Skip to main content

Advertisement

Log in

Taking Data Science to Heart: Next Scale of Gene Regulation

  • Regenerative Medicine (SM Wu, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Technical advances have facilitated high-throughput measurements of the genome in the context of cardiovascular biology. These techniques bring a deluge of gargantuan datasets, which in turn present two fundamentally new opportunities for innovation—data processing and knowledge integration—toward the goal of meaningful basic and translational discoveries.

Recent Findings

Big data, integrative analyses, and machine learning have brought cardiac investigations to the cutting edge of chromatin biology, not only to reveal basic principles of gene regulation in the heart, but also to aid in the design of targeted epigenetic therapies.

Summary

Cardiac studies using big data are only beginning to integrate the millions of recorded data points and the tools of machine learning are aiding this process. Future experimental design should take into consideration insights from existing genomic datasets, thereby focusing on heretofore unexplored epigenomic contributions to disease pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  PubMed  Google Scholar 

  2. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. 2007;12(3-4):331–43. https://doi.org/10.1007/s10741-007-9034-1.

    Article  CAS  PubMed  Google Scholar 

  3. Rosa-Garrido M, Chapski DJ, Vondriska TM. Epigenomes in cardiovascular disease. Circ Res. 2018;122(11):1586–607. https://doi.org/10.1161/CIRCRESAHA.118.311597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matkovich SJ, Van Booven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119(9):1263–71. https://doi.org/10.1161/CIRCULATIONAHA.108.813576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21. https://doi.org/10.1073/pnas.091062498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. https://doi.org/10.1038/nbt.1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46–53. https://doi.org/10.1038/nbt.2450.

    Article  CAS  PubMed  Google Scholar 

  8. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–5. https://doi.org/10.1073/pnas.1530509100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300 Original statistical paper describing the Benjamini-Hochberg method for multiple testing correction.

    Google Scholar 

  12. Matkovich SJ, Zhang Y, Van Booven DJ, Dorn GW 2nd. Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Galphaq. Circ Res. 2010;106(9):1459–67. https://doi.org/10.1161/CIRCRESAHA.110.217513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang KC, Ku YC, Lovett M, Nerbonne JM. Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3K alpha signaling in cardiac hypertrophy. J Mol Cell Cardiol. 2012;53(1):101–12. https://doi.org/10.1016/j.yjmcc.2012.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129(9):1009–21. https://doi.org/10.1161/CIRCULATIONAHA.113.003863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest. 2005;115(3):538–46. https://doi.org/10.1172/JCI24144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McKinsey TA. Targeting inflammation in heart failure with histone deacetylase inhibitors. Mol Med. 2011;17(5-6):434–41. https://doi.org/10.2119/molmed.2011.00022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Ahlberg G, Albert CM, et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet. 2018;50(9):1225–33. https://doi.org/10.1038/s41588-018-0133-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang M, Hill MC, Kadow ZA, Suh JH, Tucker NR, Hall AW, et al. Long-range Pitx2c enhancer-promoter interactions prevent predisposition to atrial fibrillation. Proc Natl Acad Sci U S A. 2019;116(45):22692–8. https://doi.org/10.1073/pnas.1907418116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Movassagh M, Choy MK, Knowles DA, Cordeddu L, Haider S, Down T, et al. Distinct epigenomic features in end-stage failing human hearts. Circulation. 2011;124(22):2411–22. https://doi.org/10.1161/CIRCULATIONAHA.111.040071.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen H, Orozco LD, Wang J, Rau CD, Rubbi L, Ren S, et al. DNA methylation indicates susceptibility to isoproterenol-induced cardiac pathology and is associated with chromatin states. Circ Res. 2016;118(5):786–97. https://doi.org/10.1161/CIRCRESAHA.115.305298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stenzig J, Schneeberger Y, Loser A, Peters BS, Schaefer A, Zhao RR, et al. Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol. 2018;120:53–63. https://doi.org/10.1016/j.yjmcc.2018.05.012.

    Article  CAS  PubMed  Google Scholar 

  22. Sayed D, He M, Yang Z, Lin L, Abdellatif M. Transcriptional regulation patterns revealed by high resolution chromatin immunoprecipitation during cardiac hypertrophy. J Biol Chem. 2013;288(4):2546–58. https://doi.org/10.1074/jbc.M112.429449.

    Article  CAS  PubMed  Google Scholar 

  23. Sayed D, Yang Z, He M, Pfleger JM, Abdellatif M. Acute targeting of general transcription factor IIB restricts cardiac hypertrophy via selective inhibition of gene transcription. Circ Heart Fail. 2015;8(1):138–48. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001660.

