraves NJ. RNA-Seq analysis in an avian model of maternal phenylketonuria. Mol Genet Metab. 2019;126:23–9.

    Article  CAS  PubMed  Google Scholar 

  63. Malik S, Cleves MA, Honein MA, Romitti PA, Botto LD, Yang S, Hobbs CA, Study NBDP. Maternal smoking and congenital heart defects. Pediatrics. 2008;121:e810–6.

    Article  Google Scholar 

  64. Ferencz C, Loffredo CA, Correa-Villasenor A, Wilson PD. Categorization of cardiovascular malformations for risk factor analysis. Genetic and environmental risk factors of cardiac defects. 1997;5:12–28.

    Google Scholar 

  65. Alverson CJ, Strickland MJ, Gilboa SM, Correa A. Maternal smoking and congenital heart defects in the Baltimore-Washington Infant Study. Pediatrics. 2011;127:e647–53.

    Article  PubMed  Google Scholar 

  66. Oster ME, Riehle-Colarusso T, Correa A. An update on cardiovascular malformations in congenital rubella syndrome. Birth Defects Res A. 2010;88:1–8.

    Article  CAS  Google Scholar 

  67. Edwards MJ. Hyperthermia and fever during pregnancy. Birth Defects Res A. 2006;76:507–16.

    Article  CAS  Google Scholar 

  68. Ruffing L. Evalulation of thalidomide children. Birth Defects Orig Artic Ser. 1977;13:287–300.

    CAS  PubMed  Google Scholar 

  69. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H. Identification of a primary target of thalidomide teratogenicity. science. 2010 Mar 12;327(5971):1345-50.

  70. Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Ebert BL, Fischer ES. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife. 2018;7: e38430.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol. 2018;14:981–7.

    Article  CAS  PubMed  Google Scholar 

  72. Sakaki-Yumoto M, Kobayashi C, Sato A, Fujimura S, Matsumoto Y, Takasato M, Kodama T, Aburatani H, Asashima M, Yoshida N, Nishinakamura R. The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development.

  73. Patorno E, Huybrechts KF, Bateman BT, Cohen JM, Desai RJ, Mogun H, Cohen LS, Hernandez-Diaz S. Lithium use in pregnancy and the risk of cardiac malformations. N Engl J Med. 2017;376:2245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 1996;6:1664–9.

    Article  CAS  PubMed  Google Scholar 

  75. Ruiz-Villalba A, Hoppler S, van den Hoff MJ. Wnt signaling in the heart fields: variations on a common theme. Dev Dyn. 2016;245:294–306.

    Article  PubMed  Google Scholar 

  76. Gao S-Y, Wu Q-J, Sun C, Zhang T-N, Shen Z-Q, Liu C-X, Gong T-T, Xu X, Ji C, Huang D-H. Selective serotonin reuptake inhibitor use during early pregnancy and congenital malformations: a systematic review and meta-analysis of cohort studies of more than 9 million births. BMC Med. 2018;16:1–14.

    Article  Google Scholar 

  77. Choi D-S, Ward SJ, Messaddeq N, Launay J-M, Maroteaux L. 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development. 1997;124:1745–55.

    Article  CAS  PubMed  Google Scholar 

  78. Cresci M, Foffa I, Ait-Ali L, Pulignani S, Gianicolo EAL, Botto N, Picano E, Andreassi MG. Maternal and paternal environmental risk factors, metabolizing GSTM1 and GSTT1 polymorphisms, and congenital heart disease. Am J Cardiol. 2011;108:1625–31.

    Article  CAS  PubMed  Google Scholar 

  79. Waller DK, Mills JL, Simpson JL, Cunningham GC, Conley MR, Lassman MR, Rhoads GG. Are obese women at higher risk for producing malformed offspring? Am J Obstet Gynecol. 1994;170:541–8.

    Article  CAS  PubMed  Google Scholar 

  80. Guelinckx I, Devlieger R, Beckers K, Vansant G. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev. 2008;9:140–50.

