Skip to main content
Log in

Strategies for Imaging Metabolic Remodeling of the Heart in Obesity and Heart Failure

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Define early myocardial metabolic changes among patients with obesity and heart failure, and to describe noninvasive methods and their applications for imaging cardiac metabolic remodeling.

Recent Findings

Metabolic remodeling precedes, triggers, and sustains functional and structural remodeling in the stressed heart. Alterations in cardiac metabolism can be assessed by using a variety of molecular probes. The glucose tracer analog, 18F-FDG, and the labeled tracer 11C-palmitate are still the most commonly used tracers to assess glucose and fatty acid metabolism, respectively. The development of new tracer analogs and imaging agents, including those targeting the peroxisome proliferator-activated receptor (PPAR), provides new opportunities for imaging metabolic activities at a molecular level. While the use of cardiac magnetic resonance spectroscopy in the clinical setting is limited to the assessment of intramyocardial and epicardial fat, new technical improvements are likely to increase its usage in the setting of heart failure.

Summary

Noninvasive imaging methods are an effective tool for the serial assessment of alterations in cardiac metabolism, either during disease progression, or in response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–56.

    Article  PubMed  Google Scholar 

  2. Lopaschuk GD, Ussher JR. Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res. 2016;119(11):1173–6.

    Article  CAS  PubMed  Google Scholar 

  3. Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL. Assessing cardiac metabolism: a scientific statement from the American Heart Association. Circ Res. 2016;118(10):1659–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taegtmeyer H. Carbohydrate interconversions and energy production. Circulation. 1985;72(5 Pt 2):IV1–8.

  5. Schulze PC, Drosatos K, Goldberg IJ. Lipid use and misuse by the heart. Circ Res. 2016;118(11):1736–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Glatz JF, Nabben M, Young ME, Schulze PC, Taegtmeyer H, Luiken JJ. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165579. Overview of myocardial substrate utilization in cardiac dysfunction.

  7. Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci. 2004;1015(1):202–13.

    Article  CAS  PubMed  Google Scholar 

  8. Taegtmeyer H, Dilsizian V. Imaging myocardial metabolism and ischemic memory. Nat Clin Pract Cardiovasc Med. 2008;5(2):S42–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology. 2015;130(4):211–20.

    Article  CAS  PubMed  Google Scholar 

  10. Gropler RJ. Recent advances in metabolic imaging. J Nucl Cardiol. 2013;20(6):1147–72.

    Article  PubMed  Google Scholar 

  11. Rider O, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate metabolism in obesity. Int J Obes. 2013;37(7):972–9.

    Article  CAS  Google Scholar 

  12. • Piché M, Poirier P. Obesity, ectopic fat and cardiac metabolism. Expert Rev Endocrinol Metab. 2018;13(4):213-221. Examines how metabolic alterations in obesity and ectopic cardiac fat accumulation translate into cardiac energy metabolism disturbances that may lead to adverse effects on the cardiovascular system.

  13. Harmancey R, Wilson CR, Taegtmeyer H. Adaptation and maladaptation of the heart in obesity. Hypertension. 2008;52(2):181–7.

    Article  CAS  PubMed  Google Scholar 

  14. Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: part I: general concepts. Circulation. 2002;105(14):1727–33.

    Article  CAS  PubMed  Google Scholar 

  15. Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: part II: potential mechanisms. Circulation. 2002;105(15):1861–70.

    Article  CAS  PubMed  Google Scholar 

  16. Curley D, Plaza BL, Shah AM, Botnar RM. Molecular imaging of cardiac remodelling after myocardial infarction. Basic Res Cardiol. 2018;113(2):1–18.

    Article  Google Scholar 

  17. Gropler RJ, Beanlands RS, Dilsizian V, Lewandowski ED, Villanueva FS, Ziadi MC. Imaging myocardial metabolic remodeling. J Nucl Med. 2010;51(Suppl 1):88S-101S.

