Skip to main content
Log in

Supplements for Lipid Lowering: What Does the Evidence Show?

  • Lipid Abnormalities and Cardiovascular Prevention (ED Michos, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose

In this review, the regulation, proposed hypolipidemic mechanism, and efficacy of common dietary supplements (DSs) marketed for cardiovascular health are discussed.

Recent Findings

Data demonstrate modest but inconsistent lipid-lowering effects with common DSs such as probiotics, soluble fibers, plant sterols, green tea, berberine, guggul, niacin, and garlic. Furthermore, data is limited regarding turmeric, hawthorn, and cinnamon. Red yeast rice has shown to be a beneficial DS, but its safety and efficacy are dependent upon its production quality and monacolin K content, respectively. Finally, soy proteins and omega-3 fatty acid-rich foods can have significant health benefits if used to displace other animal products as part of a healthier diet.

Summary

Despite the rising use of DSs, data demonstrate unpredictable results. Patients should be educated on the difference between these DSs and evidence-based lipid-lowering medications proven to improve cardiovascular outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021;18:689–700.

    Article  CAS  PubMed  Google Scholar 

  2. Wall HK, Ritchey MD, Gillespie C, Omura JD, Jamal A, George MG. Vital Signs: Prevalence of Key Cardiovascular Disease Risk Factors for Million Hearts 2022 — United States, 2011–2016. MMWR Morb Mortal Wkly Rep. 2018;67:983–91.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cowan AE, Tooze JA, Gahche JJ, Eicher-Miller HA, Guenther PM, Dwyer JT, Potischman N, Bhadra A, Carroll RJ, Bailey RL. Trends in Overall and Micronutrient-Containing Dietary Supplement Use in US Adults and Children, NHANES 2007–2018. J Nutr. 2022;152:2789–801.

    Article  PubMed Central  Google Scholar 

  4. Hunter PM, Hegele RA. Functional foods and dietary supplements for the management of dyslipidaemia. Nat Rev Endocrinol. 2017;13:278–88.

    Article  CAS  PubMed  Google Scholar 

  5. Huang J, Frohlich J, Ignaszewski AP. The impact of dietary changes and dietary supplements on lipid profile. Can J Cardiol. 2011;27:488–505.

    Article  CAS  PubMed  Google Scholar 

  6. •• Bailey RL. Current regulatory guidelines and resources to support research of dietary supplements in the United States. Crit Rev Food Sci Nutr. 2020;60:298–309. Comprehensive review of the current regulatory framework for dietary supplements in the United States.

    Article  PubMed  Google Scholar 

  7. Boekholdt SM, Hovingh GK, Mora S, et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol. 2014;64:485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082–143.

    PubMed  Google Scholar 

  9. Nissen SE. The US Food and Drug Administration: a dysfunctional agency in need of major reforms. Curr Cardiol Rep. 2007;9:167–9.

    Article  PubMed  Google Scholar 

  10. Dietary Supplement Health and Education Act of 1994. In: Office of Dietary Supplements. https://ods.od.nih.gov/About/DSHEA_Wording.aspx. Accessed 9 Apr 2023.

  11. Starr RR. Too little, too late: ineffective regulation of dietary supplements in the United States. Am J Public Health. 2015;105:478–85.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wallace TC. Twenty years of the dietary supplement health and education act—how should dietary supplements be regulated? J Nutr. 2015;145:1683–6.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas PR, Coates PM, Haggans CJ. Chapter 35 - Dietary supplements. In: Marriott BP, Birt DF, Stallings VA, Yates AA, editors. Present Knowledge in Nutrition (Eleventh Edition). Academic Press; 2020. p. 573–90.

    Chapter  Google Scholar 

  14. Health Products Compliance Guidance. In: Federal Trade Commission. 2022. https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance. Accessed 12 Apr 2023.

  15. Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127:553–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jia B, Zou Y, Han X, Bae J-W, Jeon CO. Gut microbiome-mediated mechanisms for reducing cholesterol levels: implications for ameliorating cardiovascular disease. Trends Microbiol. 2023;31:76–91.