    Article  CAS  PubMed  Google Scholar 

  24. Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013;110(50):20164–9. https://doi.org/10.1073/pnas.1315155110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ooi JY, Tuano NK, Rafehi H, Gao XM, Ziemann M, Du XJ, et al. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics. 2015;10(5):418–30. https://doi.org/10.1080/15592294.2015.1024406.

    Article  PubMed  PubMed Central  Google Scholar 

  26. He A, Kong SW, Ma Q, Pu WT. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci U S A. 2011;108(14):5632–7. https://doi.org/10.1073/pnas.1016959108.

    Article  PubMed  PubMed Central  Google Scholar 

  27. He A, Gu F, Hu Y, Ma Q, Ye LY, Akiyama JA, et al. Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat Commun. 2014;5:4907. https://doi.org/10.1038/ncomms5907.

    Article  CAS  PubMed  Google Scholar 

  28. Akerberg BN, Gu F, VanDusen NJ, Zhang X, Dong R, Li K, et al. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat Commun. 2019;10(1):4907. https://doi.org/10.1038/s41467-019-12812-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosa-Garrido M, Chapski DJ, Schmitt AD, Kimball TH, Karbassi E, Monte E, et al. High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation. 2017;136(17):1613–25. https://doi.org/10.1161/CIRCULATIONAHA.117.029430Investigation revealing deranged chromatin structure in heart failure and in a cardiac-specific model of chromatin disruption that results in pathological cardiac phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee DP, Tan WLW, Anene-Nzelu CG, Lee CJM, Li PY, Luu TDA, et al. Robust CTCF-based chromatin architecture underpins epigenetic changes in the heart failure stress-gene response. Circulation. 2019;139(16):1937–56. https://doi.org/10.1161/CIRCULATIONAHA.118.036726.

    Article  CAS  PubMed  Google Scholar 

  31. Nothjunge S, Nuhrenberg TG, Gruning BA, Doppler SA, Preissl S, Schwaderer M, et al. DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes. Nat Commun. 2017;8(1):1667. https://doi.org/10.1038/s41467-017-01724-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao MT, Shao NY, Hu S, Ma N, Srinivasan R, Jahanbani F, et al. Cell type-specific chromatin signatures underline regulatory DNA elements in human induced pluripotent stem cells and somatic cells. Circ Res. 2017;121(11):1237–50. https://doi.org/10.1161/CIRCRESAHA.117.311367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Montefiori LE, Sobreira DR, Sakabe NJ, Aneas I, Joslin AC, Hansen GT, et al. A promoter interaction map for cardiovascular disease genetics. Elife. 2018;7:e35788. https://doi.org/10.7554/eLife.35788.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hua N, Tjong H, Shin H, Gong K, Zhou XJ, Alber F. Producing genome structure populations with the dynamic and automated PGS software. Nat Protoc. 2018;13(5):915–26. https://doi.org/10.1038/nprot.2018.008Software paper highlighting mathematical concepts underlying the authors’ method to build 3D genome models from pairwise Hi-C contacts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chapski DJ, Rosa-Garrido M, Hua N, Alber F, Vondriska TM. Spatial principles of chromatin architecture associated with organ-specific gene regulation. Front Cardiovasc Med. 2018;5:186. https://doi.org/10.3389/fcvm.2018.00186.

    Article  CAS  PubMed  Google Scholar 

  36. Karbassi E, Rosa-Garrido M, Chapski DJ, Wu Y, Ren S, Wang Y, et al. Direct visualization of cardiac transcription factories reveals regulatory principles of nuclear architecture during pathological remodeling. J Mol Cell Cardiol. 2019;128:198–211. https://doi.org/10.1016/j.yjmcc.2019.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bishop CM. Pattern recognition and machine learning (Information Science and Statistics). Springer-Verlag; 2006.

  38. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65–9. https://doi.org/10.1038/s41591-018-0268-3Innovative application of machine learning to clinical data to predict arrhythmia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nallamothu BK, Hill JA. Preprints and cardiovascular science: prescient or premature? Circ Cardiovasc Qual Outcomes. 2017;10(9):e000033. https://doi.org/10.1161/HCQ.0000000000000033.

    Article  PubMed  Google Scholar 

  40. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. https://doi.org/10.1186/gb-2013-14-10-r115.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17(1):171. https://doi.org/10.1186/s13059-016-1030-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dawber TR, Meadors GF, Moore FE Jr. Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nations Health. 1951;41(3):279–81. https://doi.org/10.2105/ajph.41.3.279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27. https://doi.org/10.18632/aging.101684.