    Article  CAS  PubMed  Google Scholar 

  18. Osterholt M, Sen S, Dilsizian V, Taegtmeyer H. Targeted metabolic imaging to improve the management of heart disease. JACC: Cardiovascular Imaging. 2012;5(2):214–226.

  19. Gewirtz H, Dilsizian V. Myocardial viability: survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res. 2017;120(7):1197–212.

    Article  CAS  PubMed  Google Scholar 

  20. Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis. 2018;61(2):114–23.

    Article  PubMed  Google Scholar 

  21. • Koutroumpakis E, Jozwik B, Aguilar D, Taegtmeyer H. Strategies of unloading the failing heart from metabolic stress. Am J Med. 2020;133(3):290-296. Summary of current knowledge on the pathophysiology of non-ischemic heart failure in the state of metabolic dysregulation.

  22. Sletten AC, Peterson LR, Schaffer JE. Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med. 2018;284(5):478–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leichman JG, Aguilar D, King TM, Vlada A, Reyes M, Taegtmeyer H. Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity. Am J Clin Nutr. 2006;84(2):336–41.

    Article  CAS  PubMed  Google Scholar 

  24. Mahajan R, Lau DH, Sanders P. Impact of obesity on cardiac metabolism, fibrosis, and function. Trends Cardiovasc Med. 2015;25(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  25. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier O, Taegtmeyer H. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18(14):1692–700.

    Article  CAS  PubMed  Google Scholar 

  26. Corica D, Oreto L, Pepe G, Calabrò MP, Longobardo L, Morabito L, Pajno GB, Alibrandi A, Aversa T, Wasniewska M. Precocious preclinical cardiovascular sonographic markers in metabolically healthy and unhealthy childhood obesity. Front Endocrinol. 2020;11:56.

    Article  Google Scholar 

  27. Madigan Jr., MJ, Racette SB, Coggan AR, Stein RI, McCue LM, Gropler RJ, Peterson LR. Weight loss affects intramyocardial glucose metabolism in obese humans. Circ Cardiovasc Imaging. 2019;12(8):e009241.

  28. Kosmala W, Sanders P, Marwick TH. Subclinical myocardial impairment in metabolic diseases. JACC Cardiovasc Imaging. 2017;10(6):692–703.

    Article  PubMed  Google Scholar 

  29. Lin CH, Kurup S, Herrero P, Schechtman KB, Eagon JC, Klein S, Dávila-Román VG, Stein RI, Dorn-II GW, Gropler RJ. Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss. Obesity. 2011;19(9):1804–12.

    Article  CAS  PubMed  Google Scholar 

  30. Leichman JG, Wilson EB, Scarborough T, Aguilar D, Miller CC III, Yu S, Algahim MF, Reyes M, Moody FG, Taegtmeyer H. Dramatic reversal of derangements in muscle metabolism and left ventricular function after bariatric surgery. Am J Med. 2008;121(11):966–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomas SY, Harmancey R, Taegtmeyer H. Fat around the heart. JACC Cardiovasc Imaging. 2010;3(7):786–7.

    Article  PubMed  Google Scholar 

  32. Iacobellis G. Epicardial and pericardial fat: close, but very different. Obesity. 2009;17(4):626.

    Article  Google Scholar 

  33. Ferrara D, Montecucco F, Dallegri F, Carbone F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J Cell Physiol. 2019;234(12):21630–41.

    Article  CAS  PubMed  Google Scholar 

  34. Rabkin S. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8(3):253–61.

    Article  CAS  PubMed  Google Scholar 

  35. Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11(6):363–71.

    Article  CAS  Google Scholar 

  36. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43.

    Article  PubMed  Google Scholar 

  37. Algahim MF, Lux TR, Leichman JG, Boyer AF, Miller CC III, Laing ST, Wilson EB, Scarborough T, Yu S, Snyder B. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am J Med. 2010;123(6):549–55.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Algahim MF, Sen S, Taegtmeyer H. Bariatric surgery to unload the stressed heart: a metabolic hypothesis. American Journal of Physiology-Heart and Circulatory Physiology. 2012;302(8):H1539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tuunanen H, Knuuti J. Metabolic remodelling in human heart failure. Cardiovasc Res. 2011;90(2):251–7.