    Article  CAS  PubMed  Google Scholar 

  17. Ghorbani Z, Kazemi A, UP Bartolomaeus T, Martami F, Noormohammadi M, Salari A, et al. The effect of probiotic and synbiotic supplementation on lipid parameters among patients with cardiometabolic risk factors: a systematic review and meta-analysis of clinical trials. Cardiovasc Res. 2022:cvac128.

  18. Le Roy T, Lécuyer E, Chassaing B, et al. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol. 2019;17:94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cho YA, Kim J. Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine (Baltimore). 2015;94:e1714.

    Article  PubMed  Google Scholar 

  20. Guo Z, Liu XM, Zhang QX, Shen Z, Tian FW, Zhang H, et al. Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2011;21:844–50.

    Article  CAS  PubMed  Google Scholar 

  21. Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med. 2015;47:430–40.

    Article  CAS  PubMed  Google Scholar 

  22. Zarezadeh M, Musazadeh V, Faghfouri AH, Roshanravan N, Dehghan P. Probiotics act as a potent intervention in improving lipid profile: an umbrella systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2023;63:145–58.

    Article  CAS  PubMed  Google Scholar 

  23. Van Horn L. Fiber, lipids, and coronary heart disease. Circulation. 1997;95:2701–4.

    Article  PubMed  Google Scholar 

  24. Nijjar PS, Burke FM, Bloesch A, Rader DJ. Role of dietary supplements in lowering low-density lipoprotein cholesterol: a review. J Clin Lipidol. 2010;4:248–58.

    Article  PubMed  Google Scholar 

  25. Ghavami A, Ziaei R, Talebi S, et al. Soluble fiber supplementation and serum lipid profile: a systematic review and dose-response meta-analysis of randomized controlled trials. Adv Nutr. 2023. https://doi.org/10.1016/j.advnut.2023.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2020;41:111–88.

    Article  PubMed  Google Scholar 

  27. Fu L, Zhang G, Qian S, Zhang Q, Tan M. Associations between dietary fiber intake and cardiovascular risk factors: An umbrella review of meta-analyses of randomized controlled trials. Front Nutr. 2022;9.

  28. Mattson FH, Volpenhein RA, Erickson BA. Effect of plant sterol esters on the absorption of dietary cholesterol. J Nutr. 1977;107:1139–46.

    Article  CAS  PubMed  Google Scholar 

  29. Demonty I, Ras RT, van der Knaap HCM, Duchateau GSMJE, Meijer L, Zock PL, et al. Continuous dose-response relationship of the LDL-cholesterol–lowering effect of phytosterol intake 1,2. J Nutr. 2009;139:271–84.

    Article  CAS  PubMed  Google Scholar 

  30. Musa-Veloso K, Poon TH, Elliot JA, Chung C. A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukot Essent Fatty Acids. 2011;85:9–28.

    Article  CAS  PubMed  Google Scholar 

  31. Ras RT, Geleijnse JM, Trautwein EA. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: a meta-analysis of randomised controlled studies. Br J Nutr. 2014;112:214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Makhmudova U, Schulze PC, Lütjohann D, Weingärtner O. Phytosterols and cardiovascular disease. Curr Atheroscler Rep. 2021;23:68.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Han S, Jiao J, Xu J, Zimmermann D, Actis-Goretta L, Guan L, et al. Effects of plant stanol or sterol-enriched diets on lipid profiles in patients treated with statins: systematic review and meta-analysis. Sci Rep. 2016;6:31337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem. 2007;18:179–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng X-X, Xu Y-L, Li S-H, Liu X-X, Hui R, Huang X-H. Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials. Am J Clin Nutr. 2011;94:601–10.

    Article  CAS  PubMed  Google Scholar 

  36. Onakpoya I, Spencer E, Heneghan C, Thompson M. The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis. 2014;24:823–36.

    Article  CAS  PubMed  Google Scholar 

  37. Xu R, Yang K, Li S, Dai M, Chen G. Effect of green tea consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr J. 2020;19:1–15.