    Article  CAS  PubMed  Google Scholar 

  81. Stothard KJ, Tennant PW, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009;301:636–50.

    Article  CAS  PubMed  Google Scholar 

  82. Liu S, Liu J, Tang J, Ji J, Chen J, Liu C. Environmental risk factors for congenital heart disease in the Shandong Peninsula, China: a hospital-based case–control study. J Epidemiol. 2009;19:122–30.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Botto LD, Mulinare J, Erickson JD. Occurrence of congenital heart defects in relation to maternal multivitamin use. Am J Epidemiol. 2000;151:878–84.

    Article  CAS  PubMed  Google Scholar 

  84. Ramakrishnan A, Lee LJ, Mitchell LE, Agopian AJ. Maternal hypertension during pregnancy and the risk of congenital heart defects in offspring: a systematic review and meta-analysis. Pediatr Cardiol. 2015;36:1442–51.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Clark EB. Pathogenetic mechanisms of congenital cardiovascular malformations revisited. InSeminars in perinatology 1996 Dec 1 (Vol. 20, No. 6, pp. 465-472). WB Saunders.

  86. Peng J, Meng Z, Zhou S, Zhou Y, Wu Y, Wang Q, Wang J, Sun K. The non-genetic paternal factors for congenital heart defects: a systematic review and meta-analysis. Clin Cardiol. 2019;42:684–91.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Snijder CA, Vlot IJ, Burdorf A, Obermann-Borst SA, Helbing WA, Wildhagen MF, Steegers EA, Steegers-Theunissen RP. Congenital heart defects and parental occupational exposure to chemicals. Hum Reprod. 2012;27:1510–7.

    Article  CAS  PubMed  Google Scholar 

  88. Nie ZQ, Ou YQ, Chen JM, Liu XQ, Mai JZ, Gao XM, Wu Y, Zhuang J. Risk factors of congenital heart defects in fetal and infants born from 2004 to 2011 in Guangdong. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41:704–8.

    PubMed  Google Scholar 

  89. Obermann-Borst SA, van Driel LM, Helbing WA, de Jonge R, Wildhagen MF, Steegers EA, Steegers-Theunissen RP. Congenital heart defects and biomarkers of methylation in children: a case–control study. Eur J Clin Invest. 2011;41:143–50.

    Article  CAS  PubMed  Google Scholar 

  90. Lim TB, Foo SYR, Chen CK. The role of epigenetics in congenital heart disease. Genes. 2021;12:390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sheng W, Qian Y, Zhang P, Wu Y, Wang H, Ma X, Chen L, Ma D, Huang G. Association of promoter methylation statuses of congenital heart defect candidate genes with tetralogy of Fallot. J Transl Med. 2014;12:1–9.

    Article  Google Scholar 

  92. Joshi RO, Chellappan S, Kukshal P. Exploring the role of maternal nutritional epigenetics in congenital heart disease. Current Developments in Nutrition. 2020 Nov;4(11):nzaa166.

  93. Wang G, Wang B, Yang P. Epigenetics in congenital heart disease. J Am Heart Assoc. 2022;11: e025163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhu C, Yu Z-B, Chen X-H, Ji C-B, Qian L-M, Han S-P. DNA hypermethylation of the NOX5 gene in fetal ventricular septal defect. Exp Ther Med. 2011;2:1011–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Lee Adamson S, Mark Henkelman R, Wrana JL, Rossant J, Bruneau BG. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432:107–12.

    Article  CAS  PubMed  Google Scholar 

  96. Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet. 2002;31:25–32.

    Article  CAS  PubMed  Google Scholar 

  97. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  98. Van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Investig. 2007;117:2369–76.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–20.

    Article  CAS  PubMed  Google Scholar 

  100. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303–17.

    Article  CAS  PubMed  Google Scholar 

  101. Wu Y, Ma X-J, Wang H-J, Li W-C, Chen L, Ma D, Huang G-Y. Expression of Cx43-related microRNAs in patients with tetralogy of Fallot. World Journal of Pediatrics. 2014;10:138–44.