    Article  CAS  PubMed  Google Scholar 

  40. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021;128(10):1487–513.

    Article  CAS  PubMed  Google Scholar 

  41. Gibb AA, Hill BG. Metabolic coordination of physiological and pathological cardiac remodeling. Circ Res. 2018;123(1):107–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kolwicz SC Jr, Airhart S, Tian R. Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circulation. 2016;133(8):689–91.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fragasso G. Deranged cardiac metabolism and the pathogenesis of heart failure. Card Fail Rev. 2016;2(1):8–13.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kadkhodayan A, Coggan AR, Peterson LR. A “PET” area of interest: myocardial metabolism in human systolic heart failure. Heart Fail Rev. 2013;18(5):567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kadkhodayan A, Lin CH, Coggan AR, Kisrieva-Ware Z, Schechtman KB, Novak E, Joseph SM, Dávila-Román VG, Gropler RJ, Dence C. Sex affects myocardial blood flow and fatty acid substrate metabolism in humans with nonischemic heart failure. J Nucl Cardiol. 2017;24(4):1226–35.

    Article  PubMed  Google Scholar 

  46. Taegtmeyer H. Tracing cardiac metabolism in vivo: one substrate at a time. J Nucl Med. 2010;51(Suppl 1):80S-87S.

    Article  CAS  PubMed  Google Scholar 

  47. Olson RE. Myocardial metabolism in congestive heart failure. J Chronic Dis. 1959;9(5):442–64.

    Article  CAS  PubMed  Google Scholar 

  48. Herrero P, Gropler RJ. Imaging of myocardial metabolism. J Nucl Cardiol. 2005;12(3):345–58.

    Article  PubMed  Google Scholar 

  49. Peterson LR, Gropler RJ. Radionuclide imaging of myocardial metabolism. Circ Cardiovasc Imaging. 2010;3(2):211–22.

    Article  PubMed  Google Scholar 

  50. Rider OJ, Tyler DJ. Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson. 2013;15(1):1–9.

    Article  Google Scholar 

  51. van Ewijk PA, Schrauwen-Hinderling VB, Bekkers SC, Glatz JF, Wildberger JE, Kooi ME. MRS: a noninvasive window into cardiac metabolism. NMR Biomed. 2015;28(7):747–66.

    Article  PubMed  Google Scholar 

  52. • Dellegrottaglie S, Scatteia A, Pascale CE, Renga F, Perrone-Filardi P. Evaluation of cardiac metabolism by magnetic resonance spectroscopy in heart failure. Heart Fail Clin. 2019;15(3):421-433. Comprehensive overview of cardiac magnetic resonance spectroscopy use to assess metabolic changes in heart failure.

  53. Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol. 2017;24(2):574–90.

    Article  PubMed  Google Scholar 

  54. •• Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q, Chordia MD, Roy RJ, Patrie JT, Davogustto GE. Metabolic changes in spontaneously hypertensive rat hearts precede cardiac dysfunction and left ventricular hypertrophy. J Am Heart Assoc. 2019;8(4):e010926. In the stressed heart, metabolic remodeling precedes, triggers, and sustains functional and structural remodeling.

  55. Hamirani YS, Kundu BK, Zhong M, McBride A, Li Y, Davogustto GE, Taegtmeyer H, Bourque JM. Noninvasive detection of early metabolic left ventricular remodeling in systemic hypertension. Cardiology. 2016;133(3):157–62.

    Article  CAS  PubMed  Google Scholar 

  56. Zhong M, Alonso CE, Taegtmeyer H, Kundu BK. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo. J Nucl Med. 2013;54(4):609–15.

    Article  CAS  PubMed  Google Scholar 

  57. •• Li J, Minćzuk K, Massey JC, Howell NL, Roy RJ, Paul S, Patrie JT, Kramer CM, Epstein FH, Carey RM. Metformin improves cardiac metabolism and function, and prevents left ventricular hypertrophy in spontaneously hypertensive rats. J Am Heart Assoc. 2020;9(7):e015154. Metformin ameliorates cardiac metabolic abnormalities that develop in response to chronic pressure overload and thereby lessen hypertension induced LVH, even in patients without diabetes.