    Article  Google Scholar 

  38. Zamani M, Kelishadi MR, Ashtary-Larky D, Amirani N, Goudarzi K, Torki IA, et al. The effects of green tea supplementation on cardiovascular risk factors: a systematic review and meta-analysis. Front Nutr. 2023;9:1084455.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Z-M, Zhou B, Wang Y-S, Gong Q-Y, Wang Q-M, Yan J-J, et al. Black and green tea consumption and the risk of coronary artery disease: a meta-analysis. Am J Clin Nutr. 2011;93:506–15.

    Article  CAS  PubMed  Google Scholar 

  40. Tang J, Zheng J-S, Fang L, Jin Y, Cai W, Li D. Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. Br J Nutr. 2015;114:673–83.

    Article  CAS  PubMed  Google Scholar 

  41. Zou J, Zhang S, Li P, Zheng X, Feng D. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet–fed apolipoprotein E knockout mice. Nutr Res. 2018;56:32–40.

    Article  CAS  PubMed  Google Scholar 

  42. Yuan F, Dong H, Gong J, et al. A systematic review and meta-analysis of randomized controlled trials on the effects of turmeric and curcuminoids on blood lipids in adults with metabolic diseases. Adv Nutr. 2019;10:791–802.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Simental-Mendía LE, Pirro M, Gotto AM, Banach M, Atkin SL, Majeed M, et al. Lipid-modifying activity of curcuminoids: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2019;59:1178–87.

    Article  PubMed  Google Scholar 

  44. Saeedi F, Farkhondeh T, Roshanravan B, Amirabadizadeh A, Ashrafizadeh M, Samarghandian S. Curcumin and blood lipid levels: an updated systematic review and meta-analysis of randomised clinical trials. Arch Physiol Biochem. 2022;128:1493–502.

    Article  CAS  PubMed  Google Scholar 

  45. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;85:102–12.

    Article  CAS  PubMed  Google Scholar 

  46. Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M. Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation. 2006;113:1034–44.

    Article  CAS  PubMed  Google Scholar 

  47. Mullen E, Brown RM, Osborne TF, Shay NF. Soy isoflavones affect sterol regulatory element binding proteins (SREBPs) and SREBP-regulated genes in HepG2 cells. J Nutr. 2004;134:2942–7.

    Article  CAS  PubMed  Google Scholar 

  48. Petersen KS. The dilemma with the soy protein health claim. J Am Heart Assoc. 2019;8:e013202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jenkins DJA, Blanco Mejia S, Chiavaroli L, Viguiliouk E, Li SS, Kendall CWC, et al. Cumulative meta-analysis of the soy effect over time. J Am Heart Assoc. 2019;8:e012458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Blanco Mejia S, Messina M, Li SS, et al. A meta-analysis of 46 studies identified by the FDA demonstrates that soy protein decreases circulating LDL and total cholesterol concentrations in adults. J Nutr. 2019;149:968–81.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jenkins DJA, Mirrahimi A, Srichaikul K, Berryman CE, Wang L, Carleton A, et al. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr. 2010;140:2302S–2311S.

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Zidichouski JA. Update on the benefits and mechanisms of action of the bioactive vegetal alkaloid berberine on lipid metabolism and homeostasis. Cholesterol. 2018;2018:e7173920.

    Article  Google Scholar 

  53. Zamani M, Zarei M, Nikbaf-Shandiz M, Hosseini S, Shiraseb F, Asbaghi O. The effects of berberine supplementation on cardiovascular risk factors in adults: a systematic review and dose-response meta-analysis. Front Nutr. 2022;9.

  54. Cicero A, Ertek S. Metabolic and cardiovascular effects of berberine: from preclinical evidences to clinical trial results. Clin Lipidol. 2009;4:553–63.

    Article  CAS  Google Scholar 

  55. Szapary PO, Wolfe ML, Bloedon LT, Cucchiara AJ, DerMarderosian AH, Cirigliano MD, et al. Guggulipid for the treatment of hypercholesterolemia: a randomized controlled trial. JAMA. 2003;290:765–72.