    Article  CAS  PubMed  Google Scholar 

  102. Liang D, Xu X, Deng F, Feng J, Zhang H, Liu Y, Zhang Y, Pan L, Liu Y, Zhang D. mi RNA-940 reduction contributes to human tetralogy of Fallot development. J Cell Mol Med. 2014;18:1830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sucharov CC, Sucharov J, Karimpour-Fard A, Nunley K, Stauffer BL, Miyamoto SD. Micro-RNA expression in hypoplastic left heart syndrome. J Cardiac Fail. 2015;21:83–8.

    Article  CAS  Google Scholar 

  104. Li D, Ji L, Liu L, Liu Y, Hou H, Yu K, Sun Q, Zhao Z. Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS ONE. 2014;9: e106318.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li J, Cao Y, Ma X, Wang H, Zhang J, Luo X, Chen W, Wu Y, Meng Y, Zhang J. Roles of miR-1-1 and miR-181c in ventricular septal defects. Int J Cardiol. 2013;168:1441–6.

    Article  PubMed  Google Scholar 

  106. Song Y, Higgins H, Guo J, Harrison K, Schultz EN, Hales BJ, Moses EK, Goldblatt J, Pachter N, Zhang G. Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children. J Transl Med. 2018;16:1–11.

    Article  Google Scholar 

  107. Song H, Sun W, Ye G, Ding X, Liu Z, Zhang S, Xia T, Xiao B, Xi Y, Guo J. Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J Transl Med. 2013;11:1–10.

    Article  CAS  Google Scholar 

  108. • Jiang C, Ding N, Li J, Jin X, Li L, Pan T, Huo C, Li Y, Xu J, Li X. Landscape of the long non-coding RNA transcriptome in human heart. Brief Bioinform. 2019;20:1812–25. This recent study first showed the global view of lncRNAs in human cardiovascular system based on multiples tissues and sheds light on the role of lncRNAs in carediogensis and cardiac disorders.

  109. Dueñas A, Expósito A, Aranega A, Franco D. The role of non-coding RNA in congenital heart diseases. Journal of cardiovascular development and disease. 2019;6:15.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian L, Zhu C, Hu X, Li M, Guo X. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta. 2013;424:66–72.

    Article  CAS  PubMed  Google Scholar 

  111. Gu H, Chen L, Xue J, Huang T, Wei X, Liu D, Ma W, Cao S, Yuan Z. Expression profile of maternal circulating microRNAs as non-invasive biomarkers for prenatal diagnosis of congenital heart defects. Biomed Pharmacother. 2019;109:823–30.

    Article  CAS  PubMed  Google Scholar 

  112. Lin H, McBride KL, Garg V, Zhao MT. Decoding genetics of congenital heart disease using patient-derived induced pluripotent stem cells (iPSCs). Frontiers in Cell and Developmental Biology. 2021 Jan 21;9:630069.

  113. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.

    Article  CAS  PubMed  Google Scholar 

  114. Ang Y-S, Rivas RN, Ribeiro AJ, Srivas R, Rivera J, Stone NR, Pratt K, Mohamed TM, Fu J-D, Spencer CI. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell. 2016;167:1734–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hrstka SC, Li X, Nelson TJ, Group WPGP. NOTCH1-dependent nitric oxide signaling deficiency in hypoplastic left heart syndrome revealed through patient-specific phenotypes detected in bioengineered cardiogenesis. Stem Cells. 2017;35:1106–19.

    Article  Google Scholar 

  116. Rufaihah AJ, Chen CK, Yap CH, Mattar CN. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Disease Models & Mechanisms. 2021 Mar 1;14(3):dmm047522.

  117. Miao Y, Tian L, Martin M, Paige SL, Galdos FX, Li J, Klein A, Zhang H, Ma N, Wei Y. Intrinsic endocardial defects contribute to hypoplastic left heart syndrome. Cell Stem Cell. 2020;27:574–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Grunert M, Appelt S, Schönhals S, Mika K, Cui H, Cooper A, Cyganek L, Guan K, Sperling SR. Induced pluripotent stem cells of patients with tetralogy of Fallot reveal transcriptional alterations in cardiomyocyte differentiation. Sci Rep. 2020;10:1–11.