  58. Khalaf S, Chamsi-Pasha M, Al-Mallah MH. Assessment of myocardial viability by PET. Curr Opin Cardiol. 2019;34(5):466–72.

    Article  PubMed  Google Scholar 

  59. Kloner RA. Stunned and hibernating myocardium: where are we nearly 4 decades later? J Am Heart Assoc. 2020;9(3):e015502.

  60. Ryan MJ, Perera D. Identifying and managing hibernating myocardium: what’s new and what remains unknown? Curr Heart Fail Rep. 2018;15(4):214–23.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Panza JA, Chrzanowski L, Bonow RO. Myocardial viability assessment before surgical revascularization in ischemic cardiomyopathy: JACC review topic of the week. J Am Coll Cardiol. 2021;78(10):1068–77.

    Article  PubMed  Google Scholar 

  62. Mather KJ, DeGrado TR. Imaging of myocardial fatty acid oxidation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2016;1861(10):1535–1543.

  63. Ylä-Herttuala E, Saraste A, Knuuti J, Liimatainen T, Ylä-Herttuala S. Molecular imaging to monitor left ventricular remodeling in heart failure. Curr Cardiovasc Imaging Rep. 2019;12(4):1–13.

    Article  Google Scholar 

  64. • Apps A, Lau J, Peterzan M, Neubauer S, Tyler D, Rider O. Hyperpolarised magnetic resonance for in vivo real-time metabolic imaging. Heart. 2018;104(18):1484-91. Opportunities and limitations of a novel approach to assess cardiac metabolism.

  65. Cunningham CH, Lau JY, Chen AP, Geraghty BJ, Perks WJ, Roifman I, Wright GA, Connelly KA. Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res. 2016;119(11):1177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ng AC, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021;18(4):291–304.

    Article  PubMed  Google Scholar 

  67. Davidovich D, Gastaldelli A, Sicari R. Imaging cardiac fat. Eur Heart J Cardiovasc Imaging. 2013;14(7):625–30.

    Article  PubMed  Google Scholar 

  68. McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart*, revisited. Ann Intern Med. 2006;144(7):517–24.

    Article  CAS  PubMed  Google Scholar 

  69. Szczepaniak LS, Victor RG, Orci L, Unger RH. Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res. 2007;101(8):759–67.

    Article  CAS  PubMed  Google Scholar 

  70. Jing L, Binkley CM, Suever JD, Umasankar N, Haggerty CM, Rich J, Nevius CD, Wehner GJ, Hamlet SM, Powell DK. Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2016;18(1):1–12.

    Article  Google Scholar 

  71. • Peterson LR, Gropler RJ. Metabolic and molecular imaging of the diabetic cardiomyopathy. Circ Res. 2020;126(11):1628-1645. Comprehensive review on non-invasive metabolic imaging methods in patients with diabetes.

  72. Barton GP, Vildberg L, Goss K, Aggarwal N, Eldridge M, McMillan AB. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI. J Nucl Cardiol. 2019;26(6):1946–57.

    Article  PubMed  Google Scholar 

  73. Schoenheimer R. The dynamic state of body constituents. 1942; Cambridge MA, Harvard University Press, 78pp.

Download references

Acknowledgements

Work in the authors’ lab was supported by grants from the US Public Health Service (R01- HL-061483, R01- HL-073162). We thank Drs. Linda Peterson (Washington University St. Louis) and Raymond R. Russell (Alpert School of Medicine, Brown University). We also thank Mrs. Anna Menezes for expert editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Taegtmeyer.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haidar, A., Taegtmeyer, H. Strategies for Imaging Metabolic Remodeling of the Heart in Obesity and Heart Failure. Curr Cardiol Rep 24, 327–335 (2022). https://doi.org/10.1007/s11886-022-01650-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01650-3

Keywords

Navigation