    Article  CAS  PubMed  Google Scholar 

  56. Agarwal RC, Singh SP, Saran RK, Das SK, Sinha N, Asthana OP, et al. Clinical trial of gugulipid–a new hypolipidemic agent of plant origin in primary hyperlipidemia. Indian J Med Res. 1986;84:626–34.

    CAS  PubMed  Google Scholar 

  57. Gopal K, Saran RK, Nityanand S, Gupta PP, Hasan M, Das SK, et al. Clinical trial of ethyl acetate extract of gum gugulu (gugulipid) in primary hyperlipidemia. J Assoc Physicians India. 1986;34:249–51.

    CAS  PubMed  Google Scholar 

  58. Nityanand S, Srivastava J, Asthana O. Clinical trials with gugulipid: a new hypolipidaemic agent. J Assoc Physicians India. 1989;37:323–8.

    CAS  PubMed  Google Scholar 

  59. Koch E, Malek FA. Standardized extracts from hawthorn leaves and flowers in the treatment of cardiovascular disorders – preclinical and clinical studies. Planta Med. 2011;77:1123–8.

    Article  CAS  PubMed  Google Scholar 

  60. Wu M, Liu L, Xing Y, Yang S, Li H, Cao Y. Roles and mechanisms of hawthorn and its extracts on atherosclerosis: a review. Front Pharmacol. 2020;11.

  61. Dalli E, Colomer E, Tormos MC, Cosín-Sales J, Milara J, Esteban E, et al. Crataegus laevigata decreases neutrophil elastase and has hypolipidemic effect: A randomized, double-blind, placebo-controlled trial. Phytomedicine. 2011;18:769–75.

    Article  CAS  PubMed  Google Scholar 

  62. Hu M, Zeng W, Tomlinson B. Evaluation of a crataegus-based multiherb formula for dyslipidemia: a randomized, double-blind, placebo-controlled clinical trial. Evid Based Complement Alternat Med. 2014;2014:e365742.

    Article  Google Scholar 

  63. Davidson MH. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol. 2006;98:27–33.

    Article  Google Scholar 

  64. •• Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020. https://doi.org/10.1002/14651858.CD003177.pub5. Extensive Cochrane review of the safety and efficacy of omega-3 fatty acid dietary supplements.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nicholls SJ, Lincoff AM, Garcia M, et al. effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324:2268–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rimm EB, Appel LJ, Chiuve SE, Djoussé L, Engler MB, Kris-Etherton PM, et al. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. Circulation. 2018;138:e35–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Skulas-Ray AC, Wilson PWF, Harris WS, et al. Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association. Circulation. 2019;140:e673–91.

    Article  CAS  PubMed  Google Scholar 

  68. Ganji SH, Kamanna VS, Kashyap ML. Niacin and cholesterol: role in cardiovascular disease (review). J Nutr Biochem. 2003;14:298–305.

    Article  CAS  PubMed  Google Scholar 

  69. Schandelmaier S, Briel M, Saccilotto R, Olu KK, Arpagaus A, Hemkens LG, et al. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev. 2017;2017:CD009744.

    PubMed Central  Google Scholar 

  70. Garg A, Sharma A, Krishnamoorthy P, Garg J, Virmani D, Sharma T, et al. Role of niacin in current clinical practice: a systematic review. Am J Med. 2017;130:173–87.

    Article  CAS  PubMed  Google Scholar 

  71. Investigators AIM-HIGH, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  Google Scholar 

  72. HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.

    Article  Google Scholar 

  73. Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: a review based on its mechanisms. Iran J Basic Med Sci. 2016;19:1258–70.

    PubMed  PubMed Central  Google Scholar 

  74. Maierean SM, Serban M-C, Sahebkar A, Ursoniu S, Serban A, Penson P, et al. The effects of cinnamon supplementation on blood lipid concentrations: a systematic review and meta-analysis. J Clin Lipidol. 2017;11:1393–406.

    Article  PubMed  Google Scholar 

  75. Cicero AFG, Fogacci F, Zambon A. Red yeast rice for hypercholesterolemia: JACC focus seminar. J Am Coll Cardiol. 2021;77:620–8.