    Article  CAS  Google Scholar 

  44. Dogan MV, Beach SRH, Simons RL, Lendasse A, Penaluna B, Philibert RA. Blood-based biomarkers for predicting the risk for five-year incident coronary heart disease in the Framingham Heart Study via Machine Learning. Genes (Basel). 2018;9(12):1641. https://doi.org/10.3390/genes9120641.

    Article  CAS  Google Scholar 

  45. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  46. Quaife-Ryan GA, Sim CB, Ziemann M, Kaspi A, Rafehi H, Ramialison M, et al. Multicellular transcriptional analysis of mammalian heart regeneration. Circulation. 2017;136(12):1123–39. https://doi.org/10.1161/CIRCULATIONAHA.117.028252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. See K, Tan WLW, Lim EH, Tiang Z, Lee LT, Li PYQ, et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun. 2017;8(1):225. https://doi.org/10.1038/s41467-017-00319-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9.

  50. Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics. Nat Commun. 2019;10(1):5416. https://doi.org/10.1038/s41467-019-13056-xUseful technical guide on how to perform t-SNE on single-cell RNA-seq datasets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gladka MM, Molenaar B, de Ruiter H, van der Elst S, Tsui H, Versteeg D, et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation. 2018;138(2):166–80. https://doi.org/10.1161/CIRCULATIONAHA.117.030742.

    Article  CAS  PubMed  Google Scholar 

  52. McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426. 2018.

  53. de Soysa TY, Ranade SS, Okawa S, Ravichandran S, Huang Y, Salunga HT, et al. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature. 2019;572(7767):120–4. https://doi.org/10.1038/s41586-019-1414-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6. https://doi.org/10.1038/nbt.2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. https://doi.org/10.1038/ncomms14049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20. https://doi.org/10.1038/nbt.4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–902 e21. https://doi.org/10.1016/j.cell.2019.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. https://doi.org/10.1093/bioinformatics/btq033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature. 2012;481(7381):389–93. https://doi.org/10.1038/nature10730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wolff J, Bhardwaj V, Nothjunge S, Richard G, Renschler G, Gilsbach R, et al. Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 2018;46(W1):W11–W6. https://doi.org/10.1093/nar/gky504This software is particularly suited for the novice bioinformatician because it contains a graphical user interface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16:259. https://doi.org/10.1186/s13059-015-0831-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30 This well maintained Python library contains many of the tools needed to perform machine learning tasks.

    Google Scholar 

  63. Stone NR, Gifford CA, Thomas R, Pratt KJB, Samse-Knapp K, Mohamed TMA, et al. Context-specific transcription factor functions regulate epigenomic and transcriptional dynamics during cardiac reprogramming. Cell Stem Cell. 2019;25(1):87–102 e9. https://doi.org/10.1016/j.stem.2019.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martini E, Kunderfranco P, Peano C, Carullo P, Cremonesi M, Schorn T, et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation. 2019;140(25):2089–107. https://doi.org/10.1161/CIRCULATIONAHA.119.041694.

    Article  CAS  PubMed  Google Scholar 

  65. Tucker NR, Chaffin M, Fleming SJ, Hall AW, Parsons VA, Bedi KC Jr, et al. Transcriptional and cellular diversity of the human heart. Circulation. 2020;142:466–82. https://doi.org/10.1161/CIRCULATIONAHA.119.045401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Worth CL, Lindberg EL, et al. Cells of the adult human heart. Nature. 2020;588:466–72. https://doi.org/10.1038/s41586-020-2797-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, et al. A human cell atlas of fetal gene expression. Science. 2020;370(6518):eaba7721. https://doi.org/10.1126/science.aba7721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mangul S, Martin LS, Hoffmann A, Pellegrini M, Eskin E. Addressing the digital divide in contemporary biology: lessons from teaching UNIX. Trends Biotechnol. 2017;35(10):901–3. https://doi.org/10.1016/j.tibtech.2017.06.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We regret the space considerations have not allowed us to cite many excellent papers in the field. Research in the Vondriska laboratory is supported by the NIH, the David Geffen School of Medicine, and the Department of Anesthesiology and Perioperative Medicine at UCLA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Chapski.

Ethics declarations

Conflicts of Interest

Douglas J. Chapski and Thomas M. Vondriska report no conflicts of interest.

Human and Animal Rights and Informed Consent

This paper does not report original findings from human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapski, D.J., Vondriska, T.M. Taking Data Science to Heart: Next Scale of Gene Regulation. Curr Cardiol Rep 23, 46 (2021). https://doi.org/10.1007/s11886-021-01467-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01467-6

Keywords

Navigation