    Article  Google Scholar 

  119. Han S, Zhang Y, Meng M, Hou Z, Meng P, Zhao Y, Gao H, Tang J, Liu Z, Yang L. Generation of human iPSC line from a patient with tetralogy of Fallot, YAHKMUi001-A, carrying a mutation in TBX1 gene. Stem Cell Research. 2020;42: 101687.

    Article  CAS  PubMed  Google Scholar 

  120. Mikryukov AA, Mazine A, Wei B, Yang D, Miao Y, Gu M, Keller GM. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell. 2021;28:96–111.

    Article  CAS  PubMed  Google Scholar 

  121. Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49:1593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Watkins WS, Hernandez EJ, Wesolowski S, Bisgrove BW, Sunderland RT, Lin E, Lemmon G, Demarest BL, Miller TA, Bernstein D. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nat Commun. 2019;10:1–12.

    Article  Google Scholar 

  123. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498:220–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li Y-J, Yang Y-Q. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Rev Mol Diagn. 2017;17:393–401.

    Article  CAS  PubMed  Google Scholar 

  125. Sifrim A, Hitz M-P, Wilsdon A, Breckpot J, Al Turki SH, Thienpont B, McRae J, Fitzgerald TW, Singh T, Swaminathan GJ. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48:1060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fu F, Li R, Li Y, Nie Z-Q, Lei T, Wang D, Yang X, Han J, Pan M, Zhen L. Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. Ultrasound Obstet Gynecol. 2018;51:493–502.

    Article  CAS  PubMed  Google Scholar 

  127. Drury S, Williams H, Trump N, Boustred C, GOSGene, Lench N, Scott RH, Chitty LS,. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn. 2015;35:1010–7.

    Article  CAS  PubMed  Google Scholar 

  128. Verma SK, Deshmukh V, Nutter CA, Jaworski E, Jin W, Wadhwa L, Abata J, Ricci M, Lincoln J, Martin JF. Rbfox2 function in RNA metabolism is impaired in hypoplastic left heart syndrome patient hearts. Sci Rep. 2016;6:1–10.

    Article  Google Scholar 

  129. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350:1262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu Y, Chang X, Glessner J, Qu H, Tian L, Li D, Nguyen K, Sleiman PM, Hakonarson H. Association of rare recurrent copy number variants with congenital heart defects based on next-generation sequencing data from family trios. Front Genet. 2019;10:819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang W, Niu Z, Wang Y, Li Y, Zou H, Yang L, Meng M, Wei C, Li Q, Duan L. Comparative transcriptome analysis of atrial septal defect identifies dysregulated genes during heart septum morphogenesis. Gene. 2016;575:303–12.

    Article  CAS  PubMed  Google Scholar 

  132. Matos-Nieves A, Manivannan S, Majumdar U, McBride KL, White P, Garg V. A multi-omics approach using a mouse model of cardiac malformations for prioritization of human congenital heart disease contributing genes. Frontiers in cardiovascular medicine. 2021;8: 683074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, Yuen T, Rickaby J, Thiruvahindrapuram B, Marshall CR, Scherer SW. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways.

  134. Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M, Harris SE, Goetsch MA, Simpson PM, Bick DP. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012;44:518–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to Prof. Rajiva Raman, Department of Zoology, BHU, Varanasi, India for critically reviewing the manuscript, his valuable suggestions and grammatical corrections.

Author information

Authors and Affiliations

Authors

Contributions

Jyoti Maddhesiya performed the literature search and prepared the original draft including all figures and tables and reference formatting. Dr. Bhagyalaxmi Mohapatra sketched the outline for the article, critically supervised and revised the manuscript at every single step. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Bhagyalaxmi Mohapatra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddhesiya, J., Mohapatra, B. Understanding the Genetic and Non-genetic Interconnections in the Aetiology of Isolated Congenital Heart Disease: An Updated Review: Part 1. Curr Cardiol Rep 26, 147–165 (2024). https://doi.org/10.1007/s11886-024-02022-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-024-02022-9

Keywords

Navigation