    Article  CAS  PubMed  Google Scholar 

  76. Gerards MC, Terlou RJ, Yu H, Koks CHW, Gerdes VEA. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain – A systematic review and meta-analysis. Atherosclerosis. 2015;240:415–23.

    Article  CAS  PubMed  Google Scholar 

  77. Lu Z, Kou W, Du B, Wu Y, Zhao S, Brusco OA, et al. Effect of Xuezhikang, an extract from red yeast Chinese rice, on coronary events in a Chinese population with previous myocardial infarction. Am J Cardiol. 2008;101:1689–93.

    Article  PubMed  Google Scholar 

  78. Fogacci F, Banach M, Mikhailidis DP, et al. Safety of red yeast rice supplementation: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2019;143:1–16.

    Article  CAS  PubMed  Google Scholar 

  79. Gordon RY, Cooperman T, Obermeyer W, Becker DJ. Marked variability of monacolin levels in commercial red yeast rice products: Buyer beware! Arch Intern Med. 2010;170:1722–7.

    Article  CAS  PubMed  Google Scholar 

  80. Gordon RY, Becker DJ. The role of red yeast rice for the physician. Curr Atheroscler Rep. 2011;13:73–80.

    Article  PubMed  Google Scholar 

  81. Wang RW, Kari PH, Lu AYH, Thomas PE, Guengerich FP, Vyas KP. Biotransformation of lovastatin: IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys. 1991;290:355–61.

    Article  CAS  PubMed  Google Scholar 

  82. Banach M, Patti AM, Giglio RV, et al. The role of nutraceuticals in statin intolerant patients. J Am Coll Cardiol. 2018;72:96–118.

    Article  PubMed  Google Scholar 

  83. Becker DJ, Gordon RY, Halbert SC, French B, Morris PB, Rader DJ. Red yeast rice for dyslipidemia in statin-intolerant patients. Ann Intern Med. 2009;150:830–9.

    Article  PubMed  Google Scholar 

  84. Halbert SC, French B, Gordon RY, Farrar JT, Schmitz K, Morris PB, et al. Tolerability of red yeast rice (2,400 mg twice daily) versus pravastatin (20 mg twice daily) in patients with previous statin intolerance. Am J Cardiol. 2010;105:198–204.

    Article  CAS  PubMed  Google Scholar 

  85. Yeh GY, Davis RB, Phillips RS. Use of complementary therapies in patients with cardiovascular disease. Am J Cardiol. 2006;98:673–80.

    Article  PubMed  Google Scholar 

  86. Singh DK, Porter TD. Inhibition of sterol 4α-methyl oxidase is the principal mechanism by which garlic decreases cholesterol synthesis. J Nutr. 2006;136:759S-764S.

    Article  CAS  PubMed  Google Scholar 

  87. Ried K, Toben C, Fakler P. Effect of garlic on serum lipids: an updated meta-analysis. Nutr Rev. 2013;71:282–99.

    Article  PubMed  Google Scholar 

  88. •• Laffin LJ, Bruemmer D, Garcia M, et al. Comparative Effects of Low-Dose Rosuvastatin, Placebo, and Dietary Supplements on Lipids and Inflammatory Biomarkers. J Am Coll Cardiol. 2023;81:1–12. Recent randomized controlled trial comparing the safety and efficacy of six common dietary supplements used for "cholesterol health" against statins and placebo.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke J. Laffin.

Ethics declarations

Conflicts of Interest

Luke J. Laffin has been a consultant and/or served on steering committees for Medtronic, Lilly Pharmaceuticals, Mineralys Therapeutics, AstraZeneca, and Crispr Therapeutics; has received research funding from AstraZeneca; and has ownership interest in LucidAct Health and Gordy Health. Saeid Mirzai declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzai, S., Laffin, L.J. Supplements for Lipid Lowering: What Does the Evidence Show?. Curr Cardiol Rep 25, 795–805 (2023). https://doi.org/10.1007/s11886-023-01903-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01903-9

Keywords

Navigation